首页 > 最新文献

Nature Electronics最新文献

英文 中文
Powering from behind 从后面提供动力
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-24 DOI: 10.1038/s41928-024-01226-9
Stuart Thomas
{"title":"Powering from behind","authors":"Stuart Thomas","doi":"10.1038/s41928-024-01226-9","DOIUrl":"10.1038/s41928-024-01226-9","url":null,"abstract":"","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 7","pages":"518-518"},"PeriodicalIF":33.7,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2D transistors feel the squeeze 二维晶体管感受挤压
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-24 DOI: 10.1038/s41928-024-01225-w
Stuart Thomas
{"title":"2D transistors feel the squeeze","authors":"Stuart Thomas","doi":"10.1038/s41928-024-01225-w","DOIUrl":"10.1038/s41928-024-01225-w","url":null,"abstract":"","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 7","pages":"517-517"},"PeriodicalIF":33.7,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intel’s 2.5D Foveros gains a capacitor 英特尔的 2.5D Foveros 增加了一个电容器
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-23 DOI: 10.1038/s41928-024-01224-x
Katharina Zeissler
{"title":"Intel’s 2.5D Foveros gains a capacitor","authors":"Katharina Zeissler","doi":"10.1038/s41928-024-01224-x","DOIUrl":"10.1038/s41928-024-01224-x","url":null,"abstract":"","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 7","pages":"516-516"},"PeriodicalIF":33.7,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A carbon-nanotube-based tensor processing unit 基于碳纳米管的张量处理单元
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-22 DOI: 10.1038/s41928-024-01211-2
Jia Si, Panpan Zhang, Chenyi Zhao, Dongyi Lin, Lin Xu, Haitao Xu, Lijun Liu, Jianhua Jiang, Lian-Mao Peng, Zhiyong Zhang
The growth of data-intensive computing tasks requires processing units with higher performance and energy efficiency, but these requirements are increasingly difficult to achieve with conventional semiconductor technology. One potential solution is to combine developments in devices with innovations in system architecture. Here we report a tensor processing unit (TPU) that is based on 3,000 carbon nanotube field-effect transistors and can perform energy-efficient convolution operations and matrix multiplication. The TPU is constructed with a systolic array architecture that allows parallel 2 bit integer multiply–accumulate operations. A five-layer convolutional neural network based on the TPU can perform MNIST image recognition with an accuracy of up to 88% for a power consumption of 295 µW. We use an optimized nanotube fabrication process that offers a semiconductor purity of 99.9999% and ultraclean surfaces, leading to transistors with high on-current densities and uniformity. Using system-level simulations, we estimate that an 8 bit TPU made with nanotube transistors at a 180 nm technology node could reach a main frequency of 850 MHz and an energy efficiency of 1 tera-operations per second per watt. Carbon nanotube networks made with high purity and ultraclean interfaces can be used to make a tensor processing unit that contains 3,000 transistors in a systolic array architecture to improve energy efficiency in accelerating neural network tasks.
数据密集型计算任务的增长要求处理单元具有更高的性能和能效,但传统半导体技术越来越难以达到这些要求。一种潜在的解决方案是将器件的发展与系统架构的创新相结合。在这里,我们报告了一种基于 3000 个碳纳米管场效应晶体管的张量处理单元(TPU),它可以执行高能效的卷积运算和矩阵乘法。张量处理单元采用收缩阵列架构,可进行并行的 2 位整数乘积运算。基于 TPU 的五层卷积神经网络可以执行 MNIST 图像识别,准确率高达 88%,功耗为 295 µW。我们采用优化的纳米管制造工艺,其半导体纯度高达 99.9999%,表面超洁净,因此晶体管具有较高的导通电流密度和均匀性。通过系统级仿真,我们估计在 180 纳米技术节点上使用纳米管晶体管制造的 8 位 TPU 的主频可达 850 MHz,能效为每瓦每秒运行 1 太赫兹。
{"title":"A carbon-nanotube-based tensor processing unit","authors":"Jia Si, Panpan Zhang, Chenyi Zhao, Dongyi Lin, Lin Xu, Haitao Xu, Lijun Liu, Jianhua Jiang, Lian-Mao Peng, Zhiyong Zhang","doi":"10.1038/s41928-024-01211-2","DOIUrl":"10.1038/s41928-024-01211-2","url":null,"abstract":"The growth of data-intensive computing tasks requires processing units with higher performance and energy efficiency, but these requirements are increasingly difficult to achieve with conventional semiconductor technology. One potential solution is to combine developments in devices with innovations in system architecture. Here we report a tensor processing unit (TPU) that is based on 3,000 carbon nanotube field-effect transistors and can perform energy-efficient convolution operations and matrix multiplication. The TPU is constructed with a systolic array architecture that allows parallel 2 bit integer multiply–accumulate operations. A five-layer convolutional neural network based on the TPU can perform MNIST image recognition with an accuracy of up to 88% for a power consumption of 295 µW. We use an optimized nanotube fabrication process that offers a semiconductor purity of 99.9999% and ultraclean surfaces, leading to transistors with high on-current densities and uniformity. Using system-level simulations, we estimate that an 8 bit TPU made with nanotube transistors at a 180 nm technology node could reach a main frequency of 850 MHz and an energy efficiency of 1 tera-operations per second per watt. Carbon nanotube networks made with high purity and ultraclean interfaces can be used to make a tensor processing unit that contains 3,000 transistors in a systolic array architecture to improve energy efficiency in accelerating neural network tasks.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 8","pages":"684-693"},"PeriodicalIF":33.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All-oxide transistors for vertical stacking 用于垂直堆叠的全氧化物晶体管
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-22 DOI: 10.1038/s41928-024-01223-y
Katharina Zeissler
{"title":"All-oxide transistors for vertical stacking","authors":"Katharina Zeissler","doi":"10.1038/s41928-024-01223-y","DOIUrl":"10.1038/s41928-024-01223-y","url":null,"abstract":"","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 7","pages":"515-515"},"PeriodicalIF":33.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 640 Gb s–1 transceiver 640 Gb s-1 收发器
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-22 DOI: 10.1038/s41928-024-01222-z
Matthew Parker
{"title":"A 640 Gb s–1 transceiver","authors":"Matthew Parker","doi":"10.1038/s41928-024-01222-z","DOIUrl":"10.1038/s41928-024-01222-z","url":null,"abstract":"","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 7","pages":"514-514"},"PeriodicalIF":33.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxide dielectrics that grow on 2D materials 生长在二维材料上的氧化介质
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-22 DOI: 10.1038/s41928-024-01221-0
Matthew Parker
{"title":"Oxide dielectrics that grow on 2D materials","authors":"Matthew Parker","doi":"10.1038/s41928-024-01221-0","DOIUrl":"10.1038/s41928-024-01221-0","url":null,"abstract":"","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 7","pages":"513-513"},"PeriodicalIF":33.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reporting Hall effect measurements of charge carrier mobility in emerging materials 报告新兴材料中电荷载流子迁移率的霍尔效应测量结果
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-17 DOI: 10.1038/s41928-024-01198-w
Vladimir Bruevich, Vitaly Podzorov
Hall effect measurements are important in determining the electronic properties of emerging semiconductor materials, but care must be taken in their use and analysis.
霍尔效应测量对于确定新兴半导体材料的电子特性非常重要,但在使用和分析时必须小心谨慎。
{"title":"Reporting Hall effect measurements of charge carrier mobility in emerging materials","authors":"Vladimir Bruevich, Vitaly Podzorov","doi":"10.1038/s41928-024-01198-w","DOIUrl":"10.1038/s41928-024-01198-w","url":null,"abstract":"Hall effect measurements are important in determining the electronic properties of emerging semiconductor materials, but care must be taken in their use and analysis.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 7","pages":"510-512"},"PeriodicalIF":33.7,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Terahertz electronics generate and detect graphene plasmon polaritons 太赫兹电子学生成并探测石墨烯等离子体极化子
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-17 DOI: 10.1038/s41928-024-01201-4
Graphene plasmon polaritons are expected to enable rapid data transfer and processing; however, these plasmons are difficult to access. Terahertz electronics now facilitate the efficient generation, manipulation and on-chip detection of wave packets lasting as little as 1.2 ps. This advance could lead to the development of nanoscale terahertz circuits.
石墨烯等离子体极化子有望实现快速数据传输和处理;然而,这些等离子体却很难获取。现在,太赫兹电子器件可以高效地产生、操纵和在芯片上检测持续时间短至 1.2 ps 的波包。这一进步将推动纳米级太赫兹电路的发展。
{"title":"Terahertz electronics generate and detect graphene plasmon polaritons","authors":"","doi":"10.1038/s41928-024-01201-4","DOIUrl":"10.1038/s41928-024-01201-4","url":null,"abstract":"Graphene plasmon polaritons are expected to enable rapid data transfer and processing; however, these plasmons are difficult to access. Terahertz electronics now facilitate the efficient generation, manipulation and on-chip detection of wave packets lasting as little as 1.2 ps. This advance could lead to the development of nanoscale terahertz circuits.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 7","pages":"523-524"},"PeriodicalIF":33.7,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On-chip transfer of ultrashort graphene plasmon wave packets using terahertz electronics 利用太赫兹电子技术在芯片上传输超短石墨烯等离子体波包
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-17 DOI: 10.1038/s41928-024-01197-x
Katsumasa Yoshioka, Guillaume Bernard, Taro Wakamura, Masayuki Hashisaka, Ken-ichi Sasaki, Satoshi Sasaki, Kenji Watanabe, Takashi Taniguchi, Norio Kumada
Ultrashort polariton wave packets, such as terahertz graphene plasmon polaritons, could be used for fast information processing in integrated circuits. However, conventional optical techniques have struggled to integrate the components for controlling polariton signals and have a low conversion efficiency. Here, we show that graphene plasmon wave packets can be generated, manipulated and read out on-chip using terahertz electronics. Electrical pulses injected into a graphene microribbon through an ohmic contact can be efficiently converted into a plasmon wave packet with a pulse duration as short as 1.2 ps and a three-dimensional spatial confinement of 2.1 × 10−18 m3. The conversion efficiency between the electrical pulses and plasmon wave packets can also reach 35% due to the absence of a momentum mismatch. The transport properties of graphene plasmons are studied by changing the dielectric environments, which provides a basis for designing graphene plasmonic circuits. Terahertz electronics that can create and control ultrashort graphene plasmon wave packets with durations as short as 1.2 ps can offer on-chip handling of plasmonic signals.
超短极化子波包(如太赫兹石墨烯等离子体极化子)可用于集成电路中的快速信息处理。然而,传统光学技术难以集成控制极化子信号的元件,而且转换效率较低。在这里,我们展示了石墨烯等离子体波包可以利用太赫兹电子技术在芯片上生成、操纵和读出。通过欧姆接触注入石墨烯微带的电脉冲可以有效地转换成等离子体波包,脉冲持续时间短至 1.2 ps,三维空间约束为 2.1 × 10-18 m3。由于不存在动量失配,电脉冲和等离子体波包之间的转换效率也能达到 35%。通过改变介电环境研究了石墨烯质子的传输特性,为设计石墨烯质子电路提供了基础。
{"title":"On-chip transfer of ultrashort graphene plasmon wave packets using terahertz electronics","authors":"Katsumasa Yoshioka, Guillaume Bernard, Taro Wakamura, Masayuki Hashisaka, Ken-ichi Sasaki, Satoshi Sasaki, Kenji Watanabe, Takashi Taniguchi, Norio Kumada","doi":"10.1038/s41928-024-01197-x","DOIUrl":"10.1038/s41928-024-01197-x","url":null,"abstract":"Ultrashort polariton wave packets, such as terahertz graphene plasmon polaritons, could be used for fast information processing in integrated circuits. However, conventional optical techniques have struggled to integrate the components for controlling polariton signals and have a low conversion efficiency. Here, we show that graphene plasmon wave packets can be generated, manipulated and read out on-chip using terahertz electronics. Electrical pulses injected into a graphene microribbon through an ohmic contact can be efficiently converted into a plasmon wave packet with a pulse duration as short as 1.2 ps and a three-dimensional spatial confinement of 2.1 × 10−18 m3. The conversion efficiency between the electrical pulses and plasmon wave packets can also reach 35% due to the absence of a momentum mismatch. The transport properties of graphene plasmons are studied by changing the dielectric environments, which provides a basis for designing graphene plasmonic circuits. Terahertz electronics that can create and control ultrashort graphene plasmon wave packets with durations as short as 1.2 ps can offer on-chip handling of plasmonic signals.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 7","pages":"537-544"},"PeriodicalIF":33.7,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Electronics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1