Pub Date : 2023-06-23DOI: 10.1109/ISAS59543.2023.10164399
Fukang Zhao, Yadong Feng, Xinhua Wang
To solve the problem of group formation control, a leader-wingman formation control law imitating the behavior of geese flocks is designed, and a formation change strategy based on auction mechanism is proposed, which shortens the time and distance of formation change. Aiming at the problem of formation control in the turning section, a wingman tracking algorithm based on the advanced tracking point is given. The flight test shows that the algorithm can effectively solve the problem of long trajectory and tail swing of wingman in turn section.
{"title":"Research on autonomous control technology of group formation imitating the behavior of geese flock","authors":"Fukang Zhao, Yadong Feng, Xinhua Wang","doi":"10.1109/ISAS59543.2023.10164399","DOIUrl":"https://doi.org/10.1109/ISAS59543.2023.10164399","url":null,"abstract":"To solve the problem of group formation control, a leader-wingman formation control law imitating the behavior of geese flocks is designed, and a formation change strategy based on auction mechanism is proposed, which shortens the time and distance of formation change. Aiming at the problem of formation control in the turning section, a wingman tracking algorithm based on the advanced tracking point is given. The flight test shows that the algorithm can effectively solve the problem of long trajectory and tail swing of wingman in turn section.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114491814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-23DOI: 10.1109/ISAS59543.2023.10164474
Yefan Gan, N. Lu, Baoli Zhang, Jianfei Chen, Ling Sun, Yanling Ji
As a key mechanical component in the door system of rail vehicles, the rolling pin is closely related to the safe operation of the door system. For the purpose of maintaining the safety of the door system of rail vehicles, it is necessary to accurately predict the Remaining Useful Life (RUL) of the rolling pin. Since the degree of wear is difficult to measure, it is quite hard to predict its life in real time. Synchronously, the amount of data that can characterize the life of the rolling pin is rarely available. To predict the RUL of rolling pin online as well as provide decision support for active maintenance, this paper proposes an RUL prediction method of rolling pin based on the Convolutional Neural Network (CNN) and Bi-directional Gated Recursive Unit (BiGRU), which combines the feature extraction ability of CNN and the information retention ability of BiGRU, enabling this model to be effective in dealing with several small sample issues. The simulation results demonstrate that such a method can accurately predict the life of the rolling pin, which has essential engineering application value.
{"title":"A CNN-BiGRU Based Life Prediction Method for Rolling Pins of Rail Vehicle Door System","authors":"Yefan Gan, N. Lu, Baoli Zhang, Jianfei Chen, Ling Sun, Yanling Ji","doi":"10.1109/ISAS59543.2023.10164474","DOIUrl":"https://doi.org/10.1109/ISAS59543.2023.10164474","url":null,"abstract":"As a key mechanical component in the door system of rail vehicles, the rolling pin is closely related to the safe operation of the door system. For the purpose of maintaining the safety of the door system of rail vehicles, it is necessary to accurately predict the Remaining Useful Life (RUL) of the rolling pin. Since the degree of wear is difficult to measure, it is quite hard to predict its life in real time. Synchronously, the amount of data that can characterize the life of the rolling pin is rarely available. To predict the RUL of rolling pin online as well as provide decision support for active maintenance, this paper proposes an RUL prediction method of rolling pin based on the Convolutional Neural Network (CNN) and Bi-directional Gated Recursive Unit (BiGRU), which combines the feature extraction ability of CNN and the information retention ability of BiGRU, enabling this model to be effective in dealing with several small sample issues. The simulation results demonstrate that such a method can accurately predict the life of the rolling pin, which has essential engineering application value.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121867483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-23DOI: 10.1109/ISAS59543.2023.10164618
Bowen Hou, Han Yuan, Xuanying Zhou, Runran Deng, E. Wei, Ping Liu
In the vision-based navigation system, feature-based navigation method for autonomous orbit determination is a newly proposed method. Considering the camera periodic time-varying error caused by the complex on-board environment, a camera calibration method is proposed to compensate for the image point bias and the focal length variation bias combined with augmented unscented Kalman filter. The method can effectively modify the measurements without any other additional equipment except the space non-cooperative target features which extracted from the image shot by the camera. Simulation results indicate that the method can effectively modify the camera measurements and realize autonomous navigation with a higher accuracy compared with no calibration.
{"title":"Camera Calibration Method for Autonomous Navigation based on Space Non-cooperative Target Features","authors":"Bowen Hou, Han Yuan, Xuanying Zhou, Runran Deng, E. Wei, Ping Liu","doi":"10.1109/ISAS59543.2023.10164618","DOIUrl":"https://doi.org/10.1109/ISAS59543.2023.10164618","url":null,"abstract":"In the vision-based navigation system, feature-based navigation method for autonomous orbit determination is a newly proposed method. Considering the camera periodic time-varying error caused by the complex on-board environment, a camera calibration method is proposed to compensate for the image point bias and the focal length variation bias combined with augmented unscented Kalman filter. The method can effectively modify the measurements without any other additional equipment except the space non-cooperative target features which extracted from the image shot by the camera. Simulation results indicate that the method can effectively modify the camera measurements and realize autonomous navigation with a higher accuracy compared with no calibration.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126550287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper addresses the global finite-time tracking control problem for nonlinear strict-feedback systems with non-vanishing uncertainties and arbitrary initial conditions. The objective is to establish a control framework that guarantees system performance throughout the control process. To achieve finite-time convergence of tracking errors and guaranteed performance, a new performance function is proposed. To ensure global transient and steady-state performance, a time-varying scaling transformation method is employed. Under the proposed control method, the output tracking error is ensured to converge to a neighborhood of the origin of the preassigned size within a prescribed time at a pre-specified convergence rate. Additionally, global uniform ultimate boundedness is ensured for all signals in the closed-loop systems. Simulation examples validate the effectiveness and benefits of the proposed approach.
{"title":"Performance guaranteed prescribed-time control of nonlinear strict-feedback systems with non-vanishing uncertainties","authors":"Yunfei Dai, Chao Wang, Yue Xie, X. Li, Yujuan Wang, Qing Chen","doi":"10.1109/ISAS59543.2023.10164625","DOIUrl":"https://doi.org/10.1109/ISAS59543.2023.10164625","url":null,"abstract":"This paper addresses the global finite-time tracking control problem for nonlinear strict-feedback systems with non-vanishing uncertainties and arbitrary initial conditions. The objective is to establish a control framework that guarantees system performance throughout the control process. To achieve finite-time convergence of tracking errors and guaranteed performance, a new performance function is proposed. To ensure global transient and steady-state performance, a time-varying scaling transformation method is employed. Under the proposed control method, the output tracking error is ensured to converge to a neighborhood of the origin of the preassigned size within a prescribed time at a pre-specified convergence rate. Additionally, global uniform ultimate boundedness is ensured for all signals in the closed-loop systems. Simulation examples validate the effectiveness and benefits of the proposed approach.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122349946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-23DOI: 10.1109/ISAS59543.2023.10164331
Shanpeng Wang, Jian Yang, Xin Liu
Accurate calibration of installation errors is of paramount importance for achieving high-performance in integrated navigation systems. In this paper, a self-calibration method for addressing installation errors in an integrated inertial/polarization/celestial navigation system is proposed. The method utilizes the information from gravity, polarized E-vector, and sun to establish constrained relationship between the multiple vectors. By employing a nonlinear least squares method, the installation parameters are iteratively determined. The effectiveness of the proposed method is demonstrated through comprehensive simulation tests. The results reveal that the method achieves improved accuracy and robustness in estimating installation errors.
{"title":"A Self-Calibration Method for Installation Errors in IMU/Polarization Compass/Celestial Navigation System","authors":"Shanpeng Wang, Jian Yang, Xin Liu","doi":"10.1109/ISAS59543.2023.10164331","DOIUrl":"https://doi.org/10.1109/ISAS59543.2023.10164331","url":null,"abstract":"Accurate calibration of installation errors is of paramount importance for achieving high-performance in integrated navigation systems. In this paper, a self-calibration method for addressing installation errors in an integrated inertial/polarization/celestial navigation system is proposed. The method utilizes the information from gravity, polarized E-vector, and sun to establish constrained relationship between the multiple vectors. By employing a nonlinear least squares method, the installation parameters are iteratively determined. The effectiveness of the proposed method is demonstrated through comprehensive simulation tests. The results reveal that the method achieves improved accuracy and robustness in estimating installation errors.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123880917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-23DOI: 10.1109/ISAS59543.2023.10164394
Ming Du, Yue-Xiang Shi, Jing Zhao, Chongxing Liu
This study is investigates the trajectory tracking control problem of a quadrotor unmanned aerial vehicle (UAV). To ensure desired trajectory tracking performance despite modeled uncertainty and external gust interference, an active disturbance rejection control (ADRC) strategy is proposed, which separates the UAV control system into two parts. The ADRC strategy is applied in the attitude control (AC) system to address internal system uncertainty and ensure dynamic performance. In the position control (PC) system, sliding-mode control (SMC) with a high-gain observer is introduced to guarantee system robustness against external and internal disturbances. The quadrotor system can converge the tracking error to an arbitrarily small set of residuals by constructing a Lyapunov function. Numerical analysis demonstrates that the proposed control system has good trajectory tracking and anti-disturbance performance for the quadrotor.
{"title":"Active disturbance rejection control for a quadrotor: a high-gain observer-based sliding-mode technique","authors":"Ming Du, Yue-Xiang Shi, Jing Zhao, Chongxing Liu","doi":"10.1109/ISAS59543.2023.10164394","DOIUrl":"https://doi.org/10.1109/ISAS59543.2023.10164394","url":null,"abstract":"This study is investigates the trajectory tracking control problem of a quadrotor unmanned aerial vehicle (UAV). To ensure desired trajectory tracking performance despite modeled uncertainty and external gust interference, an active disturbance rejection control (ADRC) strategy is proposed, which separates the UAV control system into two parts. The ADRC strategy is applied in the attitude control (AC) system to address internal system uncertainty and ensure dynamic performance. In the position control (PC) system, sliding-mode control (SMC) with a high-gain observer is introduced to guarantee system robustness against external and internal disturbances. The quadrotor system can converge the tracking error to an arbitrarily small set of residuals by constructing a Lyapunov function. Numerical analysis demonstrates that the proposed control system has good trajectory tracking and anti-disturbance performance for the quadrotor.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115191202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-23DOI: 10.1109/ISAS59543.2023.10164540
Hei Wenjing, Wu Jiaju
In the future complex and dangerous combat environment, in view of the pilot’s difficulty in processing massive/incomplete information quickly, the lack of flight control ability, the conventional flight is difficult to deal with the battlefield environment and other problems, intelligent design ideas are introduced and the pilot intelligent assistant system is proposed. This paper first introduces the development history of pilot association system (PAS) at home and abroad, and puts forward the current design requirements. Finally, it systematically presents the challenges and key technologies in the overall architecture design, decision-making technology, human-computer interaction, autonomous learning and test verification.
{"title":"Research on Key Technologies of pilot assistant system","authors":"Hei Wenjing, Wu Jiaju","doi":"10.1109/ISAS59543.2023.10164540","DOIUrl":"https://doi.org/10.1109/ISAS59543.2023.10164540","url":null,"abstract":"In the future complex and dangerous combat environment, in view of the pilot’s difficulty in processing massive/incomplete information quickly, the lack of flight control ability, the conventional flight is difficult to deal with the battlefield environment and other problems, intelligent design ideas are introduced and the pilot intelligent assistant system is proposed. This paper first introduces the development history of pilot association system (PAS) at home and abroad, and puts forward the current design requirements. Finally, it systematically presents the challenges and key technologies in the overall architecture design, decision-making technology, human-computer interaction, autonomous learning and test verification.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116293686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-23DOI: 10.1109/ISAS59543.2023.10164552
Xiaoyu Wang, Yi Dong
This paper addresses a safety critical control problem for a second-order nonlinear system, and is then applied into a planar biped robotic system. Our design, composed of a tracking controller and a safety controller, is capable of preliminarily guaranteeing the safety of the system and achieving the asymptotic tracking of a dynamic nonlinear reference signal if the reference is safe.
{"title":"Safety Critical Control Design of Second-order Nonlinear System and Its Application in Biped Robot","authors":"Xiaoyu Wang, Yi Dong","doi":"10.1109/ISAS59543.2023.10164552","DOIUrl":"https://doi.org/10.1109/ISAS59543.2023.10164552","url":null,"abstract":"This paper addresses a safety critical control problem for a second-order nonlinear system, and is then applied into a planar biped robotic system. Our design, composed of a tracking controller and a safety controller, is capable of preliminarily guaranteeing the safety of the system and achieving the asymptotic tracking of a dynamic nonlinear reference signal if the reference is safe.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114442177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-23DOI: 10.1109/ISAS59543.2023.10164412
Zhipeng Zhang, Jun Shen
In this paper, the problem of robust anti-disturbance control of a quadrotor unmanned aerial vehicle (UAV) with input saturation and disturbance is investigated. A sliding mode trajectory tracking control method based on nonlinear extended state observer (NLESO) is presented. This approach first designs a NLESO for estimating all states and total disturbances in the quadrotor UAV. Then, a hyperbolic tangent function is introduced to approach the actuator saturation function. Combined with the traditional sliding mode control method, a second-order auxiliary dynamic system is adopted to compensate for the influence of input saturation. Moreover, the trajectory tracking capability of all signals of the closed-loop system is demonstrated by Lyapunov stability. Finally, quadrotor UAV model-based data simulation is presented to illustrate the theoretical results.
{"title":"Nonlinear Extended State Observer Based Robust Control for Quadrotor UAV Trajectory Tracking with Input Saturation*","authors":"Zhipeng Zhang, Jun Shen","doi":"10.1109/ISAS59543.2023.10164412","DOIUrl":"https://doi.org/10.1109/ISAS59543.2023.10164412","url":null,"abstract":"In this paper, the problem of robust anti-disturbance control of a quadrotor unmanned aerial vehicle (UAV) with input saturation and disturbance is investigated. A sliding mode trajectory tracking control method based on nonlinear extended state observer (NLESO) is presented. This approach first designs a NLESO for estimating all states and total disturbances in the quadrotor UAV. Then, a hyperbolic tangent function is introduced to approach the actuator saturation function. Combined with the traditional sliding mode control method, a second-order auxiliary dynamic system is adopted to compensate for the influence of input saturation. Moreover, the trajectory tracking capability of all signals of the closed-loop system is demonstrated by Lyapunov stability. Finally, quadrotor UAV model-based data simulation is presented to illustrate the theoretical results.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125578094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-23DOI: 10.1109/ISAS59543.2023.10164358
Yuzhan Wu, Meng Li, Chenlong Li
This paper presents a theoretical analysis of control stability in unmanned ground vehicles under the influence of external disturbances, focusing on exponentially input-to-state stability. External disturbances can originate from a variety of sources, such as uneven terrain, obstacles, or other environmental factors, and can significantly affect the performance and stability of unmanned ground vehicles. In this paper, detailed derivations and proofs are given, which theoretically shows that the system is exponentially input-to-state stable with certain constraints, and corresponding simulation experiments also confirmed the theoretical derivation.
{"title":"Control Stability Analysis of Unmanned Ground Vehicles Under External Disturbance","authors":"Yuzhan Wu, Meng Li, Chenlong Li","doi":"10.1109/ISAS59543.2023.10164358","DOIUrl":"https://doi.org/10.1109/ISAS59543.2023.10164358","url":null,"abstract":"This paper presents a theoretical analysis of control stability in unmanned ground vehicles under the influence of external disturbances, focusing on exponentially input-to-state stability. External disturbances can originate from a variety of sources, such as uneven terrain, obstacles, or other environmental factors, and can significantly affect the performance and stability of unmanned ground vehicles. In this paper, detailed derivations and proofs are given, which theoretically shows that the system is exponentially input-to-state stable with certain constraints, and corresponding simulation experiments also confirmed the theoretical derivation.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126246203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}