This study aims to analysis the influence of economic growth (EG) and energy consumption (EC) on sulfur dioxide emissions (SE) in China. Accordingly, this study explores the link between EG, EC, and SE for 30 provinces in China over the span of 2000–2019. This study also analyzes cross-sectional dependence tests, panel unit root tests, Westerlund panel cointegration tests, Dumitrescu-Hurlin (D-H) causality tests. According to the test results, there is an inverted U-shaped association between EG and SE, and the assumption of the Environmental Kuznets Curve (EKC) is verified. The signs of EG and EC in the fixed effect (FE) and random effect (RE) methods are in line with those in the dynamic ordinary least squares (DOLS), fully modified ordinary least squares (FMOLS) and autoregressive distributed lag (ARDL) estimators. Moreover, the results verified that EC can obviously positive impact the SE. To reduce SE in China, government and policymakers can improve air quality by developing cleaner energy sources and improving energy efficiency. This requires the comprehensive use of policies, regulations, economic incentives, and public participation to promote sustainable development.
It remains a great challenge to understand the hydrates involved in phenomena in practical oil and gas systems. The adhesion forces between hydrate particles, between hydrate particles and pipe walls, and between hydrate particles and reservoir particles are essential factors that control the behaviors of clathrate hydrates in different applications. In this review, we summarize the typical micro-force measurement apparatus and methods utilized to study hydrate particle systems. In addition, the adhesion test results, the related understandings, and the applied numerical calculation models are systematically discussed.
Radial well filled with phase change material has been proposed as a novel sand control method for hydrate exploitation. In order to reveal the sand control mechanism, CFD-DEM coupling method is applied to simulate the migration, settlement, and blockage processes of sand particles in the radial well. The obtained results indicate that three scenarios have been recognized for sand particles passing through sand control medium, based on the diameter ratio of sand control medium to sand particle (Dd): fully passing (Dd = 8.75–22.5), partially passing and partially blocked (Dd = 3.18–5.63), and completely blocked (Dd = 2.18–3.21). After being captured by the sand control medium, sand particles can block pores, which increases fluid flow resistance and causes a certain pressure difference in the radial well. The pressure in the radial well should be lower than the hydrate phase equilibrium pressure during sand control design, for the purpose of promoting hydrate decomposition, and sand capture. The length of the radial well should be optimized based on the reservoir pore pressure, production pressure difference, bottom hole pressure, and the pressure gradient in the radial well. It should be noticed that the sand control medium leads to a decrease in permeability after sand particles captured. Even the permeability is reduced to several hundred millidarcy, it is still sufficient to ensure the effective flow of gas and water after hydrate decomposition. Increasing fluid velocity reduces the blocking capacity of the sand control medium, mainly because of deterioration in bridging between sand particles.
The environmental hazards and "carbon footprint" of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and animals. This paper explored for the first time the interaction mechanism between natural rubber latex (NRL) and bentonite suspensions (BTs) through a series of characterization experiments, as well as the potential applications in water-based drilling fluids (WBDF). The gel viscoelasticity experiments showed that NRL could decrease the consistency coefficient (k) and flow index (n) of BTs, and enhance the shear thinning performance of BTs as pseudo-plastic fluids. In addition, 0.5 w/v% NRL not only increased the critical yield stress and strengthened the structural strength between the bentonite particles, but also facilitated the compatibility of pressure loss and flow efficiency. The evaluation of colloidal stability and WBDF performance indicated that NRL particles could promote the hydration and charge stability on the surface of BTs particles, and optimize the particle size distribution and flow resistance of WBDF under the "intercalation-exfoliation-encapsulation" synergistic interaction. Moreover, NRL can improve the rheological properties of WBDF at high temperatures (<150 °C), and form a dense blocking layer by bridging and sealing the pores and cracks of the filter cake, which ultimately reduces the permeability of the cake and the filtration loss of WBDF.