Pub Date : 2024-08-06DOI: 10.1038/s41928-024-01230-z
Yang Yang
A direct ink-writing technique that relies on tension in the nozzle can be used to print free-standing metal structures with aspect ratios of up to 750:1.
依靠喷嘴张力的直接写墨技术可用于打印长宽比高达 750:1 的独立金属结构。
{"title":"Free-standing printed electronics with direct ink writing","authors":"Yang Yang","doi":"10.1038/s41928-024-01230-z","DOIUrl":"10.1038/s41928-024-01230-z","url":null,"abstract":"A direct ink-writing technique that relies on tension in the nozzle can be used to print free-standing metal structures with aspect ratios of up to 750:1.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 8","pages":"630-631"},"PeriodicalIF":33.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1038/s41928-024-01216-x
Jae-Young Bae, Gyeong-Seok Hwang, Young-Seo Kim, Jooik Jeon, Minseong Chae, Joon-Woo Kim, Sian Lee, Seongchan Kim, Soo-Hwan Lee, Sung-Geun Choi, Ju-Yong Lee, Jae-Hwan Lee, Kyung-Sub Kim, Joo-Hyeon Park, Woo-Jin Lee, Yu-Chan Kim, Kang-Sik Lee, Jeonghyun Kim, Hyojin Lee, Jung Keun Hyun, Ju-Young Kim, Seung-Kyun Kang
High-density, large-area electronic interfaces are a key component of brain–computer interface technologies. However, current designs typically require patients to undergo invasive procedures, which can lead to various complications. Here, we report a biodegradable and self-deployable tent electrode for brain cortex interfacing. The system can be integrated with multiplexing arrays and a wireless module for near-field communication and data transfer. It can be programmably packaged and self-deployed using a syringe for minimally invasive delivery through a small hole. Following delivery, it can expand to cover an area around 200 times its initial size. The electrode also naturally decomposes within the body after use, minimizing the impact of subsequent removal surgery. Through in vivo demonstrations, we show that our cortical-interfacing platform can be used to stimulate large populations of cortical activities. A biodegradable electronic tent electrode array that can be inserted into the brain cortex using a syringe, where it then expands to 200 times its original size, can be used for electrocorticography monitoring.
{"title":"A biodegradable and self-deployable electronic tent electrode for brain cortex interfacing","authors":"Jae-Young Bae, Gyeong-Seok Hwang, Young-Seo Kim, Jooik Jeon, Minseong Chae, Joon-Woo Kim, Sian Lee, Seongchan Kim, Soo-Hwan Lee, Sung-Geun Choi, Ju-Yong Lee, Jae-Hwan Lee, Kyung-Sub Kim, Joo-Hyeon Park, Woo-Jin Lee, Yu-Chan Kim, Kang-Sik Lee, Jeonghyun Kim, Hyojin Lee, Jung Keun Hyun, Ju-Young Kim, Seung-Kyun Kang","doi":"10.1038/s41928-024-01216-x","DOIUrl":"10.1038/s41928-024-01216-x","url":null,"abstract":"High-density, large-area electronic interfaces are a key component of brain–computer interface technologies. However, current designs typically require patients to undergo invasive procedures, which can lead to various complications. Here, we report a biodegradable and self-deployable tent electrode for brain cortex interfacing. The system can be integrated with multiplexing arrays and a wireless module for near-field communication and data transfer. It can be programmably packaged and self-deployed using a syringe for minimally invasive delivery through a small hole. Following delivery, it can expand to cover an area around 200 times its initial size. The electrode also naturally decomposes within the body after use, minimizing the impact of subsequent removal surgery. Through in vivo demonstrations, we show that our cortical-interfacing platform can be used to stimulate large populations of cortical activities. A biodegradable electronic tent electrode array that can be inserted into the brain cortex using a syringe, where it then expands to 200 times its original size, can be used for electrocorticography monitoring.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 9","pages":"815-828"},"PeriodicalIF":33.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1038/s41928-024-01217-w
Fang Wang, Jin Wang, Runzhang Xie, Weida Hu
Perception of spectrally distinctive features can be achieved using arrays of back-to-back photodiodes that have a spectral response that can be electrically tuned.
利用背靠背光电二极管阵列可以实现对光谱特征的感知。
{"title":"In-sensor visual adaptation across the spectrum","authors":"Fang Wang, Jin Wang, Runzhang Xie, Weida Hu","doi":"10.1038/s41928-024-01217-w","DOIUrl":"10.1038/s41928-024-01217-w","url":null,"abstract":"Perception of spectrally distinctive features can be achieved using arrays of back-to-back photodiodes that have a spectral response that can be electrically tuned.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 8","pages":"634-635"},"PeriodicalIF":33.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1038/s41928-024-01214-z
P. Apostolidis, B. J. Villis, J. F. Chittock-Wood, J. M. Powell, A. Baumgartner, V. Vesterinen, S. Simbierowicz, J. Hassel, M. R. Buitelaar
Radiofrequency reflectometry can provide fast and sensitive electrical read-out of charge and spin qubits in quantum dot devices coupled to resonant circuits. In situ frequency tuning and impedance matching of the resonator circuit using voltage-tunable capacitors (varactors) is needed to optimize read-out sensitivity, but the performance of conventional semiconductor- and ferroelectric-based varactors degrades substantially in the millikelvin temperature range relevant for solid-state quantum devices. Here we show that strontium titanate and potassium tantalate, materials which can exhibit quantum paraelectric behaviour with large field-tunable permittivity at low temperatures, can be used to make varactors with perfect impedance matching and resonator frequency tuning at 6 mK. We characterize the varactors at 6 mK in terms of their capacitance tunability, dissipative losses and magnetic field insensitivity. We use the quantum paraelectric varactors to optimize the radiofrequency read-out of carbon nanotube quantum dot devices, achieving a charge sensitivity of 4.8 μe Hz−1/2 and a capacitance sensitivity of 0.04 aF Hz−1/2. Using materials that show quantum paraelectricity, a phenomenon in which ferroelectric order is suppressed at very low temperature, voltage-tunable capacitors can be created for use in sensitive read-out circuits to measure cryogenic quantum devices.
{"title":"Quantum paraelectric varactors for radiofrequency measurements at millikelvin temperatures","authors":"P. Apostolidis, B. J. Villis, J. F. Chittock-Wood, J. M. Powell, A. Baumgartner, V. Vesterinen, S. Simbierowicz, J. Hassel, M. R. Buitelaar","doi":"10.1038/s41928-024-01214-z","DOIUrl":"10.1038/s41928-024-01214-z","url":null,"abstract":"Radiofrequency reflectometry can provide fast and sensitive electrical read-out of charge and spin qubits in quantum dot devices coupled to resonant circuits. In situ frequency tuning and impedance matching of the resonator circuit using voltage-tunable capacitors (varactors) is needed to optimize read-out sensitivity, but the performance of conventional semiconductor- and ferroelectric-based varactors degrades substantially in the millikelvin temperature range relevant for solid-state quantum devices. Here we show that strontium titanate and potassium tantalate, materials which can exhibit quantum paraelectric behaviour with large field-tunable permittivity at low temperatures, can be used to make varactors with perfect impedance matching and resonator frequency tuning at 6 mK. We characterize the varactors at 6 mK in terms of their capacitance tunability, dissipative losses and magnetic field insensitivity. We use the quantum paraelectric varactors to optimize the radiofrequency read-out of carbon nanotube quantum dot devices, achieving a charge sensitivity of 4.8 μe Hz−1/2 and a capacitance sensitivity of 0.04 aF Hz−1/2. Using materials that show quantum paraelectricity, a phenomenon in which ferroelectric order is suppressed at very low temperature, voltage-tunable capacitors can be created for use in sensitive read-out circuits to measure cryogenic quantum devices.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 9","pages":"760-767"},"PeriodicalIF":33.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41928-024-01214-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1038/s41928-024-01218-9
Designing a rectifier for harvesting low ambient radiofrequency energy and converting it into useful d.c. power is challenging. Now, a spin-rectifier-based rectenna and a spin-rectifier array with on-chip coplanar waveguides are designed for harvesting ambient radiofrequency signals with good sensitivity and efficiency.
{"title":"Sensitive spin-rectifier-based rectenna and on-chip array for wireless energy harvesting","authors":"","doi":"10.1038/s41928-024-01218-9","DOIUrl":"10.1038/s41928-024-01218-9","url":null,"abstract":"Designing a rectifier for harvesting low ambient radiofrequency energy and converting it into useful d.c. power is challenging. Now, a spin-rectifier-based rectenna and a spin-rectifier array with on-chip coplanar waveguides are designed for harvesting ambient radiofrequency signals with good sensitivity and efficiency.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 8","pages":"636-637"},"PeriodicalIF":33.7,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1038/s41928-024-01210-3
Yan Wang, Soumya Sarkar, Han Yan, Manish Chhowalla
The development of high-performance electronic devices based on two-dimensional (2D) transition metal dichalcogenide semiconductors has recently advanced from one-off proof-of-principle demonstrations to more reproducible integrated devices. It has, in particular, reached a point where the material quality—as well as the interfaces between the metal contacts, dielectrics and 2D semiconductors—must be optimized to increase device performance. Here we examine the key immediate challenges for the development of electronics based on 2D transition metal dichalcogenides, and identify doping, p-type contacts and high-dielectric-constant dielectrics as critical issues. We argue that these challenges stem from the high density of defects present in 2D transition metal dichalcogenides, and suggest that the community focus more on the growth of high-quality materials with a low concentration of defects. We also provide recommendations on identifying industry-compatible dielectrics for these 2D devices. This Perspective explores key challenges in the development of electronics based on two-dimensional transition metal dichalcogenides, identifying defects, doping, p-type contacts and high-dielectric-constant dielectrics as critical issues.
{"title":"Critical challenges in the development of electronics based on two-dimensional transition metal dichalcogenides","authors":"Yan Wang, Soumya Sarkar, Han Yan, Manish Chhowalla","doi":"10.1038/s41928-024-01210-3","DOIUrl":"10.1038/s41928-024-01210-3","url":null,"abstract":"The development of high-performance electronic devices based on two-dimensional (2D) transition metal dichalcogenide semiconductors has recently advanced from one-off proof-of-principle demonstrations to more reproducible integrated devices. It has, in particular, reached a point where the material quality—as well as the interfaces between the metal contacts, dielectrics and 2D semiconductors—must be optimized to increase device performance. Here we examine the key immediate challenges for the development of electronics based on 2D transition metal dichalcogenides, and identify doping, p-type contacts and high-dielectric-constant dielectrics as critical issues. We argue that these challenges stem from the high density of defects present in 2D transition metal dichalcogenides, and suggest that the community focus more on the growth of high-quality materials with a low concentration of defects. We also provide recommendations on identifying industry-compatible dielectrics for these 2D devices. This Perspective explores key challenges in the development of electronics based on two-dimensional transition metal dichalcogenides, identifying defects, doping, p-type contacts and high-dielectric-constant dielectrics as critical issues.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 8","pages":"638-645"},"PeriodicalIF":33.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1038/s41928-024-01220-1
Steps are required to improve the assessment, reporting and benchmarking of devices based on emerging semiconductor materials.
需要采取措施,改进对基于新兴半导体材料的设备的评估、报告和基准设定。
{"title":"Emerging reporting standards","authors":"","doi":"10.1038/s41928-024-01220-1","DOIUrl":"10.1038/s41928-024-01220-1","url":null,"abstract":"Steps are required to improve the assessment, reporting and benchmarking of devices based on emerging semiconductor materials.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 7","pages":"509-509"},"PeriodicalIF":33.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41928-024-01220-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1038/s41928-024-01213-0
Yuanbo Guo, Zheyu Yan, Xiaoting Yu, Qingpeng Kong, Joy Xie, Kevin Luo, Dewen Zeng, Yawen Wu, Zhenge Jia, Yiyu Shi
Ensuring the fairness of neural networks is crucial when applying deep learning techniques to critical applications such as medical diagnosis and vital signal monitoring. However, maintaining fairness becomes increasingly challenging when deploying these models on platforms with limited hardware resources, as existing fairness-aware neural network designs typically overlook the impact of resource constraints. Here we analyse the impact of the underlying hardware on the task of pursuing fairness. We use neural network accelerators with compute-in-memory architecture as examples. We first investigate the relationship between hardware platform and fairness-aware neural network design. We then discuss how hardware advancements in emerging computing-in-memory devices—in terms of on-chip memory capacity and device variability management—affect neural network fairness. We also identify challenges in designing fairness-aware neural networks on such resource-constrained hardware and consider potential approaches to overcome them. An analysis of the relationship between hardware platforms and fairness-aware neural network design shows how hardware advancements can affect the fairness of neural networks and highlights the need for future designs to consider this factor.
{"title":"Hardware design and the fairness of a neural network","authors":"Yuanbo Guo, Zheyu Yan, Xiaoting Yu, Qingpeng Kong, Joy Xie, Kevin Luo, Dewen Zeng, Yawen Wu, Zhenge Jia, Yiyu Shi","doi":"10.1038/s41928-024-01213-0","DOIUrl":"10.1038/s41928-024-01213-0","url":null,"abstract":"Ensuring the fairness of neural networks is crucial when applying deep learning techniques to critical applications such as medical diagnosis and vital signal monitoring. However, maintaining fairness becomes increasingly challenging when deploying these models on platforms with limited hardware resources, as existing fairness-aware neural network designs typically overlook the impact of resource constraints. Here we analyse the impact of the underlying hardware on the task of pursuing fairness. We use neural network accelerators with compute-in-memory architecture as examples. We first investigate the relationship between hardware platform and fairness-aware neural network design. We then discuss how hardware advancements in emerging computing-in-memory devices—in terms of on-chip memory capacity and device variability management—affect neural network fairness. We also identify challenges in designing fairness-aware neural networks on such resource-constrained hardware and consider potential approaches to overcome them. An analysis of the relationship between hardware platforms and fairness-aware neural network design shows how hardware advancements can affect the fairness of neural networks and highlights the need for future designs to consider this factor.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 8","pages":"714-723"},"PeriodicalIF":33.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1038/s41928-024-01207-y
Shaohua Ling, Xi Tian, Qihang Zeng, Zhihang Qin, Selman A. Kurt, Yu Jun Tan, Jerry Y. H. Fuh, Zhuangjian Liu, Michael D. Dickey, John S. Ho, Benjamin C. K. Tee
The direct writing of complex three-dimensional (3D) metallic structures is of use in the development of advanced electronics. However, conventional direct ink writing primarily uses composite inks that have low electrical conductivity and require support materials to create 3D architectures. Here we show that Field’s metal—a eutectic alloy with a relatively low melting point—can be 3D printed using a process in which tension between the molten metal in a nozzle and the leading edge of the printed part allows 3D structures to be directly written. The use of tension avoids using external pressure for extrusion (which can cause beading of the printed structure), allowing uniform and smooth microwire structures to be printed on various substrates with speeds of up to 100 mm s−1. We use the approach to print various free-standing 3D structures—including vertical letters, a cubic framework and scalable helixes—without post-treatment, and the resulting Field’s metal structures can offer electrical conductivity of 2 × 104 S cm−1, self-healing capability and recyclability. We also use the technique to print a 3D circuit for wearable battery-free temperature sensing, hemispherical helical antennas for wireless vital sign monitoring and 3D metamaterials for electromagnetic-wave manipulation. Free-standing metallic structures with high conductivities and aspect ratios can be 3D printed from Field’s metal using a direct ink writing method that avoids using external pressure to drive ink through the nozzle.
直接书写复杂的三维(3D)金属结构在先进电子产品的开发中非常有用。然而,传统的直接写入油墨主要使用导电性较低的复合油墨,并且需要辅助材料来创建三维结构。在这里,我们展示了菲尔德的金属--一种熔点相对较低的共晶合金--可以通过喷嘴中的熔融金属与打印部件前缘之间的张力进行三维打印,从而直接写入三维结构。张力的使用避免了使用外部压力进行挤压(这可能会导致打印结构出现串珠),从而可以在各种基底上以高达 100 mm s-1 的速度打印出均匀光滑的微线结构。我们利用这种方法打印出各种独立的三维结构,包括垂直字母、立方体框架和可扩展的螺旋线,而无需进行后处理,所打印出的 Field 金属结构可提供 2 × 104 S cm-1 的导电性、自愈能力和可回收性。我们还利用这项技术打印了用于可穿戴无电池温度传感的三维电路、用于无线生命体征监测的半球形螺旋天线以及用于电磁波操纵的三维超材料。
{"title":"Tension-driven three-dimensional printing of free-standing Field’s metal structures","authors":"Shaohua Ling, Xi Tian, Qihang Zeng, Zhihang Qin, Selman A. Kurt, Yu Jun Tan, Jerry Y. H. Fuh, Zhuangjian Liu, Michael D. Dickey, John S. Ho, Benjamin C. K. Tee","doi":"10.1038/s41928-024-01207-y","DOIUrl":"10.1038/s41928-024-01207-y","url":null,"abstract":"The direct writing of complex three-dimensional (3D) metallic structures is of use in the development of advanced electronics. However, conventional direct ink writing primarily uses composite inks that have low electrical conductivity and require support materials to create 3D architectures. Here we show that Field’s metal—a eutectic alloy with a relatively low melting point—can be 3D printed using a process in which tension between the molten metal in a nozzle and the leading edge of the printed part allows 3D structures to be directly written. The use of tension avoids using external pressure for extrusion (which can cause beading of the printed structure), allowing uniform and smooth microwire structures to be printed on various substrates with speeds of up to 100 mm s−1. We use the approach to print various free-standing 3D structures—including vertical letters, a cubic framework and scalable helixes—without post-treatment, and the resulting Field’s metal structures can offer electrical conductivity of 2 × 104 S cm−1, self-healing capability and recyclability. We also use the technique to print a 3D circuit for wearable battery-free temperature sensing, hemispherical helical antennas for wireless vital sign monitoring and 3D metamaterials for electromagnetic-wave manipulation. Free-standing metallic structures with high conductivities and aspect ratios can be 3D printed from Field’s metal using a direct ink writing method that avoids using external pressure to drive ink through the nozzle.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 8","pages":"671-683"},"PeriodicalIF":33.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1038/s41928-024-01212-1
Raghav Sharma, Tung Ngo, Eleonora Raimondo, Anna Giordano, Junta Igarashi, Butsurin Jinnai, Shishun Zhao, Jiayu Lei, Yong-Xin Guo, Giovanni Finocchio, Shunsuke Fukami, Hideo Ohno, Hyunsoo Yang
Radiofrequency harvesting using ambient wireless energy could be used to reduce the carbon footprint of electronic devices. However, ambient radiofrequency energy is weak (less than −20 dBm), and the performance of state-of-the-art radiofrequency rectifiers is restricted by thermodynamic limits and high-frequency parasitic impedance. Nanoscale spin rectifiers based on magnetic tunnel junctions have recently demonstrated high sensitivity, but suffer from a low a.c.-to-d.c. conversion efficiency (less than 1%). Here we report a sensitive spin rectifier rectenna that can harvest ambient radiofrequency signals between −62 and −20 dBm. We also develop an on-chip co-planar-waveguide-based spin rectifier array with a large zero-bias sensitivity (around 34,500 mV mW−1) and high efficiency (7.81%). The performance of our spin rectifier array relies on self-parametric excitation, driven by voltage-controlled magnetic anisotropy. We show that these spin rectifiers can be used to wirelessly power a sensor at a radiofrequency power of −27 dBm. Sensitive spin rectifier devices can be used to create rectennas that harvest ambient radiofrequency signals between –62 and –20 dBm, and can be used to create on-chip co-planar-waveguide-based spin rectifier arrays with large zero-bias sensitivity and high efficiency.
{"title":"Nanoscale spin rectifiers for harvesting ambient radiofrequency energy","authors":"Raghav Sharma, Tung Ngo, Eleonora Raimondo, Anna Giordano, Junta Igarashi, Butsurin Jinnai, Shishun Zhao, Jiayu Lei, Yong-Xin Guo, Giovanni Finocchio, Shunsuke Fukami, Hideo Ohno, Hyunsoo Yang","doi":"10.1038/s41928-024-01212-1","DOIUrl":"10.1038/s41928-024-01212-1","url":null,"abstract":"Radiofrequency harvesting using ambient wireless energy could be used to reduce the carbon footprint of electronic devices. However, ambient radiofrequency energy is weak (less than −20 dBm), and the performance of state-of-the-art radiofrequency rectifiers is restricted by thermodynamic limits and high-frequency parasitic impedance. Nanoscale spin rectifiers based on magnetic tunnel junctions have recently demonstrated high sensitivity, but suffer from a low a.c.-to-d.c. conversion efficiency (less than 1%). Here we report a sensitive spin rectifier rectenna that can harvest ambient radiofrequency signals between −62 and −20 dBm. We also develop an on-chip co-planar-waveguide-based spin rectifier array with a large zero-bias sensitivity (around 34,500 mV mW−1) and high efficiency (7.81%). The performance of our spin rectifier array relies on self-parametric excitation, driven by voltage-controlled magnetic anisotropy. We show that these spin rectifiers can be used to wirelessly power a sensor at a radiofrequency power of −27 dBm. Sensitive spin rectifier devices can be used to create rectennas that harvest ambient radiofrequency signals between –62 and –20 dBm, and can be used to create on-chip co-planar-waveguide-based spin rectifier arrays with large zero-bias sensitivity and high efficiency.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 8","pages":"653-661"},"PeriodicalIF":33.7,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}