Rosario Ramírez, Fernando G. Flores-Nava, Elena Colín-Orozco, J. Cuauhtémoc Palacios, M. Guadalupe Olayo, Adriana Ventolero, Guillermo J. Cruz
This work presents a comparison between electrochemical (Echem), plasma glow, and arc discharge polymerizations of pyrrole doped with iodine to correlate the energy of synthesis, chemical structure, and electrical conductivity of the polymers. Plasma glow discharges were used in the gas phase, electrochemistry in liquid, and arc discharges in a hybrid gas–liquid combination. Polypyrroles had structure and conductivity that varied with the synthesis parameters; Echem produced polymers with high carbonization and without the C≡N triple bonds resulting from the other syntheses. Conductivity divided the polymers in two: those synthesized in liquid were in the 0.01–1.0 S/m range, and those synthesized in gas were in the 10–9–10–7 S/m range, with differences of up to eight orders of magnitude due to the dopants and electrolytes.
{"title":"Electro-polymerization of polypyrroles, comparison among electrochemistry, glow, and arc discharges","authors":"Rosario Ramírez, Fernando G. Flores-Nava, Elena Colín-Orozco, J. Cuauhtémoc Palacios, M. Guadalupe Olayo, Adriana Ventolero, Guillermo J. Cruz","doi":"10.1002/ppap.202300199","DOIUrl":"https://doi.org/10.1002/ppap.202300199","url":null,"abstract":"This work presents a comparison between electrochemical (Echem), plasma glow, and arc discharge polymerizations of pyrrole doped with iodine to correlate the energy of synthesis, chemical structure, and electrical conductivity of the polymers. Plasma glow discharges were used in the gas phase, electrochemistry in liquid, and arc discharges in a hybrid gas–liquid combination. Polypyrroles had structure and conductivity that varied with the synthesis parameters; Echem produced polymers with high carbonization and without the C≡N triple bonds resulting from the other syntheses. Conductivity divided the polymers in two: those synthesized in liquid were in the 0.01–1.0 S/m range, and those synthesized in gas were in the 10<sup>–9</sup>–10<sup>–7 </sup>S/m range, with differences of up to eight orders of magnitude due to the dopants and electrolytes.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"14 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139926233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Yousaf, Tahir Iqbal, Muhammad Salim Mansha, Adnan Saeed, Muhammad Abrar, Sumera Afsheen, Irfan Ahmed, Abeer A. AlObaid, Basheer M. Al-Maswari, Muhammad Yasir
In this study, we address challenges in the biocompatibility of nickel-based (NiCr) alloys, prevalent in the dental industry, due to toxic metal ion release impacting corrosion resistance and cytotoxicity. Employing magnetron sputtering and cathodic cage plasma nitriding (CCPN), a duplex plasma treatment (DPT) is introduced to the NiCr alloy. The novel approach enhances surface morphology, notably reducing ion leakage compared with untreated samples. Specifically, the CCPN-TiN-treated sample significantly improves corrosion resistance and minimizes metal ion leakage. This transformative DPT emerges as a promising solution for surface modification, particularly mitigating toxic ion leaching in aggressive electrolytes. This research demonstrates a major stride in enhancing NiCr alloy biocompatibility, emphasizing the vital role of innovative surface modification techniques for biomedical applications and challenges.
{"title":"Improved corrosion resistance and cytotoxicity of nickel-based alloy using novel plasma processing technique","authors":"Muhammad Yousaf, Tahir Iqbal, Muhammad Salim Mansha, Adnan Saeed, Muhammad Abrar, Sumera Afsheen, Irfan Ahmed, Abeer A. AlObaid, Basheer M. Al-Maswari, Muhammad Yasir","doi":"10.1002/ppap.202300151","DOIUrl":"https://doi.org/10.1002/ppap.202300151","url":null,"abstract":"In this study, we address challenges in the biocompatibility of nickel-based (NiCr) alloys, prevalent in the dental industry, due to toxic metal ion release impacting corrosion resistance and cytotoxicity. Employing magnetron sputtering and cathodic cage plasma nitriding (CCPN), a duplex plasma treatment (DPT) is introduced to the NiCr alloy. The novel approach enhances surface morphology, notably reducing ion leakage compared with untreated samples. Specifically, the CCPN-TiN-treated sample significantly improves corrosion resistance and minimizes metal ion leakage. This transformative DPT emerges as a promising solution for surface modification, particularly mitigating toxic ion leaching in aggressive electrolytes. This research demonstrates a major stride in enhancing NiCr alloy biocompatibility, emphasizing the vital role of innovative surface modification techniques for biomedical applications and challenges.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"5 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139926234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silviu Daniel Stoica, Cristina Craciun, Tomy Acsente, Bogdana Mitu, Gheorghe Dinescu
We performed an investigation of tungsten ionic species presence in hydrogen plasmas in contact with a tungsten surface, both in the presence of air impurities and when injected with argon. The study was carried out in a magnetron sputtering system complemented with mass spectrometry diagnostics. Our findings reveal that these plasmas encompass a diverse range of tungsten molecular ionic species in the mass range of 180–250 amu, broadly described as WHxNyOz+ (x = 0–3; y = 0–2; z = 0–3). The validity of these results was further confirmed through dedicated mass spectrometry investigations involving tungsten sputtering discharges in argon–nitrogen and argon–oxygen mixtures.
{"title":"Evidence for molecular tungsten ionic species presence in impurity-seeded hydrogen plasma in contact with W surfaces","authors":"Silviu Daniel Stoica, Cristina Craciun, Tomy Acsente, Bogdana Mitu, Gheorghe Dinescu","doi":"10.1002/ppap.202300227","DOIUrl":"https://doi.org/10.1002/ppap.202300227","url":null,"abstract":"We performed an investigation of tungsten ionic species presence in hydrogen plasmas in contact with a tungsten surface, both in the presence of air impurities and when injected with argon. The study was carried out in a magnetron sputtering system complemented with mass spectrometry diagnostics. Our findings reveal that these plasmas encompass a diverse range of tungsten molecular ionic species in the mass range of 180–250 amu, broadly described as WH<sub><i>x</i></sub>N<sub><i>y</i></sub>O<sub><i>z</i></sub><sup>+</sup> (<i>x</i> = 0–3; <i>y</i> = 0–2; <i>z</i> = 0–3). The validity of these results was further confirmed through dedicated mass spectrometry investigations involving tungsten sputtering discharges in argon–nitrogen and argon–oxygen mixtures.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"17 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139760290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Pan, Bin Li, Liguang Dou, Yuan Gao, Pengchen He, Tao Shao
Outside Front Cover: Plasma catalysis is a crucial and promising approach in greenhouse gas conversion. We investigate the synergistic interaction between plasma and Co-based catalysts in the CO2 hydrogenation to CH3OH system. The research reveals that plasma treatment increases the concentration of surface oxygen vacancies in the H2/Ar-CoO catalyst, facilitating the adsorption and transformation of oxygen-containing groups. Moreover, the addition of H2O also cooperates with the catalyst to achieve the maximum CH3OH yield.
封面外页:等离子体催化是温室气体转化中一种关键且前景广阔的方法。我们研究了等离子体与 Co 基催化剂在 CO2 加氢制 CH3OH 系统中的协同作用。研究发现,等离子体处理增加了 H2/Ar-CoO 催化剂表面氧空位的浓度,促进了含氧基团的吸附和转化。此外,H2O 的加入也与催化剂协同作用,实现了 CH3OH 产率的最大化。
{"title":"Outside Front Cover: Plasma Process. Polym. 2/2024","authors":"Jie Pan, Bin Li, Liguang Dou, Yuan Gao, Pengchen He, Tao Shao","doi":"10.1002/ppap.202370029","DOIUrl":"https://doi.org/10.1002/ppap.202370029","url":null,"abstract":"<b>Outside Front Cover</b>: Plasma catalysis is a crucial and promising approach in greenhouse gas conversion. We investigate the synergistic interaction between plasma and Co-based catalysts in the CO<sub>2</sub> hydrogenation to CH<sub>3</sub>OH system. The research reveals that plasma treatment increases the concentration of surface oxygen vacancies in the H<sub>2</sub>/Ar-CoO catalyst, facilitating the adsorption and transformation of oxygen-containing groups. Moreover, the addition of H<sub>2</sub>O also cooperates with the catalyst to achieve the maximum CH<sub>3</sub>OH yield.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"74 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139760287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yong Wang, Alexander J. Robson, Stephane Simon, Robert D. Short, James W. Bradley
Nitric oxide (NO)-releasing coatings have promising potential for biomedical applications notably in implant safety and wound dressing by promoting healing and reducing bacterial growth. Yet, the production of NO-films remains difficult through classic approaches. In this study, plasma polymerized NO-coatings are produced using a helium-isopentyl nitrite mixture under two power settings and deposited on aluminum samples. Analyses of the plasma phase by mass spectroscopy reveal the presence of nitrosoxy groups (O–N═O) in monomer and quasi-monomer at low power, and a higher fragmentation rate at high power. Static and no-static samples are made and analyzed by X-ray photoelectron spectroscopy showing the presence of these group for both power conditions, with a better retention on the sample's center for the latest.
一氧化氮(NO)释放涂层在生物医学应用中具有广阔的前景,尤其是在植入物安全和伤口敷料方面,可促进愈合并减少细菌生长。然而,传统方法仍然难以生产出一氧化氮薄膜。在本研究中,使用氦气-亚硝酸异戊酯混合物在两种功率设置下生产出等离子聚合氮氧化物涂层,并沉积在铝样品上。通过质谱对等离子相进行分析,发现低功率时单体和准单体中存在亚硝基(O-N═O),而高功率时碎片率较高。制作了静态和非静态样品,并通过 X 射线光电子能谱进行分析,结果表明这两种功率条件下都存在这些基团,而最新功率条件下这些基团在样品中心的保留更好。
{"title":"Plasma polymerization of isopentyl nitrite at atmospheric pressure: Gas phase analysis and surface chemistry","authors":"Yong Wang, Alexander J. Robson, Stephane Simon, Robert D. Short, James W. Bradley","doi":"10.1002/ppap.202300162","DOIUrl":"https://doi.org/10.1002/ppap.202300162","url":null,"abstract":"Nitric oxide (NO)-releasing coatings have promising potential for biomedical applications notably in implant safety and wound dressing by promoting healing and reducing bacterial growth. Yet, the production of NO-films remains difficult through classic approaches. In this study, plasma polymerized NO-coatings are produced using a helium-isopentyl nitrite mixture under two power settings and deposited on aluminum samples. Analyses of the plasma phase by mass spectroscopy reveal the presence of nitrosoxy groups (O–N═O) in monomer and quasi-monomer at low power, and a higher fragmentation rate at high power. Static and no-static samples are made and analyzed by X-ray photoelectron spectroscopy showing the presence of these group for both power conditions, with a better retention on the sample's center for the latest.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"1 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139647669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Chen, Dingxin Liu, Zifeng Wang, Jishen Zhang, Jiao Lin, Pengyu Zhao, Tianhui Li, Hao Zhang, Li Guo, Mingzhe Rong
Cold-chain transport is a crucial cross-regional transmission pathway for severe acute respiratory syndrome coronavirus 2 and other microorganisms. In this study, the mode-combination method is adopted for sterilization in a 1.138 m3 freezer by mixing effluent gases of NOx and O3 mode air discharges. The mixed gas can effectively inactivate Staphylococcus aureus in 10 mm ice within 3 h, which significantly surpasses O3 gas. Moreover, the inactivation effect of the mixed gas can penetrate deep into ice, contrasting with the surface effect of O3 gas. This disparity is linked to the difference in penetration depth of strong oxidizing long-lived reactive species. This study validates the sterilization efficacy of cold atmospheric plasma in practical cold-chain environment, critical for curbing infectious disease transmission.
{"title":"Sterilization effect and mechanism exploration of a mode-combination method on Staphylococcus aureus in thick ice layers in a large sealed freezer","authors":"Min Chen, Dingxin Liu, Zifeng Wang, Jishen Zhang, Jiao Lin, Pengyu Zhao, Tianhui Li, Hao Zhang, Li Guo, Mingzhe Rong","doi":"10.1002/ppap.202300221","DOIUrl":"https://doi.org/10.1002/ppap.202300221","url":null,"abstract":"Cold-chain transport is a crucial cross-regional transmission pathway for severe acute respiratory syndrome coronavirus 2 and other microorganisms. In this study, the mode-combination method is adopted for sterilization in a 1.138 m<sup>3</sup> freezer by mixing effluent gases of NO<sub><i>x</i></sub> and O<sub>3</sub> mode air discharges. The mixed gas can effectively inactivate <i>Staphylococcus aureus</i> in 10 mm ice within 3 h, which significantly surpasses O<sub>3</sub> gas. Moreover, the inactivation effect of the mixed gas can penetrate deep into ice, contrasting with the surface effect of O<sub>3</sub> gas. This disparity is linked to the difference in penetration depth of strong oxidizing long-lived reactive species. This study validates the sterilization efficacy of cold atmospheric plasma in practical cold-chain environment, critical for curbing infectious disease transmission.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"39 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139554155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Injection of precursor molecules into a plasma often results in particle generation or deposition in the source, compromising film quality and plasma operation. We present here a study of ion chemistry and ionic film deposition from hexamethyldisilane (HMDS) using a novel device utilizing vacuum ultraviolet (VUV)-radiation from a remote atmospheric plasma. Infrared spectroscopy showed that -like films were obtained at the lowest admixture, where impurities are more important and VUV-photons reach the substrate, while only slightly oxidized films were deposited at high admixtures. Photoionization mainly forms the monomer ion due to collisional stabilization and possibly slow polymerization reactions as found by ion mass spectrometry. The more detailed photochemistry of HMDS-related ions is discussed based on mass spectra for different admixtures.
{"title":"Ion chemistry and ionic thin film deposition from HMDS-photochemistry induced by VUV-radiation from an atmospheric plasma","authors":"Tristan Winzer, Jan Benedikt","doi":"10.1002/ppap.202300226","DOIUrl":"https://doi.org/10.1002/ppap.202300226","url":null,"abstract":"Injection of precursor molecules into a plasma often results in particle generation or deposition in the source, compromising film quality and plasma operation. We present here a study of ion chemistry and ionic film deposition from hexamethyldisilane (HMDS) using a novel device utilizing vacuum ultraviolet (VUV)-radiation from a remote atmospheric plasma. Infrared spectroscopy showed that <mjx-container aria-label=\"SiO Subscript 2\" ctxtmenu_counter=\"0\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/ppap202300226-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"SiO Subscript 2\" data-semantic-type=\"subscript\"><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"text\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:16128850:media:ppap202300226:ppap202300226-math-0001\" location=\"graphic/ppap202300226-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"unknown\" data-semantic-speech=\"SiO Subscript 2\" data-semantic-type=\"subscript\"><mtext data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"text\">SiO</mtext><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msub></mrow>${text{SiO}}_{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>-like films were obtained at the lowest admixture, where impurities are more important and VUV-photons reach the substrate, while only slightly oxidized films were deposited at high admixtures. Photoionization mainly forms the monomer ion due to collisional stabilization and possibly slow polymerization reactions as found by ion mass spectrometry. The more detailed photochemistry of HMDS-related ions is discussed based on mass spectra for different admixtures.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"58 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139553926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexey N. Ryabinkin, Alexey S. Vishnevskiy, Sergej Naumov, Alexander O. Serov, Konstantin I. Maslakov, Dmitry S. Seregin, Dmitry A. Vorotyntsev, Alexander F. Pal, Tatyana V. Rakhimova, Konstantin A. Vorotilov, Mikhail R. Baklanov
The effect of vacuum ultraviolet (VUV) radiation during ionized physical vapor deposition (IPVD) of tantalum barriers on various porous organosilicate glass low-k SiCOH films is studied using advanced diagnostics and quantum chemical calculations. VUV photons break the Si–C bonds, releasing hydrocarbon radicals from the pore surfaces. These radicals, trapped in pores that are partially sealed by tantalum deposition, can either react with tantalum to form carbide-like compounds, TaCx, or be redeposited in the pores as CHx polymers. This is evidenced by a decrease in CH3 groups that correlates with an increase in TaCx. The formation of TaCx poses a significant challenge in the back end of line (BEOL) technology when reducing the barrier thickness.
{"title":"Challenges in scaling of IPVD deposited Ta barriers on OSG low-k films: Carbonization of Ta by CHx radicals generated through VUV-induced decomposition of carbon-containing groups","authors":"Alexey N. Ryabinkin, Alexey S. Vishnevskiy, Sergej Naumov, Alexander O. Serov, Konstantin I. Maslakov, Dmitry S. Seregin, Dmitry A. Vorotyntsev, Alexander F. Pal, Tatyana V. Rakhimova, Konstantin A. Vorotilov, Mikhail R. Baklanov","doi":"10.1002/ppap.202300206","DOIUrl":"https://doi.org/10.1002/ppap.202300206","url":null,"abstract":"The effect of vacuum ultraviolet (VUV) radiation during ionized physical vapor deposition (IPVD) of tantalum barriers on various porous organosilicate glass low-<i>k</i> SiCOH films is studied using advanced diagnostics and quantum chemical calculations. VUV photons break the Si–C bonds, releasing hydrocarbon radicals from the pore surfaces. These radicals, trapped in pores that are partially sealed by tantalum deposition, can either react with tantalum to form carbide-like compounds, TaC<sub><i>x</i></sub>, or be redeposited in the pores as CH<sub><i>x</i></sub> polymers. This is evidenced by a decrease in CH<sub>3</sub> groups that correlates with an increase in TaC<sub><i>x</i></sub>. The formation of TaC<sub><i>x</i></sub> poses a significant challenge in the back end of line (BEOL) technology when reducing the barrier thickness.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"15 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study conducted an activation experiment on tap water using a self-designed dielectric barrier discharge plasma field. Aged pepper seeds and seedlings were chosen as the investigation's subjects to assess plasma-activated water (PAW's) effects on aged seed germination, seedling growth, and their respective qualities. PAW cultivation led to notable improvements in pepper seeds' germination potential and rate, with increases of 18.0% and 28.3%, respectively. Moreover, the vitality index exhibited a remarkable rise of 250.0%. Concurrently, seedlings treated with PAW exhibited significant growth enhancements, with root length, root number, stem length, and leaf area increasing by 138.6%, 69.2%, 47.9%, and 28.4 cm², respectively. Additionally, PAW treatment induces changes in endogenous substances and enzyme activities in seeds and seedlings.
{"title":"Plasma activated-water stimulates aged pepper seeds and promotes seedling growth","authors":"Dingmeng Guo, Hongxia Liu, Xiaoning Zhang, Chenlu Xiong","doi":"10.1002/ppap.202300173","DOIUrl":"https://doi.org/10.1002/ppap.202300173","url":null,"abstract":"This study conducted an activation experiment on tap water using a self-designed dielectric barrier discharge plasma field. Aged pepper seeds and seedlings were chosen as the investigation's subjects to assess plasma-activated water (PAW's) effects on aged seed germination, seedling growth, and their respective qualities. PAW cultivation led to notable improvements in pepper seeds' germination potential and rate, with increases of 18.0% and 28.3%, respectively. Moreover, the vitality index exhibited a remarkable rise of 250.0%. Concurrently, seedlings treated with PAW exhibited significant growth enhancements, with root length, root number, stem length, and leaf area increasing by 138.6%, 69.2%, 47.9%, and 28.4 cm², respectively. Additionally, PAW treatment induces changes in endogenous substances and enzyme activities in seeds and seedlings.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"7 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139553879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yinan Chen, Xiaolong Qiao, Changqing Liu, Jin Zhang, Tao Sun, Ling Kong, Xinru Zhang, Wencheng Song, Chuandong Cheng, Guohua Ni
In this work, the effects of cold atmospheric-pressure plasma (CAP) on glioblastoma are evaluated comprehensively. After CAP treatment, U251 cell viability, migration, and invasion functions were inhibited, while an appropriate dose of CAP had no inhibitory effect on human brain glial cell line cells. Western blots indicated that expression of caspase-3 was upregulated with ki-67 expression downregulated. Moreover, mitochondrial membrane potential decreased, and energy metabolisms of U251 cells were influenced afterward. TUNEL assays and comet assays suggested the DNA damage of U251 cells after CAP treatment. Furthermore, as one of the DNA damage responses associated pathways, the AKT (AKT8 virus oncogene cellular homolog) signaling pathway was also indicated in the work. The findings raise great promise for clinical applications of CAP in glioblastoma treatments.
本研究全面评估了冷大气压等离子体(CAP)对胶质母细胞瘤的影响。经 CAP 处理后,U251 细胞的活力、迁移和侵袭功能均受到抑制,而适当剂量的 CAP 对人脑神经胶质细胞系细胞无抑制作用。Western 印迹显示,Caspase-3 的表达上调,ki-67 的表达下调。此外,线粒体膜电位降低,U251 细胞的能量代谢受到影响。TUNEL 试验和彗星试验表明,CAP 处理后 U251 细胞的 DNA 受到损伤。此外,作为DNA损伤反应的相关途径之一,AKT(AKT8病毒癌基因细胞同源物)信号通路也在研究中得到了证实。这些发现为 CAP 在胶质母细胞瘤治疗中的临床应用带来了巨大希望。
{"title":"Cold atmospheric-pressure plasma selectively inhibits glioblastoma via DNA damage and AKT dephosphorylation in vitro and in vivo","authors":"Yinan Chen, Xiaolong Qiao, Changqing Liu, Jin Zhang, Tao Sun, Ling Kong, Xinru Zhang, Wencheng Song, Chuandong Cheng, Guohua Ni","doi":"10.1002/ppap.202300210","DOIUrl":"https://doi.org/10.1002/ppap.202300210","url":null,"abstract":"In this work, the effects of cold atmospheric-pressure plasma (CAP) on glioblastoma are evaluated comprehensively. After CAP treatment, U251 cell viability, migration, and invasion functions were inhibited, while an appropriate dose of CAP had no inhibitory effect on human brain glial cell line cells. Western blots indicated that expression of caspase-3 was upregulated with ki-67 expression downregulated. Moreover, mitochondrial membrane potential decreased, and energy metabolisms of U251 cells were influenced afterward. TUNEL assays and comet assays suggested the DNA damage of U251 cells after CAP treatment. Furthermore, as one of the DNA damage responses associated pathways, the AKT (AKT8 virus oncogene cellular homolog) signaling pathway was also indicated in the work. The findings raise great promise for clinical applications of CAP in glioblastoma treatments.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"9 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139501419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}