首页 > 最新文献

Nature Electronics最新文献

英文 中文
Permeable, three-dimensional integrated electronic skins with stretchable hybrid liquid metal solders 使用可拉伸混合液态金属焊料的可渗透三维集成电子表皮
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-01 DOI: 10.1038/s41928-024-01189-x
Qiuna Zhuang, Kuanming Yao, Chi Zhang, Xian Song, Jingkun Zhou, Yufei Zhang, Qiyao Huang, Yizhao Zhou, Xinge Yu, Zijian Zheng
The development of wearable and on-skin electronics requires high-density stretchable electronic systems that can conform to soft tissue, operate continuously and provide long-term biocompatibility. Most stretchable electronic systems have low-density integration and are wired with external printed circuit boards, which limits functionality, deteriorates user experience and impedes long-term usability. Here we report an intrinsically permeable, three-dimensional integrated electronic skin. The system combines high-density inorganic electronic components with organic stretchable fibrous substrates using three-dimensional patterned, multilayered liquid metal circuits and stretchable hybrid liquid metal solder. The electronic skin exhibits high softness, durability, fabric-like permeability to air and moisture and sufficient biocompatibility for on-skin attachment for a week. We use the platform to create wireless, battery-powered and battery-free skin-attached bioelectronic systems that offer complex system-level functions, including the stable sensing of biosignals, signal processing and analysis, electrostimulation and wireless communication. An electronic skin that connects rigid inorganic electronic components with a multilayered stretchy liquid metal fibre mat using a hybrid liquid metal solder can offer high integration density while remaining soft, permeable and biocompatible.
可穿戴和皮肤电子设备的开发需要高密度的可拉伸电子系统,这些系统应能贴合软组织、连续运行并具有长期的生物兼容性。大多数可拉伸电子系统的集成度较低,并与外部印刷电路板连线,这限制了功能,降低了用户体验,并妨碍了长期可用性。在此,我们报告了一种内在可渗透的三维集成电子皮肤。该系统利用三维图案化多层液态金属电路和可拉伸混合液态金属焊料,将高密度无机电子元件与有机可拉伸纤维基底相结合。电子皮肤具有高柔软性、耐用性、类似织物的透气性和透湿性,以及足够的生物相容性,可在皮肤上附着一周。我们利用该平台创建无线、电池供电和无电池的皮肤附着生物电子系统,该系统具有复杂的系统级功能,包括稳定的生物信号传感、信号处理和分析、电刺激和无线通信。
{"title":"Permeable, three-dimensional integrated electronic skins with stretchable hybrid liquid metal solders","authors":"Qiuna Zhuang, Kuanming Yao, Chi Zhang, Xian Song, Jingkun Zhou, Yufei Zhang, Qiyao Huang, Yizhao Zhou, Xinge Yu, Zijian Zheng","doi":"10.1038/s41928-024-01189-x","DOIUrl":"10.1038/s41928-024-01189-x","url":null,"abstract":"The development of wearable and on-skin electronics requires high-density stretchable electronic systems that can conform to soft tissue, operate continuously and provide long-term biocompatibility. Most stretchable electronic systems have low-density integration and are wired with external printed circuit boards, which limits functionality, deteriorates user experience and impedes long-term usability. Here we report an intrinsically permeable, three-dimensional integrated electronic skin. The system combines high-density inorganic electronic components with organic stretchable fibrous substrates using three-dimensional patterned, multilayered liquid metal circuits and stretchable hybrid liquid metal solder. The electronic skin exhibits high softness, durability, fabric-like permeability to air and moisture and sufficient biocompatibility for on-skin attachment for a week. We use the platform to create wireless, battery-powered and battery-free skin-attached bioelectronic systems that offer complex system-level functions, including the stable sensing of biosignals, signal processing and analysis, electrostimulation and wireless communication. An electronic skin that connects rigid inorganic electronic components with a multilayered stretchy liquid metal fibre mat using a hybrid liquid metal solder can offer high integration density while remaining soft, permeable and biocompatible.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Build it up 建立起来
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-27 DOI: 10.1038/s41928-024-01206-z
Three-dimensional electronics is our 2024 technology of the year.
三维电子技术是我们的 2024 年度技术。
{"title":"Build it up","authors":"","doi":"10.1038/s41928-024-01206-z","DOIUrl":"10.1038/s41928-024-01206-z","url":null,"abstract":"Three-dimensional electronics is our 2024 technology of the year.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41928-024-01206-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced packaging of chiplets for future computing needs 满足未来计算需求的先进芯片组封装
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-27 DOI: 10.1038/s41928-024-01175-3
Debendra Das Sharma, Ravi V. Mahajan
Heterogeneous integration of chips in three-dimensional systems will be needed to meet increasing global demands for computing power.
为满足全球对计算能力日益增长的需求,需要在三维系统中实现芯片的异构集成。
{"title":"Advanced packaging of chiplets for future computing needs","authors":"Debendra Das Sharma, Ravi V. Mahajan","doi":"10.1038/s41928-024-01175-3","DOIUrl":"10.1038/s41928-024-01175-3","url":null,"abstract":"Heterogeneous integration of chips in three-dimensional systems will be needed to meet increasing global demands for computing power.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observation of orbital pumping 观测轨道抽水
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-27 DOI: 10.1038/s41928-024-01193-1
Hiroki Hayashi, Dongwook Go, Satoshi Haku, Yuriy Mokrousov, Kazuya Ando
Electrons carry both spin and orbital angular momentum. The search for phenomena that generate a flow of spin angular momentum—a spin current—has led to the development of spintronics. In contrast, the orbital counterpart of spin current—an orbital current—has largely been overlooked, and the generation of an orbital current remains challenging. Here we report the observation of orbital-current generation from magnetization dynamics: orbital pumping. We show that orbital pumping in nickel/titanium bilayers injects an orbital current into the titanium layer, which we detect through the inverse orbital Hall effect. Orbital pumping is the orbital counterpart of spin pumping, a versatile and powerful mechanism for spin-current generation. Our findings could, thus, provide a promising approach for generating orbital currents and could help in the development of the orbital analogue of spintronics: orbitronics. In ferromagnetic/non-magnetic bilayers of nickel/titanium, the precession of magnetization in the nickel layer can inject an orbital current into the titanium layer through orbital pumping, the orbital counterpart of spin pumping.
电子同时携带自旋和轨道角动量。对产生自旋角动量流现象--自旋电流--的探索推动了自旋电子学的发展。相比之下,自旋电流的轨道对应物--轨道电流--却在很大程度上被忽视了,而且轨道电流的产生仍然具有挑战性。在此,我们报告了从磁化动力学中观察到的轨道电流产生现象:轨道泵。我们表明,镍/钛双层膜中的轨道抽运向钛层注入了轨道电流,我们通过反轨道霍尔效应探测到了这一现象。轨道抽运是自旋抽运的轨道对应物,是自旋电流产生的一种通用而强大的机制。因此,我们的发现为产生轨道电流提供了一种前景广阔的方法,并有助于开发自旋电子学的轨道类似物:轨道电子学。
{"title":"Observation of orbital pumping","authors":"Hiroki Hayashi, Dongwook Go, Satoshi Haku, Yuriy Mokrousov, Kazuya Ando","doi":"10.1038/s41928-024-01193-1","DOIUrl":"10.1038/s41928-024-01193-1","url":null,"abstract":"Electrons carry both spin and orbital angular momentum. The search for phenomena that generate a flow of spin angular momentum—a spin current—has led to the development of spintronics. In contrast, the orbital counterpart of spin current—an orbital current—has largely been overlooked, and the generation of an orbital current remains challenging. Here we report the observation of orbital-current generation from magnetization dynamics: orbital pumping. We show that orbital pumping in nickel/titanium bilayers injects an orbital current into the titanium layer, which we detect through the inverse orbital Hall effect. Orbital pumping is the orbital counterpart of spin pumping, a versatile and powerful mechanism for spin-current generation. Our findings could, thus, provide a promising approach for generating orbital currents and could help in the development of the orbital analogue of spintronics: orbitronics. In ferromagnetic/non-magnetic bilayers of nickel/titanium, the precession of magnetization in the nickel layer can inject an orbital current into the titanium layer through orbital pumping, the orbital counterpart of spin pumping.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scaling neuromorphic systems with 3D technologies 利用三维技术扩展神经形态系统
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-27 DOI: 10.1038/s41928-024-01188-y
Elisa Vianello, Melika Payvand
Three-dimensional technology — which can offer enhanced integration density and improved data communication — will be required to build large-scale artificial computing systems inspired by the brain.
三维技术可以提高集成密度,改善数据通信,是建立受大脑启发的大规模人工计算系统所必需的。
{"title":"Scaling neuromorphic systems with 3D technologies","authors":"Elisa Vianello, Melika Payvand","doi":"10.1038/s41928-024-01188-y","DOIUrl":"10.1038/s41928-024-01188-y","url":null,"abstract":"Three-dimensional technology — which can offer enhanced integration density and improved data communication — will be required to build large-scale artificial computing systems inspired by the brain.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Building 3D integrated circuits with electronics and photonics 利用电子学和光子学构建 3D 集成电路
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-27 DOI: 10.1038/s41928-024-01187-z
Chao Xiang, John E. Bowers
The three-dimensional integration of electronic and photonic integrated circuits could solve critical input/output limitations in existing computing chips, and create larger, more complex chips for application in future data centres and high-performance systems.
电子和光子集成电路的三维集成可以解决现有计算芯片在输入/输出方面的关键限制,并为未来的数据中心和高性能系统创造更大、更复杂的芯片。
{"title":"Building 3D integrated circuits with electronics and photonics","authors":"Chao Xiang, John E. Bowers","doi":"10.1038/s41928-024-01187-z","DOIUrl":"10.1038/s41928-024-01187-z","url":null,"abstract":"The three-dimensional integration of electronic and photonic integrated circuits could solve critical input/output limitations in existing computing chips, and create larger, more complex chips for application in future data centres and high-performance systems.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Doping for ohmic contacts in 2D transistors 二维晶体管中欧姆触点的掺杂
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-27 DOI: 10.1038/s41928-024-01191-3
Peng Wu, Jing Kong
Atomic-layer yttrium doping can be used to form ohmic contacts between molybdenum disulfide channel layers and metals, creating high-performance 2D transistors with low contact resistances.
原子层钇掺杂可用于在二硫化钼沟道层和金属之间形成欧姆接触,从而制造出具有低接触电阻的高性能二维晶体管。
{"title":"Doping for ohmic contacts in 2D transistors","authors":"Peng Wu, Jing Kong","doi":"10.1038/s41928-024-01191-3","DOIUrl":"10.1038/s41928-024-01191-3","url":null,"abstract":"Atomic-layer yttrium doping can be used to form ohmic contacts between molybdenum disulfide channel layers and metals, creating high-performance 2D transistors with low contact resistances.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perovskites, camera, action! Perovskites, camera, action!
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-27 DOI: 10.1038/s41928-024-01203-2
Stuart Thomas
{"title":"Perovskites, camera, action!","authors":"Stuart Thomas","doi":"10.1038/s41928-024-01203-2","DOIUrl":"10.1038/s41928-024-01203-2","url":null,"abstract":"","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2D materials can unlock single-crystal-based monolithic 3D integration 二维材料可实现基于单晶的整体三维集成
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-27 DOI: 10.1038/s41928-024-01190-4
Kuangye Lu, Jaewoo Shim, Ki Seok Kim, Sang Won Kim, Jeehwan Kim
Two-dimensional (2D) semiconductors could be used to build advanced 3D chips based on monolithic 3D integration. But challenges related to growing single-crystalline materials at low temperatures — as well as enhancing the performance of 2D transistors — need to be addressed first.
二维(2D)半导体可用于制造基于单片三维集成的先进三维芯片。但是,在低温下生长单晶材料以及提高二维晶体管性能方面的挑战需要首先解决。
{"title":"2D materials can unlock single-crystal-based monolithic 3D integration","authors":"Kuangye Lu, Jaewoo Shim, Ki Seok Kim, Sang Won Kim, Jeehwan Kim","doi":"10.1038/s41928-024-01190-4","DOIUrl":"10.1038/s41928-024-01190-4","url":null,"abstract":"Two-dimensional (2D) semiconductors could be used to build advanced 3D chips based on monolithic 3D integration. But challenges related to growing single-crystalline materials at low temperatures — as well as enhancing the performance of 2D transistors — need to be addressed first.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D integration proceeds tier-by-tier 逐层进行三维集成
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-19 DOI: 10.1038/s41928-024-01204-1
Matthew Parker
{"title":"3D integration proceeds tier-by-tier","authors":"Matthew Parker","doi":"10.1038/s41928-024-01204-1","DOIUrl":"10.1038/s41928-024-01204-1","url":null,"abstract":"","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Electronics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1