Rodent models of cerebral ischemia provide a valuable contribution to a better understanding of stroke pathophysiology, to validate diagnostic methods, and to enable testing of new treatments for ischemia-reperfusion damage and comorbidities. However, ethical concerns have led to increased attention to the welfare aspects of such models. Supportive therapies are an essential part of the overall animal care and use program and should be tailored to the experimental model being studied, the regulatory requirements, and research objectives to achieve high-quality preclinical studies and ethical research practices. On the other hand, the use of veterinary medical treatments in preclinical models of stroke must balance the needs of animal care and potential sources of bias in experimental results. This report provides a systematic review of the scientific literature covering the relevant period from years 1988 to September 2024, with the aim to investigating veterinary medical interventions useful to minimize suffering in rodent models of stroke without producing experimental bias. The research findings, consolidated from 181 selected studies, published from 1991 to 2023, indicate the feasibility of implementing personalized protocols of anesthesia, analgesics, antibiotics, and other supportive therapies in rodent models of stroke, while avoiding scientific interferences. These data fill a gap in current knowledge and could be of interest for an interdisciplinary audience working with rodent models of stroke, stimulating further refinements to safeguard both animal welfare and the validity of experimental findings, and may promote the culture of ethical conduct in various research fields and disciplines.
Peripheral nerve injury disrupts communication between the primary motor cortex (M1) and the target muscle, leading to alterations in synaptic plasticity within the lesion projection zone (LPZ). While nerve repair holds the potential to restore this pathway and further modulate synaptic plasticity within the LPZ, the underlying mechanisms remain incompletely understood. In this study, we established a rat model with immediate repair following unilateral median nerve transection and categorized the functional recovery of the affected limb into three phases: the injury phase, recovery phase, and rehabilitation phase, corresponding to stages of muscle non-reinnervation, gradual reinnervation, and completed reinnervation, respectively. Our findings revealed that during these phases, excitatory synaptic transmission in M1 layer II/III pyramidal neurons initially decreases, then increases, and ultimately returns to baseline levels. Conversely, inhibitory synaptic transmission initially increases, then decreases, and remains reduced even after full peripheral recovery, accompanied by upregulation of inhibitory synaptic receptors. These findings suggest that excitatory and inhibitory synaptic plasticity play opposing roles in the nerve repair process, with excitatory plasticity primarily involved in short-term responses and inhibitory plasticity contributing to both short-term and long-term modulation.