Pub Date : 2024-10-09DOI: 10.1016/j.optlastec.2024.111915
Weihua Song, Qian Zhang, Xin Zhang, Yubin Hou, Pu Wang
We report a 3.1 μm high-power amplified spontaneous emission (ASE) source in nanosecond pulse regime based on a 10-m-long acetylene-filled nested hollow core anti-resonant fiber (HC-ARF). By pumping with a homemade 1.5 μm high-power repetition-rate-tunable nanosecond pulse single-frequency fiber laser, a maximum output power of 15 W ASE pulse light has been achieved with a repetition rate of 5 MHz, a pulse width of 58 ns, a pulse energy of 3μJ, and a peak power of 51.7 W. To the best of our knowledge, it is the highest output power for such gas-filled HC-ARF nanosecond pulse ASE sources in 3 ∼ 4 µm mid-infrared (Mid-IR) region. In addition, we characterize the pulse width evolution at the pump laser’s repetition rate of 1 MHz, 3 MHz, and 5 MHz. When the 1.5 μm pump laser operates at a repetition rate of 1 MHz and a pulse width of 70 ns, the 3.1 μm ASE’s narrowest pulse width of 11 ns is realized, which is owing to the gain saturation effect occurs during the Mid-IR pulse amplification. This research demonstrates the capability of hollow core fiber gas lasers for high-power Mid-IR pulse generation and provides new opportunities for efficient pulse narrowing.
{"title":"High-power nanosecond pulse amplified spontaneous emission source at 3.1 μm based on C2H2-filled nested hollow core anti-resonant fiber","authors":"Weihua Song, Qian Zhang, Xin Zhang, Yubin Hou, Pu Wang","doi":"10.1016/j.optlastec.2024.111915","DOIUrl":"10.1016/j.optlastec.2024.111915","url":null,"abstract":"<div><div>We report a 3.1 μm high-power amplified spontaneous emission (ASE) source in nanosecond pulse regime based on a 10-m-long acetylene-filled nested hollow core anti-resonant fiber (HC-ARF). By pumping with a homemade 1.5 μm high-power repetition-rate-tunable nanosecond pulse single-frequency fiber laser, a maximum output power of 15 W ASE pulse light has been achieved with a repetition rate of 5 MHz, a pulse width of 58 ns, a pulse energy of 3μJ, and a peak power of 51.7 W. To the best of our knowledge, it is the highest output power for such gas-filled HC-ARF nanosecond pulse ASE sources in 3 ∼ 4 µm mid-infrared (Mid-IR) region. In addition, we characterize the pulse width evolution at the pump laser’s repetition rate of 1 MHz, 3 MHz, and 5 MHz. When the 1.5 μm pump laser operates at a repetition rate of 1 MHz and a pulse width of 70 ns, the 3.1 μm ASE’s narrowest pulse width of 11 ns is realized, which is owing to the gain saturation effect occurs during the Mid-IR pulse amplification. This research demonstrates the capability of hollow core fiber gas lasers for high-power Mid-IR pulse generation and provides new opportunities for efficient pulse narrowing.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111915"},"PeriodicalIF":4.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.optlastec.2024.111948
Liangchun Wei , Shaoyun Liu , He Tang , Xiuling Liu , Xiaoyun Mi
NaBiF4: 0.5 %Tm3+/20 %Yb3+/x%Al3+ upconversion luminescence materials were synthesized by co-precipitation method. The crystal structure, upconversion luminescence properties and temperature measurement properties systematically studied. Under 980 nm laser excitation, the characteristic transitions of Tm3+ were observed, corresponding to 1G4 → 3H6 (475 nm), 1G4 → 3F4 (650 nm), 3F2, 3 → 3H6 (700 nm) and 3H4 → 3H6 (800 nm), respectively. Al3+ substitution significantly increases the upconversion luminescence intensity, and the fluorescence lifetime of 1G4 level shortens from 277.8 to 179.1 μs. An anomalous thermal enhancement behavior is observed. The optical thermometry properties of Tm3+ based on the non-thermally coupled energy levels 3F2, 3 and 3H4 have been studied using the fluorescence intensity ratio technique. Relative sensitivity and absolute sensitivity show maximum values at 316 K, which are 1.1 % K−1 and 0.21 % K−1, respectively. The above results demonstrate that this material is a promising optical ratio thermometer.
{"title":"Improved upconversion luminescence of NaBiF4: Tm3+/Yb3+/Al3+ as a ratio thermometer","authors":"Liangchun Wei , Shaoyun Liu , He Tang , Xiuling Liu , Xiaoyun Mi","doi":"10.1016/j.optlastec.2024.111948","DOIUrl":"10.1016/j.optlastec.2024.111948","url":null,"abstract":"<div><div>NaBiF<sub>4</sub>: 0.5 %Tm<sup>3+</sup>/20 %Yb<sup>3+</sup>/x%Al<sup>3+</sup> upconversion luminescence materials were synthesized by co-precipitation method. The crystal structure, upconversion luminescence properties and temperature measurement properties systematically studied. Under 980 nm laser excitation, the characteristic transitions of Tm<sup>3+</sup> were observed, corresponding to <sup>1</sup>G<sub>4</sub> → <sup>3</sup>H<sub>6</sub> (475 nm), <sup>1</sup>G<sub>4</sub> → <sup>3</sup>F<sub>4</sub> (650 nm), <sup>3</sup>F<sub>2</sub>, <sub>3</sub> → <sup>3</sup>H<sub>6</sub> (700 nm) and <sup>3</sup>H<sub>4</sub> → <sup>3</sup>H<sub>6</sub> (800 nm), respectively. Al<sup>3+</sup> substitution significantly increases the upconversion luminescence intensity, and the fluorescence lifetime of <sup>1</sup>G<sub>4</sub> level shortens from 277.8 to 179.1 μs. An anomalous thermal enhancement behavior is observed. The optical thermometry properties of Tm<sup>3+</sup> based on the non-thermally coupled energy levels <sup>3</sup>F<sub>2, 3</sub> and <sup>3</sup>H<sub>4</sub> have been studied using the fluorescence intensity ratio technique. Relative sensitivity and absolute sensitivity show maximum values at 316 K, which are 1.1 % K<sup>−1</sup> and 0.21 % K<sup>−1</sup>, respectively. The above results demonstrate that this material is a promising optical ratio thermometer.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111948"},"PeriodicalIF":4.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ZIF-8 is a typical metal–organic framework (MOF) material, which has great potential for sensor improvement. In this paper, we prepared a high sensitivity surface plasmon resonance (SPR) sensor based on ZIF-8/Au and described the preparation process of the sensor and characterized the samples in detail. The results showed that the synthesized ZIF-8 nanoparticles were uniform with an average diameter of about 50 nm. The performance of the sensor was related to the amount of ZIF-8, which could be controlled by adjusting the number of spin-coating cycles. When the refractive index ranged from 1.3335 to 1.3635, the maximum sensitivity of the sensor reached 3961.36nm/RIU with one cycle of spin-coating, which was 74.05% higher than that of pure Au single-layer film sensor. Furthermore, the feasibility of the proposed sensor for biological sensing was demonstrated by detecting bovine serum albumin (BSA).
{"title":"Sensitivity-enhanced plasmonic sensor modified with ZIF-8","authors":"Yanpei Xu, Yutong Song, Haixing Hao, Zhimeng Zhao, Yong Jin, Qi Wang","doi":"10.1016/j.optlastec.2024.111885","DOIUrl":"10.1016/j.optlastec.2024.111885","url":null,"abstract":"<div><div>ZIF-8 is a typical metal–organic framework (MOF) material, which has great potential for sensor improvement. In this paper, we prepared a high sensitivity surface plasmon resonance (SPR) sensor based on ZIF-8/Au and described the preparation process of the sensor and characterized the samples in detail. The results showed that the synthesized ZIF-8 nanoparticles were uniform with an average diameter of about 50 nm. The performance of the sensor was related to the amount of ZIF-8, which could be controlled by adjusting the number of spin-coating cycles. When the refractive index ranged from 1.3335 to 1.3635, the maximum sensitivity of the sensor reached 3961.36nm/RIU with one cycle of spin-coating, which was 74.05% higher than that of pure Au single-layer film sensor. Furthermore, the feasibility of the proposed sensor for biological sensing was demonstrated by detecting bovine serum albumin (BSA).</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111885"},"PeriodicalIF":4.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.optlastec.2024.111936
Maria J. Lopera , Mikołaj Rogalski , Piotr Arcab , Marzena Stefaniuk , Yunfeng Nie , Heidi Ottevaere , Carlos Trujillo , Maciej Trusiak
Lensless holographic microscopy has emerged as a powerful and cost-effective tool for computational imaging, offering high resolution over a large field of view, beneficial for various biological applications. However, conventional approaches can struggle with contrast and accurate visualization of diverse components over the samples, which can directly affect the diagnostic precision of the techniques. Mueller imaging, while offering detailed, stain-free observations of polarized light responses in samples, often has a limited field of view and single plane information. This is due to the use of high NA microscope objectives and generally complex hardware setups, thus narrowing its practical effectiveness. This work introduces a Lensless Mueller Holographic Microscopy (LMHM) system that overcomes these limitations, enabling large field of view, volumetric multi-layer imaging, and Mueller matrix computation using in-line lens-free holography setup. The proposed system provides precision visualization of polarization information in samples, offering high-quality features due to the incorporation of a numerical multi-height Gerchberg-Saxton reconstruction algorithm with additional complex field filtering and a physical rotating diffuser. The proposed LMHM framework is validated with a calibrated USAF 1951 birefringent test target. A multiplane sample containing cloth fiber is utilized to study the LMHM capabilities of imaging volumetric samples. Finally, the LMHM is used to analyze two mice’s brain slices, effectively showcasing this organ’s anatomy. Among other structures in the brain, the proposed method easily allows the visualization of, e.g., the corpus callosum. These results constitute a proof-of-concept evaluation for bioimaging applications.
{"title":"Lensless Mueller holographic microscopy with robust noise reduction for multiplane polarization imaging","authors":"Maria J. Lopera , Mikołaj Rogalski , Piotr Arcab , Marzena Stefaniuk , Yunfeng Nie , Heidi Ottevaere , Carlos Trujillo , Maciej Trusiak","doi":"10.1016/j.optlastec.2024.111936","DOIUrl":"10.1016/j.optlastec.2024.111936","url":null,"abstract":"<div><div>Lensless holographic microscopy has emerged as a powerful and cost-effective tool for computational imaging, offering high resolution over a large field of view, beneficial for various biological applications. However, conventional approaches can struggle with contrast and accurate visualization of diverse components over the samples, which can directly affect the diagnostic precision of the techniques. Mueller imaging, while offering detailed, stain-free observations of polarized light responses in samples, often has a limited field of view and single plane information. This is due to the use of high NA microscope objectives and generally complex hardware setups, thus narrowing its practical effectiveness. This work introduces a Lensless Mueller Holographic Microscopy (LMHM) system that overcomes these limitations, enabling large field of view, volumetric multi-layer imaging, and Mueller matrix computation using in-line lens-free holography setup. The proposed system provides precision visualization of polarization information in samples, offering high-quality features due to the incorporation of a numerical multi-height Gerchberg-Saxton reconstruction algorithm with additional complex field filtering and a physical rotating diffuser. The proposed LMHM framework is validated with a calibrated USAF 1951 birefringent test target. A multiplane sample containing cloth fiber is utilized to study the LMHM capabilities of imaging volumetric samples. Finally, the LMHM is used to analyze two mice’s brain slices, effectively showcasing this organ’s anatomy. Among other structures in the brain, the proposed method easily allows the visualization of, e.g., the corpus callosum. These results constitute a proof-of-concept evaluation for bioimaging applications.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111936"},"PeriodicalIF":4.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.optlastec.2024.111956
Zixuan Wang , Juncai Li , Qingzheng Liu , Liaoyuan Chen , Jiawen Lv , Tianbiao Yu , Jun Zhao
The structured grinding wheels have a specially designed macro or microstructure on the surface, with a relatively low average grinding force and temperature in the cutting zone and more space for chips and coolant. Most traditional grinding wheel fabrication methods, such as electroplating, sintering, and brazing, have the problems of poor abrasive grain holding strength, random abrasive distribution, or thermal deformation of the substrate. To address this, laser cladding remelting technology is introduced to fabricate the structured CBN grinding wheel. A no-impact trajectory was designed on the substrate of the grinding wheel, which can reduce the fluid friction in the channel and increase the fluid pressure at the outlet. The temperature and velocity fields of the grinding process were simulated to verify the feasibility of the designed structure theoretically. The optimal process parameters for the bonding among the metal bond, the abrasive grains, and the substrate were determined by orthogonal and full-scale factorial experiments. The chemical metallurgical reactions between CBN grain and metal bond, as well as between the metal bond and substrate, were formed, increasing the holding force of CBN grains. The method can realize the fabrication of high-strength and long-life structured grinding wheels with an orderly arrangement of abrasive grains. The micro-mechanism of fabrication was analyzed using element distribution measurement and XRD analysis.
{"title":"No-impact trajectory design and fabrication of surface structured CBN grinding wheel by laser cladding remelting method","authors":"Zixuan Wang , Juncai Li , Qingzheng Liu , Liaoyuan Chen , Jiawen Lv , Tianbiao Yu , Jun Zhao","doi":"10.1016/j.optlastec.2024.111956","DOIUrl":"10.1016/j.optlastec.2024.111956","url":null,"abstract":"<div><div>The structured grinding wheels have a specially designed macro or microstructure on the surface, with a relatively low average grinding force and temperature in the cutting zone and more space for chips and coolant. Most traditional grinding wheel fabrication methods, such as electroplating, sintering, and brazing, have the problems of poor abrasive grain holding strength, random abrasive distribution, or thermal deformation of the substrate. To address this, laser cladding remelting technology is introduced to fabricate the structured CBN grinding wheel. A no-impact trajectory was designed on the substrate of the grinding wheel, which can reduce the fluid friction in the channel and increase the fluid pressure at the outlet. The temperature and velocity fields of the grinding process were simulated to verify the feasibility of the designed structure theoretically. The optimal process parameters for the bonding among the metal bond, the abrasive grains, and the substrate were determined by orthogonal and full-scale factorial experiments. The chemical metallurgical reactions between CBN grain and metal bond, as well as between the metal bond and substrate, were formed, increasing the holding force of CBN grains. The method can realize the fabrication of high-strength and long-life structured grinding wheels with an orderly arrangement of abrasive grains. The micro-mechanism of fabrication was analyzed using element distribution measurement and XRD analysis.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111956"},"PeriodicalIF":4.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.optlastec.2024.111951
Zhiheng Lin, Yun-Ran Wang, Yaoxun Wang, Mark Hopkinson
Photonic crystal (PhC) structures formed by periodic surface nanostructuring have emerged as pivotal elements for controlling light-matter interactions. One important application is reducing losses due to the high surface reflectivity of semiconductor optoelectronic devices, such as enhancing light absorption in photovoltaic cells or improving light extraction in light-emitting diodes (LEDs). Although various methods for fabricating such structures have been documented, the utilization of single pulse laser interference lithography (LIL) using commercial photoresist and its subsequent effective use as an etch mask has not been previously reported. Rapid exposure of photoresists with single nanosecond pulses offers benefits for high throughput patterning and reduces the requirement for a stable optical platform. We have successfully employed single pulse LIL to fabricate antireflective PhC structures on GaAs substrates using a commercial photoresist. Exposure is performed with single 7 ns 355 nm pulses of relatively low energy (<10 mJ). High-quality nanohole arrays of pitch of approximately 365 nm are fabricated and depths up to 400 nm have been etched using inductively coupled plasma (ICP) through the exposed photoresist mask. Reflectivity analyses confirmed that these structures reduce the average reflectance of the GaAs to below 5 % across the 450 nm to 700 nm visible wavelength range. The fabrication of PhC structures using this approach has potential for low-cost wafer-level patterning to provide improved light extraction in LEDs and enhanced light trapping in solar cells.
{"title":"Design and fabrication of photonic crystal structures by single pulse laser interference lithography","authors":"Zhiheng Lin, Yun-Ran Wang, Yaoxun Wang, Mark Hopkinson","doi":"10.1016/j.optlastec.2024.111951","DOIUrl":"10.1016/j.optlastec.2024.111951","url":null,"abstract":"<div><div>Photonic crystal (PhC) structures formed by periodic surface nanostructuring have emerged as pivotal elements for controlling light-matter interactions. One important application is reducing losses due to the high surface reflectivity of semiconductor optoelectronic devices, such as enhancing light absorption in photovoltaic cells or improving light extraction in light-emitting diodes (LEDs). Although various methods for fabricating such structures have been documented, the utilization of single pulse laser interference lithography (LIL) using commercial photoresist and its subsequent effective use as an etch mask has not been previously reported. Rapid exposure of photoresists with single nanosecond pulses offers benefits for high throughput patterning and reduces the requirement for a stable optical platform. We have successfully employed single pulse LIL to fabricate antireflective PhC structures on GaAs substrates using a commercial photoresist. Exposure is performed with single 7 ns 355 nm pulses of relatively low energy (<10 mJ). High-quality nanohole arrays of pitch of approximately 365 nm are fabricated and depths up to 400 nm have been etched using inductively coupled plasma (ICP) through the exposed photoresist mask. Reflectivity analyses confirmed that these structures reduce the average reflectance of the GaAs to below 5 % across the 450 nm to 700 nm visible wavelength range. The fabrication of PhC structures using this approach has potential for low-cost wafer-level patterning to provide improved light extraction in LEDs and enhanced light trapping in solar cells.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111951"},"PeriodicalIF":4.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.optlastec.2024.111944
Laiyang Dang , Dongmei Huang , Zhiyao Su , Yujia Li , Feng Li
A sub-kHz linewidth single-frequency fiber laser that can be tuned in the full range of C + L band is proposed and experimentally demonstrated. A broad band gain fiber by bidirectional pumping combining with a wide tunable filter is used to realize 75.87 nm tuning range from 1529.98 to 1605.85 nm, which can be further improved if a wider tunable filter is available. To achieve single-frequency ultra-narrow linewidth laser operation, a ring-cavity laser configuration with a fiber sub-ring and a saturable absorber is utilized. The measured optical signal-to-noise ratio (OSNR) of the fiber laser is over 80 dB, the side mode suppression ratio (SMSR) can be improved to ∼60 dB, and the linewidth can be narrowed to ∼453 Hz. The output power of the laser exceeds 28 mW, and the slope efficiency is 2.05 %. This proposed fiber laser has the advantages of narrow linewidth, excellent wavelength tunability, and high output power, which is promising for the applications in optical sensing and optical communication systems.
{"title":"C + L-band tunable sub-kHz linewidth single frequency fiber laser by combining a fiber sub-ring with a saturable absorber","authors":"Laiyang Dang , Dongmei Huang , Zhiyao Su , Yujia Li , Feng Li","doi":"10.1016/j.optlastec.2024.111944","DOIUrl":"10.1016/j.optlastec.2024.111944","url":null,"abstract":"<div><div>A sub-kHz linewidth single-frequency fiber laser that can be tuned in the full range of C + L band is proposed and experimentally demonstrated. A broad band gain fiber by bidirectional pumping combining with a wide tunable filter is used to realize 75.87 nm tuning range from 1529.98 to 1605.85 nm, which can be further improved if a wider tunable filter is available. To achieve single-frequency ultra-narrow linewidth laser operation, a ring-cavity laser configuration with a fiber sub-ring and a saturable absorber is utilized. The measured optical signal-to-noise ratio (OSNR) of the fiber laser is over 80 dB, the side mode suppression ratio (SMSR) can be improved to ∼60 dB, and the linewidth can be narrowed to ∼453 Hz. The output power of the laser exceeds 28 mW, and the slope efficiency is 2.05 %. This proposed fiber laser has the advantages of narrow linewidth, excellent wavelength tunability, and high output power, which is promising for the applications in optical sensing and optical communication systems.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111944"},"PeriodicalIF":4.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The inadequate resistance to corrosion and wear of Al-based alloys is a major hindrance to their extensive use. Plasma electrolytic oxidation (PEO), a common and efficient coating technique, creates an oxide coating similar to ceramic on the surface of Al-based alloys, thereby improving their ability to withstand corrosion and wear. Studies have shown that PEO treatment can significantly enhance the short-term corrosion and wear resistance of Al-based alloys. To improve the long-term corrosion resistance of PEO coatings, researchers are now exploring the combination of laser processes with the PEO process. Laser processing is a simple yet efficient technique known for its flexibility, precision, and control. Various laser procedures are recognized for their ability to improve the resistance to wear and corrosion of PEO coatings applied on Al substrates and their alloys. Laser melting procedures have the capability to standardize and modify the microstructure of aluminum-based alloys. This review focuses on enhancing the anti-corrosion and anti-wear properties of aluminum alloys through the integration of laser surface treatments with PEO technology.
{"title":"Exploring wear, corrosion, and microstructure in PEO coatings via laser surface treatments on aluminum substrates","authors":"Babak Jaleh , Atefeh Nasri , Razieh Chaharmahali , Mosab Kaseem , Arash Fattah-alhosseini","doi":"10.1016/j.optlastec.2024.111958","DOIUrl":"10.1016/j.optlastec.2024.111958","url":null,"abstract":"<div><div>The inadequate resistance to corrosion and wear of Al-based alloys is a major hindrance to their extensive use. Plasma electrolytic oxidation (PEO), a common and efficient coating technique, creates an oxide coating similar to ceramic on the surface of Al-based alloys, thereby improving their ability to withstand corrosion and wear. Studies have shown that PEO treatment can significantly enhance the short-term corrosion and wear resistance of Al-based alloys. To improve the long-term corrosion resistance of PEO coatings, researchers are now exploring the combination of laser processes with the PEO process. Laser processing is a simple yet efficient technique known for its flexibility, precision, and control. Various laser procedures are recognized for their ability to improve the resistance to wear and corrosion of PEO coatings applied on Al substrates and their alloys. Laser melting procedures have the capability to standardize and modify the microstructure of aluminum-based alloys. This review focuses on enhancing the anti-corrosion and anti-wear properties of aluminum alloys through the integration of laser surface treatments with PEO technology.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111958"},"PeriodicalIF":4.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1016/j.optlastec.2024.111926
Ling-Xin Kong , Jia-Zheng Sun , Fang-Fei Shi , Yan Li , Xue-Yuan Li
Dimethyl carbonate (DMC) plays an important role in the electrolyte of new energy, so the importance of DMC gas detection is self-evident. This article reports a fiber-optic DMC gas sensor based on metal organic frameworks (MOFs). The fiber structure consists of two sections of four mode optical fiber (FMF) and one section of splicing misaligned centerless optical fiber (COF). The sensing arm of Mach-zehnder interferometer (MZI) is constructed by filling Cu-MOFs/polyacrylonitrile (PAN) by electrospinning in the misalignment gap between COF and FMF, with the COF serving as the reference arm. At the same time, surface plasmon resonance (SPR) is excited by depositing a Ag/zinc oxide (ZnO) film on the other side of the COF, and PAN is deposited as a temperature sensitive layer by electrospinning. The research results indicate that the DMC sensitivity of MZI is 93.25 pm/ppm, and the temperature sensitivity of SPR is 596.2 pm/°C. The DMC gas concentration and temperature errors based on dual parameter matrix demodulation are E (ΔC) = 1.38 % and E (ΔT) = 1.80 % respectively. Finally, the changes of DMC gas concentration and temperature during the leakage of lithium battery are successfully analyzed. This sensor has the advantages of simple manufacturing, small size, and high sensitivity, and has potential application prospects in terms of lithium battery monitoring.
{"title":"Temperature self-compensating fiber-optic misalignment sensor based on Cu-MOFs/PAN film cavity for detecting dimethyl carbonate gas","authors":"Ling-Xin Kong , Jia-Zheng Sun , Fang-Fei Shi , Yan Li , Xue-Yuan Li","doi":"10.1016/j.optlastec.2024.111926","DOIUrl":"10.1016/j.optlastec.2024.111926","url":null,"abstract":"<div><div>Dimethyl carbonate (DMC) plays an important role in the electrolyte of new energy, so the importance of DMC gas detection is self-evident. This article reports a fiber-optic DMC gas sensor based on metal organic frameworks (MOFs). The fiber structure consists of two sections of four mode optical fiber (FMF) and one section of splicing misaligned centerless optical fiber (COF). The sensing arm of Mach-zehnder interferometer (MZI) is constructed by filling Cu-MOFs/polyacrylonitrile (PAN) by electrospinning in the misalignment gap between COF and FMF, with the COF serving as the reference arm. At the same time, surface plasmon resonance (SPR) is excited by depositing a Ag/zinc oxide (ZnO) film on the other side of the COF, and PAN is deposited as a temperature sensitive layer by electrospinning. The research results indicate that the DMC sensitivity of MZI is 93.25 pm/ppm, and the temperature sensitivity of SPR is 596.2 pm/°C. The DMC gas concentration and temperature errors based on dual parameter matrix demodulation are E <em>(ΔC)</em> = 1.38 % and E <em>(ΔT)</em> = 1.80 % respectively. Finally, the changes of DMC gas concentration and temperature during the leakage of lithium battery are successfully analyzed. This sensor has the advantages of simple manufacturing, small size, and high sensitivity, and has potential application prospects in terms of lithium battery monitoring.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111926"},"PeriodicalIF":4.6,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1016/j.optlastec.2024.111939
Zhehao Wu , Jianing Cao , Wenshu Liu , Chencheng Shang , Zongxiao Fan , Huimin Yue , Chen Wei , Yong Liu
In this article, we propose a cascade pumping scheme that employs 1.945 μm and 1.66 μm fiber laser as the pump sources to realize efficient laser emission at 3.92 μm in the commercially available heavily holmium-doped fluoroindate fibers. Compare to the conventional 888 nm laser diode, longer wavelength pump sources provide higher quantum efficiency, which is critical for the acquisition of high output power at a relatively low input pump power considering the low damage threshold of InF3 glass. Output performance is optimized by conducting detailed investigation on fiber length, output coupler mirror reflectivity and launched pump power. Simulation results show that when employing cladding pump at both 1.945 μm and 1.66 μm, a slope efficiency of 25 % can be achieved with a threshold of 1.6 W for the 1.66 μm pump source. This is attained using a 15 cm-long fiber under a pump power of 5 W at 1945 nm. Furthermore, the maximum optical-to-optical efficiency reaches 11.17 % when considering the total pump power. To our knowledge, the efficiency achieved in this study appears to surpass that of previous works. This research provides a novel approach and valuable guidance for efficient laser output at the important ∼ 3.9 μm wavelength region, for applications in various fields such as free-space communications, remote sensing and medical diagnostics.
{"title":"Theoretical study on cascade energy-transfer pumping heavily holmium-doped fluoroindate fiber laser at ∼ 4 μm with high-efficiency","authors":"Zhehao Wu , Jianing Cao , Wenshu Liu , Chencheng Shang , Zongxiao Fan , Huimin Yue , Chen Wei , Yong Liu","doi":"10.1016/j.optlastec.2024.111939","DOIUrl":"10.1016/j.optlastec.2024.111939","url":null,"abstract":"<div><div>In this article, we propose a cascade pumping scheme that employs 1.945 μm and 1.66 μm fiber laser as the pump sources to realize efficient laser emission at 3.92 μm in the commercially available heavily holmium-doped fluoroindate fibers. Compare to the conventional 888 nm laser diode, longer wavelength pump sources provide higher quantum efficiency, which is critical for the acquisition of high output power at a relatively low input pump power considering the low damage threshold of InF3 glass. Output performance is optimized by conducting detailed investigation on fiber length, output coupler mirror reflectivity and launched pump power. Simulation results show that when employing cladding pump at both 1.945 μm and 1.66 μm, a slope efficiency of 25 % can be achieved with a threshold of 1.6 W for the 1.66 μm pump source. This is attained using a 15 cm-long fiber under a pump power of 5 W at 1945 nm. Furthermore, the maximum optical-to-optical efficiency reaches 11.17 % when considering the total pump power. To our knowledge, the efficiency achieved in this study appears to surpass that of previous works. This research provides a novel approach and valuable guidance for efficient laser output at the important ∼ 3.9 μm wavelength region, for applications in various fields such as free-space communications, remote sensing and medical diagnostics.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111939"},"PeriodicalIF":4.6,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}