The growing interest for power electronics devices demands suitable materials which can perform in harsh conditions. Gallium oxide () has shown tremendous potential in high voltage, high temperature, and gassensing applications due to its unique material properties. is considered to be the next‐generation material for power electronics owing to ultrawide bandgap of 4.5–4.9 eV and high electric field of 8 MV cm−1. These material properties coupled with high‐power figure of merits make a superior material compared to GaN and SiC. Herein, state‐of‐the‐art development and recent breakthroughs in ‐based field‐effect‐ transistors (FETs) highlighting major ongoing research are reviewed. The review describes the material property, band structure, and ‐based field‐effect transistors in detail. Some promising applications capitalizing the epitaxial growth techniques along with the characteristics and performance of ‐based devices are also explained. The prime objective of this review is to provide an up‐to‐date scientific framework pertaining to this niche emerging research area followed by device processing. This survey reveals the potential of ‐based FETs for high‐ voltage and high‐power applications while several critical challenges have to be still overcome. Finally, insights are represented and future perspectives of ‐based transistors along with their hetero‐structures are discussed.
人们对电力电子器件的兴趣与日俱增,这就需要能在苛刻条件下工作的合适材料。由于具有 4.5-4.9 eV 的超宽带隙和 8 MV cm-1 的高电场,氧化镓()被认为是下一代电力电子器件材料。与氮化镓和碳化硅相比,这些材料特性加上高功率特性使其成为一种更优越的材料。本文回顾了场效应晶体管(FET)的最新发展和突破,重点介绍了正在进行的主要研究。综述详细介绍了材料特性、带状结构和-基场效应晶体管。此外,还介绍了利用外延生长技术的一些有前途的应用,以及基于 - 的器件的特性和性能。本综述的主要目的是为这一利基新兴研究领域提供一个最新的科学框架,然后再进行器件加工。这项调查揭示了-基场效应晶体管在高压和大功率应用方面的潜力,同时也揭示了仍需克服的几个关键挑战。最后,还讨论了对-基晶体管及其异质结构的见解和未来展望。
{"title":"Gallium Oxide‐Based Field Effect Transistors","authors":"Pharyanshu Kachhawa, Sk. Masiul Islam, Nidhi Chaturvedi","doi":"10.1002/pssa.202400400","DOIUrl":"https://doi.org/10.1002/pssa.202400400","url":null,"abstract":"The growing interest for power electronics devices demands suitable materials which can perform in harsh conditions. Gallium oxide () has shown tremendous potential in high voltage, high temperature, and gassensing applications due to its unique material properties. is considered to be the next‐generation material for power electronics owing to ultrawide bandgap of 4.5–4.9 eV and high electric field of 8 MV cm<jats:sup>−1</jats:sup>. These material properties coupled with high‐power figure of merits make a superior material compared to GaN and SiC. Herein, state‐of‐the‐art development and recent breakthroughs in ‐based field‐effect‐ transistors (FETs) highlighting major ongoing research are reviewed. The review describes the material property, band structure, and ‐based field‐effect transistors in detail. Some promising applications capitalizing the epitaxial growth techniques along with the characteristics and performance of ‐based devices are also explained. The prime objective of this review is to provide an up‐to‐date scientific framework pertaining to this niche emerging research area followed by device processing. This survey reveals the potential of ‐based FETs for high‐ voltage and high‐power applications while several critical challenges have to be still overcome. Finally, insights are represented and future perspectives of ‐based transistors along with their hetero‐structures are discussed.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"12 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hybrid metasurfaces incorporated by active materials hold great promise for state‐of‐the‐art terahertz functional devices. However, it is still a major challenge to achieve ultrafast, dynamic, and multifunctional effective control of THz waves via hybrid metasurfaces. Herein, a modulator consisting of split rings and cut‐wires is first demonstrated, with an amplitude of −35.6 dB at 0.524 THz. By embedding semiconductor silicon into specified locations to form a hybrid metasurface, the ultrastrong connectivity of the silicon bridges leads to rapid optical molecularization. Under photoexcitation, the frequency tuning range is 26.7%, the phase shifting reaches 357.5°, and the maximal modulation depth is 94.54%. Taking advantage of the rapid relaxation of photocarriers in the silicon bridges, the ultrafast frequency switching is within 1400 ps. More interestingly, by changing the positions of the silicon bridges, the frequency tuning range is further promoted to 60%, the phase shifting is 353.5°, the modulation depth of 100% is achieved, and the full recovery time is 1600 ps. Furthermore, the underlying mechanism of the ultrafast tuning process is elucidated. This work demonstrates the feasibility of all‐optical‐controlled hybrid metasurface to achieve multifunctional dynamic modulation of THz waves, which has tremendous potential for applications in optical switching, signal processing, and frequency conversion.
{"title":"Molecularization of Metasurfaces for Multifunctional Ultrafast All‐Optical Terahertz Waves","authors":"Qiangguo Zhou, Qinxi Qiu, Yongzhen Li, Tuntan Wu, Wangchen Mao, Yanqing Gao, Yingjian Ren, Wei Zhou, Lin Jiang, Niangjuan Yao, Jingguo Huang, Zhiming Huang","doi":"10.1002/pssa.202400459","DOIUrl":"https://doi.org/10.1002/pssa.202400459","url":null,"abstract":"Hybrid metasurfaces incorporated by active materials hold great promise for state‐of‐the‐art terahertz functional devices. However, it is still a major challenge to achieve ultrafast, dynamic, and multifunctional effective control of THz waves via hybrid metasurfaces. Herein, a modulator consisting of split rings and cut‐wires is first demonstrated, with an amplitude of −35.6 dB at 0.524 THz. By embedding semiconductor silicon into specified locations to form a hybrid metasurface, the ultrastrong connectivity of the silicon bridges leads to rapid optical molecularization. Under photoexcitation, the frequency tuning range is 26.7%, the phase shifting reaches 357.5°, and the maximal modulation depth is 94.54%. Taking advantage of the rapid relaxation of photocarriers in the silicon bridges, the ultrafast frequency switching is within 1400 ps. More interestingly, by changing the positions of the silicon bridges, the frequency tuning range is further promoted to 60%, the phase shifting is 353.5°, the modulation depth of 100% is achieved, and the full recovery time is 1600 ps. Furthermore, the underlying mechanism of the ultrafast tuning process is elucidated. This work demonstrates the feasibility of all‐optical‐controlled hybrid metasurface to achieve multifunctional dynamic modulation of THz waves, which has tremendous potential for applications in optical switching, signal processing, and frequency conversion.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"32 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christoph Zechner, Anna Johnsson, Tamara Fidler, Patrick Schmid
A comprehensive process model for 4H‐SiC oxidation is created and calibrated against a very large collection of experimental data. The model reproduces measured oxide thickness for Si‐face, C‐face, and a‐face SiC wafers, in the temperature range 950–1500 °C, in the pressure range 0.25–4.0 atm, in the thickness range 3–1600 nm, and for SiC doping ranging between 1019 cm−3 n‐type and 1019 cm−3 p‐type. The model is based on the Massoud model: Oxidation is driven by oxidants (O2, H2O) which are present in the gas phase, diffuse through the oxide, and form SiO2 at the oxide–SiC interface. For thin oxides, the interface reaction rate includes empirical correction terms which add to the oxidation rate, and which asymptotically approach zero with increasing oxide thickness. For dry oxidation, a remarkable dependence on the O2 partial pressure is discovered: For thick oxides, the oxidation rate scales linearly with the pressure, but the correction term for thin oxides scales with the square root of the pressure. This suggests that the atomistic processes responsible for the fast initial growth of oxides involve the splitting of O2 molecules into two O atoms.
建立了一个 4H-SiC 氧化综合工艺模型,并根据大量实验数据进行了校准。该模型再现了在温度范围 950-1500 °C、压力范围 0.25-4.0 atm、厚度范围 3-1600 nm,以及碳化硅掺杂量介于 1019 cm-3 n 型和 1019 cm-3 p 型之间的情况下,碳化硅硅面、碳化硅 C 面和碳化硅 a 面晶圆的氧化厚度测量值。该模型基于马苏德模型:氧化作用由氧化剂(O2、H2O)驱动,氧化剂存在于气相中,通过氧化物扩散,并在氧化物-SiC 界面形成 SiO2。对于薄氧化物,界面反应速率包括经验修正项,这些修正项会增加氧化速率,并随着氧化物厚度的增加而逐渐趋近于零。对于干氧化,发现了与氧气分压的显著相关性:对于厚氧化物,氧化率与压力成线性比例,但对于薄氧化物,修正项与压力的平方根成比例。这表明,导致氧化物快速初始增长的原子过程涉及将 O2 分子分裂成两个 O 原子。
{"title":"Process Model for SiC Oxidation for a Large Range of Conditions","authors":"Christoph Zechner, Anna Johnsson, Tamara Fidler, Patrick Schmid","doi":"10.1002/pssa.202400234","DOIUrl":"https://doi.org/10.1002/pssa.202400234","url":null,"abstract":"A comprehensive process model for 4H‐SiC oxidation is created and calibrated against a very large collection of experimental data. The model reproduces measured oxide thickness for Si‐face, C‐face, and a‐face SiC wafers, in the temperature range 950–1500 °C, in the pressure range 0.25–4.0 atm, in the thickness range 3–1600 nm, and for SiC doping ranging between 10<jats:sup>19</jats:sup> cm<jats:sup>−3</jats:sup> n‐type and 10<jats:sup>19</jats:sup> cm<jats:sup>−3</jats:sup> p‐type. The model is based on the Massoud model: Oxidation is driven by oxidants (O<jats:sub>2</jats:sub>, H<jats:sub>2</jats:sub>O) which are present in the gas phase, diffuse through the oxide, and form SiO<jats:sub>2</jats:sub> at the oxide–SiC interface. For thin oxides, the interface reaction rate includes empirical correction terms which add to the oxidation rate, and which asymptotically approach zero with increasing oxide thickness. For dry oxidation, a remarkable dependence on the O<jats:sub>2</jats:sub> partial pressure is discovered: For thick oxides, the oxidation rate scales linearly with the pressure, but the correction term for thin oxides scales with the square root of the pressure. This suggests that the atomistic processes responsible for the fast initial growth of oxides involve the splitting of O<jats:sub>2</jats:sub> molecules into two O atoms.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"48 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141719688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Hong, Xuanfei Kuang, Yongjuan Chen, Yao Xiao, Zongcun Liang
Transition metal oxide (TMO)/crystalline silicon (c‐Si) junction‐based heterostructure crystalline silicon solar cells have emerged as a promising alternative to traditional silicon solar cells. However, the power conversion efficiency of c‐Si solar cells utilizing a nickel oxide (NiOx) hole transport layer (HTL) still lags behind those employing a fully developed TMO layer. This disparity may be attributed, at least in part, to inefficient hole extraction. Atomic layer deposited (ALD) aluminum nickel oxide (Al1−xNixO) films, synthesized using bis(N,N′‐di‐t‐butylacetamidinato)nickel(II) (NiAMD) and trimethylaluminum (TMA) as precursors, along with deionized water as a co‐reactant, have been observed to improve the contact properties with p‐type silicon compared to NiOx. Al1−xNixO films with varying Al concentrations (0.25, 0.44, and 0.87) are examined for their contact performance on p‐Si, resulting in the lowest contact resistivity of 85 mΩ cm2. Optimized Al1−xNixO films exhibit superior hole extraction capability from p‐type silicon, leading to a remarkable conversion efficiency of 19.35% in the constructed p‐Si/Al1−xNixO/Ag solar cell. These findings underscore the advantages of utilizing ALD Al1−xNixO as a hole‐selective contact for crystalline p‐Si solar cells.
基于过渡金属氧化物(TMO)/晶体硅(c-Si)结的异质结构晶体硅太阳能电池已成为传统硅太阳能电池的一种有前途的替代品。然而,采用氧化镍(NiOx)空穴传输层(HTL)的晶体硅太阳能电池的功率转换效率仍然落后于采用完全开发的 TMO 层的电池。这种差距可能至少部分归因于空穴萃取效率低下。原子层沉积(ALD)氧化铝镍(Al1-xNixO)薄膜是以双(N,N′-二-叔丁基乙酰胺基)镍(II)(NiAMD)和三甲基铝(TMA)为前驱体,以去离子水为共反应物合成的,与氧化镍相比,它能改善与 p 型硅的接触特性。我们研究了不同铝浓度(0.25、0.44 和 0.87)的 Al1-xNixO 薄膜在 p 型硅上的接触性能,结果发现其接触电阻率最低,仅为 85 mΩ cm2。优化后的 Al1-xNixO 薄膜显示出从对型硅中萃取空穴的卓越能力,从而使构建的对型硅/Al1-xNixO/银太阳能电池的转换效率达到 19.35%。这些发现强调了利用 ALD Al1-xNixO 作为晶体对硅太阳能电池的空穴选择性接触的优势。
{"title":"Atomic Layer Deposited Al1−xNixO: Low Contact Resistivity Hole‐Selective Contact for Crystalline Silicon Solar Cells","authors":"Yang Hong, Xuanfei Kuang, Yongjuan Chen, Yao Xiao, Zongcun Liang","doi":"10.1002/pssa.202400387","DOIUrl":"https://doi.org/10.1002/pssa.202400387","url":null,"abstract":"Transition metal oxide (TMO)/crystalline silicon (c‐Si) junction‐based heterostructure crystalline silicon solar cells have emerged as a promising alternative to traditional silicon solar cells. However, the power conversion efficiency of c‐Si solar cells utilizing a nickel oxide (NiO<jats:sub><jats:italic>x</jats:italic></jats:sub>) hole transport layer (HTL) still lags behind those employing a fully developed TMO layer. This disparity may be attributed, at least in part, to inefficient hole extraction. Atomic layer deposited (ALD) aluminum nickel oxide (Al<jats:sub>1</jats:sub><jats:sub>−</jats:sub><jats:sub><jats:italic>x</jats:italic></jats:sub>Ni<jats:sub><jats:italic>x</jats:italic></jats:sub>O) films, synthesized using bis(<jats:italic>N,N′‐di‐t</jats:italic>‐butylacetamidinato)nickel(II) (NiAMD) and trimethylaluminum (TMA) as precursors, along with deionized water as a co‐reactant, have been observed to improve the contact properties with p‐type silicon compared to NiO<jats:sub><jats:italic>x</jats:italic></jats:sub>. Al<jats:sub>1−</jats:sub><jats:sub><jats:italic>x</jats:italic></jats:sub>Ni<jats:sub><jats:italic>x</jats:italic></jats:sub>O films with varying Al concentrations (0.25, 0.44, and 0.87) are examined for their contact performance on <jats:italic>p</jats:italic>‐Si, resulting in the lowest contact resistivity of 85 mΩ cm<jats:sup>2</jats:sup>. Optimized Al<jats:sub>1</jats:sub><jats:sub>−</jats:sub><jats:sub><jats:italic>x</jats:italic></jats:sub>Ni<jats:sub><jats:italic>x</jats:italic></jats:sub>O films exhibit superior hole extraction capability from p‐type silicon, leading to a remarkable conversion efficiency of 19.35% in the constructed <jats:italic>p</jats:italic>‐Si/Al<jats:sub>1</jats:sub><jats:sub>−</jats:sub><jats:sub><jats:italic>x</jats:italic></jats:sub>Ni<jats:sub><jats:italic>x</jats:italic></jats:sub>O/Ag solar cell. These findings underscore the advantages of utilizing ALD Al<jats:sub>1</jats:sub><jats:sub>−</jats:sub><jats:sub><jats:italic>x</jats:italic></jats:sub>Ni<jats:sub><jats:italic>x</jats:italic></jats:sub>O as a hole‐selective contact for crystalline <jats:italic>p</jats:italic>‐Si solar cells.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"61 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141614287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sola Woo, Taeeun Lee, Chang Woo Song, Jun Young Park, Yusup Jung, Jeongsoo Hong, Sinsu Kyoung
A high‐performance self‐powered deep ultraviolet (DUV) photodetector based on the NiO/β‐Ga2O3 heterojunction is fabricated and analyzed. The NiO/β‐Ga2O3 heterojunction photodetectors are fabricated both with and without a post‐annealing process following NiO film deposition. Each photodetector structure is investigated through technology computer‐aided design simulations, including energy band diagram, trap density, and carrier concentration. The pristine self‐powered NiO/β‐Ga2O3 photodetector, lacking a post‐annealing process, exhibits partial Schottky contact formation between metal and NiO film, leading to performance degradation, including reduced responsivity, detectivity, and response time. On the other hand, the post‐annealed self‐powered NiO/β‐Ga2O3 photodetector demonstrates high performance such as a responsivity of 592.0 mA W−1, a detectivity of 4.30 × 1012 Jones, and response times of 30.93 ms and 72.32 ms, respectively. Therefore, the fabricated NiO/β‐Ga2O3 photodetector shows a promising potential for various applications requiring DUV detection without an external voltage bias.
{"title":"High‐Performance Self‐Powered Deep Ultraviolet Photodetector Based on NiO/β‐Ga2O3 Heterojunction with High Responsivity and Selectivity","authors":"Sola Woo, Taeeun Lee, Chang Woo Song, Jun Young Park, Yusup Jung, Jeongsoo Hong, Sinsu Kyoung","doi":"10.1002/pssa.202400310","DOIUrl":"https://doi.org/10.1002/pssa.202400310","url":null,"abstract":"A high‐performance self‐powered deep ultraviolet (DUV) photodetector based on the NiO/β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> heterojunction is fabricated and analyzed. The NiO/β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> heterojunction photodetectors are fabricated both with and without a post‐annealing process following NiO film deposition. Each photodetector structure is investigated through technology computer‐aided design simulations, including energy band diagram, trap density, and carrier concentration. The pristine self‐powered NiO/β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> photodetector, lacking a post‐annealing process, exhibits partial Schottky contact formation between metal and NiO film, leading to performance degradation, including reduced responsivity, detectivity, and response time. On the other hand, the post‐annealed self‐powered NiO/β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> photodetector demonstrates high performance such as a responsivity of 592.0 mA W<jats:sup>−1</jats:sup>, a detectivity of 4.30 × 10<jats:sup>12</jats:sup> Jones, and response times of 30.93 ms and 72.32 ms, respectively. Therefore, the fabricated NiO/β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> photodetector shows a promising potential for various applications requiring DUV detection without an external voltage bias.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"1 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141614290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photodissociation kinetics of iron–boron (FeB) pairs in boron‐doped Czochralski silicon is studied experimentally using different light sources. It is shown that the FeB dissociation rate depends not only on integrated light intensity and overall carrier generation rate, but also on spectral composition of illumination. The value of the material constant of dissociation K varies and has been determined to be within s. The investigation reveals an increase in the dissociation rate with increase in photon energy. The results indicate that recombination‐enhanced defect reaction is the primary factor in the second stage of pair dissociation.
使用不同光源对掺硼的佐赫拉尔斯基硅中铁-硼(FeB)对的光解离动力学进行了实验研究。结果表明,铁硼解离率不仅取决于综合光强和总体载流子生成率,还取决于照明的光谱成分。解离的材料常数 K 值各不相同,并被确定在 s 范围内。结果表明,重组增强的缺陷反应是对解离第二阶段的主要因素。
{"title":"Influence of Illumination Spectrum on Dissociation Kinetics of Iron–Boron Pairs in Silicon","authors":"Oleg Olikh, Oleksandr Datsenko, Serhiy Kondratenko","doi":"10.1002/pssa.202400351","DOIUrl":"https://doi.org/10.1002/pssa.202400351","url":null,"abstract":"Photodissociation kinetics of iron–boron (FeB) pairs in boron‐doped Czochralski silicon is studied experimentally using different light sources. It is shown that the FeB dissociation rate depends not only on integrated light intensity and overall carrier generation rate, but also on spectral composition of illumination. The value of the material constant of dissociation <jats:italic>K</jats:italic> varies and has been determined to be within s. The investigation reveals an increase in the dissociation rate with increase in photon energy. The results indicate that recombination‐enhanced defect reaction is the primary factor in the second stage of pair dissociation.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"26 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141614289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Herein, the growth of transparent TiO2 nanotube (NT) layers is investigated by complete self‐organized anodization of a metallic Ti layer on fluorine‐doped tin oxide glass, deposited by electron beam evaporation. An initiation‐free open‐top tube morphology can be obtained for such transparent TiO2 NTs using an optimized second anodization approach combined with a post‐ultrasonication process. The photoelectrochemical properties of open‐top tubes exhibit notable enhancement, primarily attributed to their rapid electron‐transfer kinetics, with a ≈33% increase in the incident‐photon‐to‐electron conversion efficiency value (at 350 nm wavelength) in comparison to classical (initiation‐covered) NTs with a comparable morphology.
{"title":"Open‐Top Transparent TiO2 Nanotubes Photoanodes from Evaporated Ti Layers on Fluorine‐Doped Tin Oxide","authors":"Imgon Hwang, Patrik Schmuki, Anca Mazare","doi":"10.1002/pssa.202400335","DOIUrl":"https://doi.org/10.1002/pssa.202400335","url":null,"abstract":"Herein, the growth of transparent TiO<jats:sub>2</jats:sub> nanotube (NT) layers is investigated by complete self‐organized anodization of a metallic Ti layer on fluorine‐doped tin oxide glass, deposited by electron beam evaporation. An initiation‐free open‐top tube morphology can be obtained for such transparent TiO<jats:sub>2</jats:sub> NTs using an optimized second anodization approach combined with a post‐ultrasonication process. The photoelectrochemical properties of open‐top tubes exhibit notable enhancement, primarily attributed to their rapid electron‐transfer kinetics, with a ≈33% increase in the incident‐photon‐to‐electron conversion efficiency value (at 350 nm wavelength) in comparison to classical (initiation‐covered) NTs with a comparable morphology.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"2012 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141614293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kwangseuk Kyhm, Jong Su Kim, Heonsu Jeon, Yong‐Hoon Cho
{"title":"Compound Semiconductors","authors":"Kwangseuk Kyhm, Jong Su Kim, Heonsu Jeon, Yong‐Hoon Cho","doi":"10.1002/pssa.202400418","DOIUrl":"https://doi.org/10.1002/pssa.202400418","url":null,"abstract":"","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"17 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Audrey Valentin, Divine Regina Kamkoum‐Djouka, Ovidiu Brinza, Fabien Bénédic
The growth of chemical vapor deposition diamond in microwave plasma ignited in H2/CH4 gas mixture is investigated using a multiscale approach. The plasma composition and temperatures are determined as a function of the growth conditions using an axial one‐dimensional simulator. The growth process is then studied at the atomic scale using a kinetic Monte‐Carlo simulator developed for (1 0 0), (1 1 1), and (1 1 0) orientations. The calculated growth rates are then injected in a geometric model that predicts the final morphology of the crystal. The simulation of the growth on an etch pit shows that the time necessary to entirely fill the pit is around half an hour. The study of the growth on the three orientations reveals that the surface temperature and methane concentration influence the number, shape, and size of the islands when they appear. On the (1 0 0) surface, the formation of islands may be related to Stranski–Krastanov growth mode, whereas the (1 1 1) surface conducts to Frank–van der Merwe growth mode, and the (1 1 0) surface is governed by Volmer–Weber growth mode.
{"title":"Multiscale Simulation of CVD Diamond Growth on (1 0 0)‐, (1 1 1)‐, and (1 1 0)‐Oriented Faces","authors":"Audrey Valentin, Divine Regina Kamkoum‐Djouka, Ovidiu Brinza, Fabien Bénédic","doi":"10.1002/pssa.202400382","DOIUrl":"https://doi.org/10.1002/pssa.202400382","url":null,"abstract":"The growth of chemical vapor deposition diamond in microwave plasma ignited in H<jats:sub>2</jats:sub>/CH<jats:sub>4</jats:sub> gas mixture is investigated using a multiscale approach. The plasma composition and temperatures are determined as a function of the growth conditions using an axial one‐dimensional simulator. The growth process is then studied at the atomic scale using a kinetic Monte‐Carlo simulator developed for (1 0 0), (1 1 1), and (1 1 0) orientations. The calculated growth rates are then injected in a geometric model that predicts the final morphology of the crystal. The simulation of the growth on an etch pit shows that the time necessary to entirely fill the pit is around half an hour. The study of the growth on the three orientations reveals that the surface temperature and methane concentration influence the number, shape, and size of the islands when they appear. On the (1 0 0) surface, the formation of islands may be related to Stranski–Krastanov growth mode, whereas the (1 1 1) surface conducts to Frank–van der Merwe growth mode, and the (1 1 0) surface is governed by Volmer–Weber growth mode.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"94 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This is the first report on the current saturation behavior observed in the forward characteristics of polarization superjunction (PSJ)‐based hybrid PiN‐Schottky GaN power diodes fabricated on Sapphire. In the current saturation region, most of the applied anode voltage is dropped across the regions immediately adjacent to the edge of the doped P‐GaN region closest to the cathode. This significant potential drop occurs within a short distance, resulting in a high electric field and depletion of electrons, causing the current saturation behavior via velocity saturation in these PSJ hybrid diodes.
这是首次报道在蓝宝石上制造的基于极化超结 (PSJ) 的混合 PiN-Schottky GaN 功率二极管的正向特性中观察到的电流饱和行为。在电流饱和区,大部分施加的阳极电压在紧邻最靠近阴极的掺杂 P-GaN 区域边缘的区域下降。这种显著的电位下降发生在很短的距离内,导致高电场和电子耗竭,从而在这些 PSJ 混合二极管中通过速度饱和产生电流饱和行为。
{"title":"Current Saturation Behavior in GaN Polarization Superjunction Hybrid Diode","authors":"Yangming Du, Ekkanath Madathil Sankara Narayanan, Hiroji Kawai, Shuichi Yagi, Hironobu Narui","doi":"10.1002/pssa.202300919","DOIUrl":"https://doi.org/10.1002/pssa.202300919","url":null,"abstract":"This is the first report on the current saturation behavior observed in the forward characteristics of polarization superjunction (PSJ)‐based hybrid PiN‐Schottky GaN power diodes fabricated on Sapphire. In the current saturation region, most of the applied anode voltage is dropped across the regions immediately adjacent to the edge of the doped P‐GaN region closest to the cathode. This significant potential drop occurs within a short distance, resulting in a high electric field and depletion of electrons, causing the current saturation behavior via velocity saturation in these PSJ hybrid diodes.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"2022 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141588499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}