首页 > 最新文献

Reviews of Geophysics最新文献

英文 中文
Synthetic Aperture Radar for Geosciences 用于地球科学的合成孔径雷达
IF 37.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-03 DOI: 10.1029/2023RG000821
Lingsheng Meng, Chi Yan, Suna Lv, Haiyang Sun, Sihan Xue, Quankun Li, Lingfeng Zhou, Deanna Edwing, Kelsea Edwing, Xupu Geng, Yiren Wang, Xiao-Hai Yan

Synthetic Aperture Radar (SAR) has emerged as a pivotal technology in geosciences, offering unparalleled insights into Earth's surface. Indeed, its ability to provide high-resolution, all-weather, and day-night imaging has revolutionized our understanding of various geophysical processes. Recent advancements in SAR technology, that is, developing new satellite missions, enhancing signal processing techniques, and integrating machine learning algorithms, have significantly broadened the scope and depth of geosciences. Therefore, it is essential to summarize SAR's comprehensive applications for geosciences, especially emphasizing recent advancements in SAR technologies and applications. Moreover, current SAR-related review papers have primarily focused on SAR technology or SAR imaging and data processing techniques. Hence, a review that integrates SAR technology with geophysical features is needed to highlight the significance of SAR in addressing challenges in geosciences, as well as to explore SAR's potential in solving complex geoscience problems. Spurred by these requirements, this review comprehensively and in-depth reviews SAR applications for geosciences, broadly including various aspects in air-sea dynamics, oceanography, geography, disaster and hazard monitoring, climate change, and geosciences data fusion. For each applied field, the scientific advancements produced because of SAR are demonstrated by combining the SAR techniques with characteristics of geophysical phenomena and processes. Further outlooks are also explored, such as integrating SAR data with other geophysical data and conducting interdisciplinary research to offer comprehensive insights into geosciences. With the support of deep learning, this synergy will enhance the capability to model, simulate, and forecast geophysical phenomena with greater accuracy and reliability.

合成孔径雷达(SAR)已成为地球科学领域的一项关键技术,可提供对地球表面无与伦比的洞察力。事实上,合成孔径雷达提供高分辨率、全天候和昼夜成像的能力彻底改变了我们对各种地球物理过程的认识。合成孔径雷达技术的最新进展,即开发新的卫星任务、增强信号处理技术和整合机器学习算法,大大拓宽了地球科学的广度和深度。因此,有必要总结合成孔径雷达在地球科学领域的综合应用,特别是强调合成孔径雷达技术和应用的最新进展。此外,目前与合成孔径雷达相关的综述论文主要侧重于合成孔径雷达技术或合成孔径雷达成像和数据处理技术。因此,需要一篇将合成孔径雷达技术与地球物理特征相结合的综述,以突出合成孔径雷达在应对地球科学挑战方面的重要意义,并探索合成孔径雷达在解决复杂地球科学问题方面的潜力。在这些要求的推动下,本综述全面深入地回顾了合成孔径雷达在地球科学领域的应用,广泛包括海气动力学、海洋学、地理学、灾害和危险监测、气候变化以及地球科学数据融合等各个方面。在每个应用领域,通过将合成孔径雷达技术与地球物理现象和过程的特征相结合,展示了合成孔径雷达带来的科学进步。此外,还探讨了进一步的展望,例如将合成孔径雷达数据与其他地球物理数据进行整合,以及开展跨学科研究以提供对地球科学的全面见解。在深度学习的支持下,这种协同作用将增强对地球物理现象进行建模、模拟和预测的能力,并提高其准确性和可靠性。
{"title":"Synthetic Aperture Radar for Geosciences","authors":"Lingsheng Meng,&nbsp;Chi Yan,&nbsp;Suna Lv,&nbsp;Haiyang Sun,&nbsp;Sihan Xue,&nbsp;Quankun Li,&nbsp;Lingfeng Zhou,&nbsp;Deanna Edwing,&nbsp;Kelsea Edwing,&nbsp;Xupu Geng,&nbsp;Yiren Wang,&nbsp;Xiao-Hai Yan","doi":"10.1029/2023RG000821","DOIUrl":"10.1029/2023RG000821","url":null,"abstract":"<p>Synthetic Aperture Radar (SAR) has emerged as a pivotal technology in geosciences, offering unparalleled insights into Earth's surface. Indeed, its ability to provide high-resolution, all-weather, and day-night imaging has revolutionized our understanding of various geophysical processes. Recent advancements in SAR technology, that is, developing new satellite missions, enhancing signal processing techniques, and integrating machine learning algorithms, have significantly broadened the scope and depth of geosciences. Therefore, it is essential to summarize SAR's comprehensive applications for geosciences, especially emphasizing recent advancements in SAR technologies and applications. Moreover, current SAR-related review papers have primarily focused on SAR technology or SAR imaging and data processing techniques. Hence, a review that integrates SAR technology with geophysical features is needed to highlight the significance of SAR in addressing challenges in geosciences, as well as to explore SAR's potential in solving complex geoscience problems. Spurred by these requirements, this review comprehensively and in-depth reviews SAR applications for geosciences, broadly including various aspects in air-sea dynamics, oceanography, geography, disaster and hazard monitoring, climate change, and geosciences data fusion. For each applied field, the scientific advancements produced because of SAR are demonstrated by combining the SAR techniques with characteristics of geophysical phenomena and processes. Further outlooks are also explored, such as integrating SAR data with other geophysical data and conducting interdisciplinary research to offer comprehensive insights into geosciences. With the support of deep learning, this synergy will enhance the capability to model, simulate, and forecast geophysical phenomena with greater accuracy and reliability.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"62 3","pages":""},"PeriodicalIF":37.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing, Testing, and Communicating Earthquake Forecasts: Current Practices and Future Directions 开发、测试和传播地震预报:当前实践与未来方向
IF 37.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-13 DOI: 10.1029/2023RG000823
Leila Mizrahi, Irina Dallo, Nicholas J. van der Elst, Annemarie Christophersen, Ilaria Spassiani, Maximilian J. Werner, Pablo Iturrieta, José A. Bayona, Iunio Iervolino, Max Schneider, Morgan T. Page, Jiancang Zhuang, Marcus Herrmann, Andrew J. Michael, Giuseppe Falcone, Warner Marzocchi, David Rhoades, Matt Gerstenberger, Laura Gulia, Danijel Schorlemmer, Julia Becker, Marta Han, Lorena Kuratle, Michèle Marti, Stefan Wiemer

While deterministically predicting the time and location of earthquakes remains impossible, earthquake forecasting models can provide estimates of the probabilities of earthquakes occurring within some region over time. To enable informed decision-making of civil protection, governmental agencies, or the public, Operational Earthquake Forecasting (OEF) systems aim to provide authoritative earthquake forecasts based on current earthquake activity in near-real time. Establishing OEF systems involves several nontrivial choices. This review captures the current state of OEF worldwide and analyzes expert recommendations on the development, testing, and communication of earthquake forecasts. An introductory summary of OEF-related research is followed by a description of OEF systems in Italy, New Zealand, and the United States. Combined, these two parts provide an informative and transparent snapshot of today's OEF landscape. In Section 4, we analyze the results of an expert elicitation that was conducted to seek guidance for the establishment of OEF systems. The elicitation identifies consensus and dissent on OEF issues among a non-representative group of 20 international earthquake forecasting experts. While the experts agree that communication products should be developed in collaboration with the forecast user groups, they disagree on whether forecasting models and testing methods should be user-dependent. No recommendations of strict model requirements could be elicited, but benchmark comparisons, prospective testing, reproducibility, and transparency are encouraged. Section 5 gives an outlook on the future of OEF. Besides covering recent research on earthquake forecasting model development and testing, upcoming OEF initiatives are described in the context of the expert elicitation findings.

虽然要确定性地预测地震发生的时间和地点仍然是不可能的,但地震预报模型可以提供一段时间内某些地区发生地震的概率估计。为了使民防、政府机构或公众能够做出明智的决策,地震业务预报(OEF)系统旨在根据当前的地震活动,近乎实时地提供权威的地震预报。建立 OEF 系统涉及到几个非同小可的选择。本综述介绍了全球 OEF 的现状,并分析了专家对地震预报的开发、测试和传播提出的建议。在对 OEF 相关研究进行介绍性总结之后,将对意大利、新西兰和美国的 OEF 系统进行描述。这两部分结合在一起,为当今的 OEF 状况提供了一个信息丰富且透明的缩影。在第 4 部分,我们分析了专家征询的结果,专家征询的目的是为建立 OEF 系统寻求指导。这次专家征询在由 20 位国际地震预报专家组成的非代表性小组中就 OEF 问题达成了共识和分歧。专家们一致认为,应与预报用户群体合作开发通信产品,但在预报模型和测试方法是否应取决于用户的问题上存在分歧。没有提出严格的模型要求建议,但鼓励进行基准比较、前瞻性测试、可重复性和透明度。第 5 节对 OEF 的未来进行了展望。除了介绍地震预报模型开发和测试方面的最新研究外,还结合专家征询的结果介绍了即将开展的 OEF 计划。
{"title":"Developing, Testing, and Communicating Earthquake Forecasts: Current Practices and Future Directions","authors":"Leila Mizrahi,&nbsp;Irina Dallo,&nbsp;Nicholas J. van der Elst,&nbsp;Annemarie Christophersen,&nbsp;Ilaria Spassiani,&nbsp;Maximilian J. Werner,&nbsp;Pablo Iturrieta,&nbsp;José A. Bayona,&nbsp;Iunio Iervolino,&nbsp;Max Schneider,&nbsp;Morgan T. Page,&nbsp;Jiancang Zhuang,&nbsp;Marcus Herrmann,&nbsp;Andrew J. Michael,&nbsp;Giuseppe Falcone,&nbsp;Warner Marzocchi,&nbsp;David Rhoades,&nbsp;Matt Gerstenberger,&nbsp;Laura Gulia,&nbsp;Danijel Schorlemmer,&nbsp;Julia Becker,&nbsp;Marta Han,&nbsp;Lorena Kuratle,&nbsp;Michèle Marti,&nbsp;Stefan Wiemer","doi":"10.1029/2023RG000823","DOIUrl":"10.1029/2023RG000823","url":null,"abstract":"<p>While deterministically predicting the time and location of earthquakes remains impossible, earthquake forecasting models can provide estimates of the probabilities of earthquakes occurring within some region over time. To enable informed decision-making of civil protection, governmental agencies, or the public, Operational Earthquake Forecasting (OEF) systems aim to provide authoritative earthquake forecasts based on current earthquake activity in near-real time. Establishing OEF systems involves several nontrivial choices. This review captures the current state of OEF worldwide and analyzes expert recommendations on the development, testing, and communication of earthquake forecasts. An introductory summary of OEF-related research is followed by a description of OEF systems in Italy, New Zealand, and the United States. Combined, these two parts provide an informative and transparent snapshot of today's OEF landscape. In Section 4, we analyze the results of an expert elicitation that was conducted to seek guidance for the establishment of OEF systems. The elicitation identifies consensus and dissent on OEF issues among a non-representative group of 20 international earthquake forecasting experts. While the experts agree that communication products should be developed in collaboration with the forecast user groups, they disagree on whether forecasting models and testing methods should be user-dependent. No recommendations of strict model requirements could be elicited, but benchmark comparisons, prospective testing, reproducibility, and transparency are encouraged. Section 5 gives an outlook on the future of OEF. Besides covering recent research on earthquake forecasting model development and testing, upcoming OEF initiatives are described in the context of the expert elicitation findings.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"62 3","pages":""},"PeriodicalIF":37.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000823","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closing the Loops on Southern Ocean Dynamics: From the Circumpolar Current to Ice Shelves and From Bottom Mixing to Surface Waves 南大洋动力学的闭环:从环极洋流到冰架,从海底混合到表面波
IF 37.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-30 DOI: 10.1029/2022RG000781
Luke G. Bennetts, Callum J. Shakespeare, Catherine A. Vreugdenhil, Annie Foppert, Bishakhdatta Gayen, Amelie Meyer, Adele K. Morrison, Laurie Padman, Helen E. Phillips, Craig L. Stevens, Alessandro Toffoli, Navid C. Constantinou, Jesse M. Cusack, Ajitha Cyriac, Edward W. Doddridge, Matthew H. England, D. Gwyn Evans, Petra Heil, Andrew McC. Hogg, Ryan M. Holmes, Wilma G. C. Huneke, Nicole L. Jones, Shane R. Keating, Andrew E. Kiss, Noa Kraitzman, Alena Malyarenko, Craig D. McConnochie, Alberto Meucci, Fabien Montiel, Julia Neme, Maxim Nikurashin, Ramkrushnbhai S. Patel, Jen-Ping Peng, Matthew Rayson, Madelaine G. Rosevear, Taimoor Sohail, Paul Spence, Geoffrey J. Stanley

A holistic review is given of the Southern Ocean dynamic system, in the context of the crucial role it plays in the global climate and the profound changes it is experiencing. The review focuses on connections between different components of the Southern Ocean dynamic system, drawing together contemporary perspectives from different research communities, with the objective of closing loops in our understanding of the complex network of feedbacks in the overall system. The review is targeted at researchers in Southern Ocean physical science with the ambition of broadening their knowledge beyond their specific field, and aims at facilitating better-informed interdisciplinary collaborations. For the purposes of this review, the Southern Ocean dynamic system is divided into four main components: large-scale circulation; cryosphere; turbulence; and gravity waves. Overviews are given of the key dynamical phenomena for each component, before describing the linkages between the components. The reviews are complemented by an overview of observed Southern Ocean trends and future climate projections. Priority research areas are identified to close remaining loops in our understanding of the Southern Ocean system.

本文结合南大洋动力系统在全球气候中发挥的关键作用及其正在经历的深刻变化,对南大洋动力系统进行了全面评述。综述的重点是南大洋动力系统不同组成部分之间的联系,汇集了不同研究界的当代观点,目的是在我们对整个系统复杂的反馈网络的理解上形成闭环。本综述以南大洋物理科学研究人员为对象,旨在拓宽他们的知识面,使其超越各自的特定领域,并促进在更知情的情况下开展跨学科合作。本综述将南大洋动力系统分为四个主要部分:大尺度环流、冰冻圈、湍流和重力波。在介绍各组成部分之间的联系之前,概述了每个组成部分的主要动态现象。此外,还概述了观测到的南大洋趋势和未来气候预测。确定了优先研究领域,以弥补我们在了解南大洋系统方面仍然存在的漏洞。
{"title":"Closing the Loops on Southern Ocean Dynamics: From the Circumpolar Current to Ice Shelves and From Bottom Mixing to Surface Waves","authors":"Luke G. Bennetts,&nbsp;Callum J. Shakespeare,&nbsp;Catherine A. Vreugdenhil,&nbsp;Annie Foppert,&nbsp;Bishakhdatta Gayen,&nbsp;Amelie Meyer,&nbsp;Adele K. Morrison,&nbsp;Laurie Padman,&nbsp;Helen E. Phillips,&nbsp;Craig L. Stevens,&nbsp;Alessandro Toffoli,&nbsp;Navid C. Constantinou,&nbsp;Jesse M. Cusack,&nbsp;Ajitha Cyriac,&nbsp;Edward W. Doddridge,&nbsp;Matthew H. England,&nbsp;D. Gwyn Evans,&nbsp;Petra Heil,&nbsp;Andrew McC. Hogg,&nbsp;Ryan M. Holmes,&nbsp;Wilma G. C. Huneke,&nbsp;Nicole L. Jones,&nbsp;Shane R. Keating,&nbsp;Andrew E. Kiss,&nbsp;Noa Kraitzman,&nbsp;Alena Malyarenko,&nbsp;Craig D. McConnochie,&nbsp;Alberto Meucci,&nbsp;Fabien Montiel,&nbsp;Julia Neme,&nbsp;Maxim Nikurashin,&nbsp;Ramkrushnbhai S. Patel,&nbsp;Jen-Ping Peng,&nbsp;Matthew Rayson,&nbsp;Madelaine G. Rosevear,&nbsp;Taimoor Sohail,&nbsp;Paul Spence,&nbsp;Geoffrey J. Stanley","doi":"10.1029/2022RG000781","DOIUrl":"10.1029/2022RG000781","url":null,"abstract":"<p>A holistic review is given of the Southern Ocean dynamic system, in the context of the crucial role it plays in the global climate and the profound changes it is experiencing. The review focuses on connections between different components of the Southern Ocean dynamic system, drawing together contemporary perspectives from different research communities, with the objective of closing loops in our understanding of the complex network of feedbacks in the overall system. The review is targeted at researchers in Southern Ocean physical science with the ambition of broadening their knowledge beyond their specific field, and aims at facilitating better-informed interdisciplinary collaborations. For the purposes of this review, the Southern Ocean dynamic system is divided into four main components: large-scale circulation; cryosphere; turbulence; and gravity waves. Overviews are given of the key dynamical phenomena for each component, before describing the linkages between the components. The reviews are complemented by an overview of observed Southern Ocean trends and future climate projections. Priority research areas are identified to close remaining loops in our understanding of the Southern Ocean system.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"62 3","pages":""},"PeriodicalIF":37.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000781","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141795047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil Moisture Memory: State-Of-The-Art and the Way Forward 土壤水分记忆:最新技术与前进方向
IF 37.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-05-22 DOI: 10.1029/2023RG000828
Mehdi Rahmati, Wulf Amelung, Cosimo Brogi, Jacopo Dari, Alessia Flammini, Heye Bogena, Luca Brocca, Hao Chen, Jannis Groh, Randal D. Koster, Kaighin A. McColl, Carsten Montzka, Shirin Moradi, Arash Rahi, Farnaz Sharghi S., Harry Vereecken

Soil moisture is an essential climate variable of the Earth system. Understanding its spatiotemporal dynamics is essential for predicting weather patterns and climate variability, monitoring and mitigating the effects and occurrence of droughts and floods, improving irrigation in agricultural areas, and sustainably managing water resources. Here we review in depth how soils can remember information on soil moisture anomalies over time, as embedded in the concept of soil moisture memory (SMM). We explain the mechanisms underlying SMM and explore its external and internal drivers; we also discuss the impacts of SMM on different land surface processes, focusing on soil-plant-atmosphere coupling. We explore the spatiotemporal variability, seasonality, locality, and depth-dependence of SMM and provide insights into both improving its characterization in land surface models and using satellite observations to quantify it. Finally, we offer guidance for further research on SMM.

土壤水分是地球系统的一个重要气候变量。了解土壤水分的时空动态对于预测天气模式和气候多变性、监测和减轻干旱和洪水的影响和发生、改善农业灌溉以及可持续地管理水资源至关重要。在此,我们深入探讨了土壤湿度记忆(SMM)概念所蕴含的土壤如何记忆土壤湿度异常的时间信息。我们解释了土壤水分记忆的基本机制,并探讨了其外部和内部驱动因素;我们还讨论了土壤水分记忆对不同地表过程的影响,重点是土壤-植物-大气耦合。我们探讨了 SMM 的时空变异性、季节性、地域性和深度依赖性,并就改进陆表模式的特征描述和利用卫星观测来量化 SMM 提出了见解。最后,我们为进一步研究 SMM 提供指导。
{"title":"Soil Moisture Memory: State-Of-The-Art and the Way Forward","authors":"Mehdi Rahmati,&nbsp;Wulf Amelung,&nbsp;Cosimo Brogi,&nbsp;Jacopo Dari,&nbsp;Alessia Flammini,&nbsp;Heye Bogena,&nbsp;Luca Brocca,&nbsp;Hao Chen,&nbsp;Jannis Groh,&nbsp;Randal D. Koster,&nbsp;Kaighin A. McColl,&nbsp;Carsten Montzka,&nbsp;Shirin Moradi,&nbsp;Arash Rahi,&nbsp;Farnaz Sharghi S.,&nbsp;Harry Vereecken","doi":"10.1029/2023RG000828","DOIUrl":"10.1029/2023RG000828","url":null,"abstract":"<p>Soil moisture is an essential climate variable of the Earth system. Understanding its spatiotemporal dynamics is essential for predicting weather patterns and climate variability, monitoring and mitigating the effects and occurrence of droughts and floods, improving irrigation in agricultural areas, and sustainably managing water resources. Here we review in depth how soils can remember information on soil moisture anomalies over time, as embedded in the concept of soil moisture memory (SMM). We explain the mechanisms underlying SMM and explore its external and internal drivers; we also discuss the impacts of SMM on different land surface processes, focusing on soil-plant-atmosphere coupling. We explore the spatiotemporal variability, seasonality, locality, and depth-dependence of SMM and provide insights into both improving its characterization in land surface models and using satellite observations to quantify it. Finally, we offer guidance for further research on SMM.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"62 2","pages":""},"PeriodicalIF":37.3,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000828","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141078925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Mapping Lowermost Mantle Convective Flow With Seismic Anisotropy Observations 利用地震各向异性观测绘制最下部地幔对流图的进展
IF 37.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-05-17 DOI: 10.1029/2023RG000833
Jonathan Wolf, Mingming Li, Maureen D. Long, Edward Garnero

Convective flow in the deep mantle controls Earth's dynamic evolution, influences plate tectonics, and has shaped Earth's current surface features. Present and past convection-induced deformation manifests itself in seismic anisotropy, which is particularly strong in the mantle's uppermost and lowermost portions. While the general patterns of seismic anisotropy have been mapped for the upper mantle, anisotropy in the lowermost mantle (called D′′) is at an earlier stage of exploration. Here we review recent progress in methods to measure and interpret D′′ anisotropy. Our understanding of the limitations of existing methods and the development of new measurement strategies have been aided enormously by the availability of high-performance computing resources. We give an overview of how measurements of seismic anisotropy can help constrain the mineralogy and fabric of the deep mantle. Specifically, new and creative strategies that combine multiple types of observations provide much tighter constraints on the geometry of anisotropy than have previously been possible. We also discuss how deep mantle seismic anisotropy provides insights into lowermost mantle dynamics. We summarize what we have learned so far from measurements of D′′ anisotropy, how inferences of lowermost mantle flow from measurements of seismic anisotropy relate to geodynamic models of mantle flow, and what challenges we face going forward. Finally, we discuss some of the important unsolved problems related to the dynamics of the lowermost mantle that can be elucidated in the future by combining observations of seismic anisotropy with geodynamic predictions of lowermost mantle flow.

地幔深处的对流控制着地球的动态演化,影响着板块构造,并塑造了地球目前的地表特征。目前和过去对流引起的形变表现为地震各向异性,在地幔的最上层和最下层尤为明显。虽然已经绘制了上地幔地震各向异性的一般模式图,但最下层地幔的各向异性(称为 D′′)还处于探索的早期阶段。在此,我们回顾了在测量和解释 D′′各向异性方法方面的最新进展。我们对现有方法局限性的理解和新测量策略的开发都得益于高性能计算资源的可用性。我们将概述地震各向异性测量如何帮助约束深地幔的矿物学和结构。具体来说,结合多种类型观测的新颖策略对各向异性的几何形状提供了比以往更为严格的约束。我们还讨论了深地幔地震各向异性如何深入了解最底层地幔动力学。我们总结了迄今为止我们从 D′′ 各向异性测量中了解到的情况,从地震各向异性测量中推断最底层地幔流动与地幔流动地球动力学模型之间的关系,以及我们未来面临的挑战。最后,我们讨论了与最下地幔动力学有关的一些尚未解决的重要问题,这些问题可以在未来通过将地震各向异性观测与最下地幔流动的地球动力学预测结合起来加以阐明。
{"title":"Advances in Mapping Lowermost Mantle Convective Flow With Seismic Anisotropy Observations","authors":"Jonathan Wolf,&nbsp;Mingming Li,&nbsp;Maureen D. Long,&nbsp;Edward Garnero","doi":"10.1029/2023RG000833","DOIUrl":"10.1029/2023RG000833","url":null,"abstract":"<p>Convective flow in the deep mantle controls Earth's dynamic evolution, influences plate tectonics, and has shaped Earth's current surface features. Present and past convection-induced deformation manifests itself in seismic anisotropy, which is particularly strong in the mantle's uppermost and lowermost portions. While the general patterns of seismic anisotropy have been mapped for the upper mantle, anisotropy in the lowermost mantle (called D′′) is at an earlier stage of exploration. Here we review recent progress in methods to measure and interpret D′′ anisotropy. Our understanding of the limitations of existing methods and the development of new measurement strategies have been aided enormously by the availability of high-performance computing resources. We give an overview of how measurements of seismic anisotropy can help constrain the mineralogy and fabric of the deep mantle. Specifically, new and creative strategies that combine multiple types of observations provide much tighter constraints on the geometry of anisotropy than have previously been possible. We also discuss how deep mantle seismic anisotropy provides insights into lowermost mantle dynamics. We summarize what we have learned so far from measurements of D′′ anisotropy, how inferences of lowermost mantle flow from measurements of seismic anisotropy relate to geodynamic models of mantle flow, and what challenges we face going forward. Finally, we discuss some of the important unsolved problems related to the dynamics of the lowermost mantle that can be elucidated in the future by combining observations of seismic anisotropy with geodynamic predictions of lowermost mantle flow.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"62 2","pages":""},"PeriodicalIF":37.3,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140954555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expressing Gratitude to Reviewers: A Message From the Editors of Reviews of Geophysics for 2023 向审稿人表示感谢:地球物理学评论》编辑 2023 年致辞
IF 37.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-04-24 DOI: 10.1029/2024RG000844
Qingyun Duan, Valerio Acocella, Ann Marie Carlton, Paolo D’Odorico, Fabio Florindo, Andrew Gettelman, Jasper Halakas, Ruth Harris, Gesine Mollenhauer, Alan Robock, Claudine Stirling, Yusuke Yokoyama

On behalf of the authors and readers of Reviews of Geophysics (RoG), the American Geophysical Union, and the broader scientific community, the editors wish to wholeheartedly thank those who reviewed manuscripts for RoG in 2023.

编者谨代表《地球物理学评论》(Reviews of Geophysics,RoG)的作者和读者、美国地球物理学联合会以及更广泛的科学界,衷心感谢 2023 年为《地球物理学评论》审稿的人员。
{"title":"Expressing Gratitude to Reviewers: A Message From the Editors of Reviews of Geophysics for 2023","authors":"Qingyun Duan,&nbsp;Valerio Acocella,&nbsp;Ann Marie Carlton,&nbsp;Paolo D’Odorico,&nbsp;Fabio Florindo,&nbsp;Andrew Gettelman,&nbsp;Jasper Halakas,&nbsp;Ruth Harris,&nbsp;Gesine Mollenhauer,&nbsp;Alan Robock,&nbsp;Claudine Stirling,&nbsp;Yusuke Yokoyama","doi":"10.1029/2024RG000844","DOIUrl":"10.1029/2024RG000844","url":null,"abstract":"<p>On behalf of the authors and readers of Reviews of Geophysics (RoG), the American Geophysical Union, and the broader scientific community, the editors wish to wholeheartedly thank those who reviewed manuscripts for RoG in 2023.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"62 2","pages":""},"PeriodicalIF":37.3,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024RG000844","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140639547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Land Data Assimilation: Harmonizing Theory and Data in Land Surface Process Studies 陆地数据同化:陆地表面过程研究中的理论与数据协调
IF 37.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-03-19 DOI: 10.1029/2022RG000801
Xin Li, Feng Liu, Chunfeng Ma, Jinliang Hou, Donghai Zheng, Hanqing Ma, Yulong Bai, Xujun Han, Harry Vereecken, Kun Yang, Qingyun Duan, Chunlin Huang

Data assimilation plays a dual role in advancing the “scientific” understanding and serving as an “engineering tool” for the Earth system sciences. Land data assimilation (LDA) has evolved into a distinct discipline within geophysics, facilitating the harmonization of theory and data and allowing land models and observations to complement and constrain each other. Over recent decades, substantial progress has been made in the theory, methodology, and application of LDA, necessitating a holistic and in-depth exploration of its full spectrum. Here, we present a thorough review elucidating the theoretical and methodological developments in LDA and its distinctive features. This encompasses breakthroughs in addressing strong nonlinearities in land surface processes, exploring the potential of machine learning approaches in data assimilation, quantifying uncertainties arising from multiscale spatial correlation, and simultaneously estimating model states and parameters. LDA has proven successful in enhancing the understanding and prediction of various land surface processes (including soil moisture, snow, evapotranspiration, streamflow, groundwater, irrigation and land surface temperature), particularly within the realms of water and energy cycles. This review outlines the development of global, regional, and catchment-scale LDA systems and software platforms, proposing grand challenges of generating land reanalysis and advancing coupled land‒atmosphere DA. We lastly highlight the opportunities to expand the applications of LDA from pure geophysical systems to coupled natural and human systems by ingesting a deluge of Earth observation and social sensing data. The paper synthesizes current LDA knowledge and provides a steppingstone for its future development, particularly in promoting dual driven theory-data land processes studies.

数据同化在促进 "科学 "理解和充当地球系统科学的 "工程工具 "方面发挥着双重作用。陆地数据同化(LDA)已发展成为地球物理学中一门独特的学科,促进了理论和数据的协调统一,使陆地模型和观测数据能够相互补充和制约。近几十年来,LDA 在理论、方法和应用方面都取得了长足的进步,因此有必要对其进行全面深入的探讨。在此,我们将对 LDA 的理论和方法论发展及其显著特点进行全面综述。其中包括在解决地表过程中的强非线性、探索机器学习方法在数据同化中的潜力、量化多尺度空间相关性引起的不确定性以及同时估计模型状态和参数等方面的突破。事实证明,LDA 成功地增强了对各种地表过程(包括土壤水分、积雪、蒸散、溪流、地下水、灌溉和地表温度)的理解和预测,特别是在水循环和能量循环领域。本综述概述了全球、区域和流域尺度 LDA 系统和软件平台的发展情况,提出了生成陆地再分析和推进陆地-大气耦合 DA 的重大挑战。最后,我们强调了通过接收大量地球观测和社会感知数据,将 LDA 的应用从纯地球物理系统扩展到自然和人类耦合系统的机会。本文综述了当前的 LDA 知识,并为其未来发展,特别是在促进理论-数据双驱动的陆地过程研究方面,提供了一个基石。
{"title":"Land Data Assimilation: Harmonizing Theory and Data in Land Surface Process Studies","authors":"Xin Li,&nbsp;Feng Liu,&nbsp;Chunfeng Ma,&nbsp;Jinliang Hou,&nbsp;Donghai Zheng,&nbsp;Hanqing Ma,&nbsp;Yulong Bai,&nbsp;Xujun Han,&nbsp;Harry Vereecken,&nbsp;Kun Yang,&nbsp;Qingyun Duan,&nbsp;Chunlin Huang","doi":"10.1029/2022RG000801","DOIUrl":"10.1029/2022RG000801","url":null,"abstract":"<p>Data assimilation plays a dual role in advancing the “scientific” understanding and serving as an “engineering tool” for the Earth system sciences. Land data assimilation (LDA) has evolved into a distinct discipline within geophysics, facilitating the harmonization of theory and data and allowing land models and observations to complement and constrain each other. Over recent decades, substantial progress has been made in the theory, methodology, and application of LDA, necessitating a holistic and in-depth exploration of its full spectrum. Here, we present a thorough review elucidating the theoretical and methodological developments in LDA and its distinctive features. This encompasses breakthroughs in addressing strong nonlinearities in land surface processes, exploring the potential of machine learning approaches in data assimilation, quantifying uncertainties arising from multiscale spatial correlation, and simultaneously estimating model states and parameters. LDA has proven successful in enhancing the understanding and prediction of various land surface processes (including soil moisture, snow, evapotranspiration, streamflow, groundwater, irrigation and land surface temperature), particularly within the realms of water and energy cycles. This review outlines the development of global, regional, and catchment-scale LDA systems and software platforms, proposing grand challenges of generating land reanalysis and advancing coupled land‒atmosphere DA. We lastly highlight the opportunities to expand the applications of LDA from pure geophysical systems to coupled natural and human systems by ingesting a deluge of Earth observation and social sensing data. The paper synthesizes current LDA knowledge and provides a steppingstone for its future development, particularly in promoting dual driven theory-data land processes studies.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"62 1","pages":""},"PeriodicalIF":37.3,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000801","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140161345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lake Water Temperature Modeling in an Era of Climate Change: Data Sources, Models, and Future Prospects 气候变化时代的湖水温度建模:数据来源、模型和未来展望
IF 37.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-02-11 DOI: 10.1029/2023RG000816
S. Piccolroaz, S. Zhu, R. Ladwig, L. Carrea, S. Oliver, A. P. Piotrowski, M. Ptak, R. Shinohara, M. Sojka, R. I. Woolway, D. Z. Zhu

Lake thermal dynamics have been considerably impacted by climate change, with potential adverse effects on aquatic ecosystems. To better understand the potential impacts of future climate change on lake thermal dynamics and related processes, the use of mathematical models is essential. In this study, we provide a comprehensive review of lake water temperature modeling. We begin by discussing the physical concepts that regulate thermal dynamics in lakes, which serve as a primer for the description of process-based models. We then provide an overview of different sources of observational water temperature data, including in situ monitoring and satellite Earth observations, used in the field of lake water temperature modeling. We classify and review the various lake water temperature models available, and then discuss model performance, including commonly used performance metrics and optimization methods. Finally, we analyze emerging modeling approaches, including forecasting, digital twins, combining process-based modeling with deep learning, evaluating structural model differences through ensemble modeling, adapted water management, and coupling of climate and lake models. This review is aimed at a diverse group of professionals working in the fields of limnology and hydrology, including ecologists, biologists, physicists, engineers, and remote sensing researchers from the private and public sectors who are interested in understanding lake water temperature modeling and its potential applications.

气候变化对湖泊热动力学产生了巨大影响,并可能对水生生态系统造成不利影响。为了更好地了解未来气候变化对湖泊热动态及相关过程的潜在影响,使用数学模型至关重要。在本研究中,我们对湖泊水温建模进行了全面回顾。我们首先讨论了调节湖泊热动力学的物理概念,作为描述基于过程的模型的入门读物。然后,我们概述了湖泊水温建模领域使用的不同水温观测数据来源,包括现场监测和卫星地球观测。我们对现有的各种湖泊水温模型进行了分类和评述,然后讨论了模型性能,包括常用的性能指标和优化方法。最后,我们分析了新出现的建模方法,包括预测、数字双胞胎、将基于过程的建模与深度学习相结合、通过集合建模评估结构模型差异、适应性水管理以及气候模型与湖泊模型的耦合。本综述面向湖泊学和水文学领域的各类专业人士,包括生态学家、生物学家、物理学家、工程师以及对了解湖泊水温建模及其潜在应用感兴趣的私营和公共部门的遥感研究人员。
{"title":"Lake Water Temperature Modeling in an Era of Climate Change: Data Sources, Models, and Future Prospects","authors":"S. Piccolroaz,&nbsp;S. Zhu,&nbsp;R. Ladwig,&nbsp;L. Carrea,&nbsp;S. Oliver,&nbsp;A. P. Piotrowski,&nbsp;M. Ptak,&nbsp;R. Shinohara,&nbsp;M. Sojka,&nbsp;R. I. Woolway,&nbsp;D. Z. Zhu","doi":"10.1029/2023RG000816","DOIUrl":"10.1029/2023RG000816","url":null,"abstract":"<p>Lake thermal dynamics have been considerably impacted by climate change, with potential adverse effects on aquatic ecosystems. To better understand the potential impacts of future climate change on lake thermal dynamics and related processes, the use of mathematical models is essential. In this study, we provide a comprehensive review of lake water temperature modeling. We begin by discussing the physical concepts that regulate thermal dynamics in lakes, which serve as a primer for the description of process-based models. We then provide an overview of different sources of observational water temperature data, including in situ monitoring and satellite Earth observations, used in the field of lake water temperature modeling. We classify and review the various lake water temperature models available, and then discuss model performance, including commonly used performance metrics and optimization methods. Finally, we analyze emerging modeling approaches, including forecasting, digital twins, combining process-based modeling with deep learning, evaluating structural model differences through ensemble modeling, adapted water management, and coupling of climate and lake models. This review is aimed at a diverse group of professionals working in the fields of limnology and hydrology, including ecologists, biologists, physicists, engineers, and remote sensing researchers from the private and public sectors who are interested in understanding lake water temperature modeling and its potential applications.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"62 1","pages":""},"PeriodicalIF":37.3,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000816","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139719928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
River Damming Impacts on Fish Habitat and Associated Conservation Measures 河流大坝对鱼类栖息地的影响及相关保护措施
IF 25.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-12-19 DOI: 10.1029/2023RG000819
Qiuwen Chen, Qinyuan Li, Yuqing Lin, Jianyun Zhang, Jun Xia, Jinren Ni, Steven J. Cooke, Jim Best, Shufeng He, Tao Feng, Yuchen Chen, Daniele Tonina, Rohan Benjankar, Sebastian Birk, Ayan Santos Fleischmann, Hanlu Yan, Lei Tang

River damming has brought great benefits to flood mitigation, energy and food production, and will continue to play a significant role in global energy supply, particularly in Asia, Africa, and South America. However, dams have extensively altered global river dynamics, including riverine connectivity, hydrological, thermal, sediment and solute regimes, and the channel morphology. These alterations have detrimental effects on the quality and quantity of fish habitat and associated impacts on aquatic life. Indeed, dams have been implicated in the decline of numerous fishes, emphasizing the need for effective conservation measures. Here, we present a global synthesis of critical issues concerning the impacts of river damming on physical fish habitats, with a particular focus on key fish species across continents. We also consider current fish conservation measures and their applicability in different contexts. Finally, we identify future research needs. The information presented herein will help support sustainable dam operation under the constraints of future climate change and human needs.

拦河筑坝为减轻洪灾、能源和粮食生产带来了巨大好处,并将继续在全球能源供应中发挥重要作用,尤其是在亚洲、非洲和南美洲。然而,大坝广泛地改变了全球河流的动态,包括河流的连通性、水文、热、沉积物和溶质系统以及河道形态。这些改变对鱼类栖息地的质量和数量产生了有害影响,并对水生生物产生了相关影响。事实上,水坝与许多鱼类的减少有牵连,因此需要采取有效的保护措施。在此,我们对河流筑坝对鱼类自然栖息地影响的关键问题进行了全球综述,并特别关注各大洲的主要鱼类物种。我们还考虑了当前的鱼类保护措施及其在不同情况下的适用性。最后,我们确定了未来的研究需求。本文介绍的信息将有助于在未来气候变化和人类需求的限制下支持大坝的可持续运行。
{"title":"River Damming Impacts on Fish Habitat and Associated Conservation Measures","authors":"Qiuwen Chen,&nbsp;Qinyuan Li,&nbsp;Yuqing Lin,&nbsp;Jianyun Zhang,&nbsp;Jun Xia,&nbsp;Jinren Ni,&nbsp;Steven J. Cooke,&nbsp;Jim Best,&nbsp;Shufeng He,&nbsp;Tao Feng,&nbsp;Yuchen Chen,&nbsp;Daniele Tonina,&nbsp;Rohan Benjankar,&nbsp;Sebastian Birk,&nbsp;Ayan Santos Fleischmann,&nbsp;Hanlu Yan,&nbsp;Lei Tang","doi":"10.1029/2023RG000819","DOIUrl":"https://doi.org/10.1029/2023RG000819","url":null,"abstract":"<p>River damming has brought great benefits to flood mitigation, energy and food production, and will continue to play a significant role in global energy supply, particularly in Asia, Africa, and South America. However, dams have extensively altered global river dynamics, including riverine connectivity, hydrological, thermal, sediment and solute regimes, and the channel morphology. These alterations have detrimental effects on the quality and quantity of fish habitat and associated impacts on aquatic life. Indeed, dams have been implicated in the decline of numerous fishes, emphasizing the need for effective conservation measures. Here, we present a global synthesis of critical issues concerning the impacts of river damming on physical fish habitats, with a particular focus on key fish species across continents. We also consider current fish conservation measures and their applicability in different contexts. Finally, we identify future research needs. The information presented herein will help support sustainable dam operation under the constraints of future climate change and human needs.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"61 4","pages":""},"PeriodicalIF":25.2,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000819","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138739870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontiers in Satellite-Based Estimates of Cloud-Mediated Aerosol Forcing 基于云介导的气溶胶强迫卫星估计的前沿
IF 25.2 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2023-10-18 DOI: 10.1029/2022RG000799
Daniel Rosenfeld, Alexander Kokhanovsky, Tom Goren, Edward Gryspeerdt, Otto Hasekamp, Hailing Jia, Anton Lopatin, Johannes Quaas, Zengxin Pan, Odran Sourdeval

Atmospheric aerosols affect the Earth's climate in many ways, including acting as the seeds on which cloud droplets form. Since a large fraction of these particles is anthropogenic, the clouds' microphysical and radiative characteristics are influenced by human activity on a global scale leading to important climatic effects. The respective change in the energy budget at the top of the atmosphere is defined as the effective radiative forcing due to aerosol-cloud interaction (ERFaci). It is estimated that the ERFaci offsets presently nearly 1/4 of the greenhouse-induced warming, but the uncertainty is within a factor of two. A common method to calculate the ERFaci is by the multiplication of the susceptibility of the cloud radiative effect to changes in aerosols by the anthropogenic change of the aerosol concentration. This has to be done by integrating it over all cloud regimes. Here we review the various methods of the ERFaci estimation. Global measurements require satellites' global coverage. The challenge of quantifying aerosol amounts in cloudy atmospheres are met with the rapid development of novel methodologies reviewed here. The aerosol characteristics can be retrieved from space based on their optical properties, including polarization. The concentrations of the aerosols that serve as cloud drop condensation nuclei can be also estimated from their impact on the satellite-retrieved cloud drop number concentrations. These observations are critical for reducing the uncertainty in the ERFaci calculated from global climate models (GCMs), but further development is required to allow GCMs to properly simulate and benefit these novel observables.

大气气溶胶以多种方式影响地球气候,包括作为云滴形成的种子。由于这些粒子的很大一部分是人为的,云的微物理和辐射特征在全球范围内受到人类活动的影响,导致重要的气候效应。大气顶部能量收支的相应变化被定义为气溶胶-云相互作用(ERFaci)引起的有效辐射强迫。据估计,ERFaci目前抵消了近四分之一的温室气体引起的变暖,但不确定性在两个因素之内。计算ERFaci的一种常用方法是将云辐射效应对气溶胶变化的敏感性乘以气溶胶浓度的人为变化。这必须通过在所有云系统中集成它来完成。在这里,我们回顾了ERFaci估计的各种方法。全球测量需要卫星的全球覆盖。在多云大气中定量气溶胶量的挑战遇到了新方法的快速发展。基于气溶胶的光学特性,包括偏振,可以从太空中获取气溶胶的特征。作为云滴凝结核的气溶胶的浓度也可以通过它们对卫星检索的云滴数浓度的影响来估计。这些观测值对于减少由全球气候模式(gcm)计算的ERFaci的不确定性至关重要,但需要进一步发展,使gcm能够正确模拟并受益于这些新的观测值。
{"title":"Frontiers in Satellite-Based Estimates of Cloud-Mediated Aerosol Forcing","authors":"Daniel Rosenfeld,&nbsp;Alexander Kokhanovsky,&nbsp;Tom Goren,&nbsp;Edward Gryspeerdt,&nbsp;Otto Hasekamp,&nbsp;Hailing Jia,&nbsp;Anton Lopatin,&nbsp;Johannes Quaas,&nbsp;Zengxin Pan,&nbsp;Odran Sourdeval","doi":"10.1029/2022RG000799","DOIUrl":"10.1029/2022RG000799","url":null,"abstract":"<p>Atmospheric aerosols affect the Earth's climate in many ways, including acting as the seeds on which cloud droplets form. Since a large fraction of these particles is anthropogenic, the clouds' microphysical and radiative characteristics are influenced by human activity on a global scale leading to important climatic effects. The respective change in the energy budget at the top of the atmosphere is defined as the effective radiative forcing due to aerosol-cloud interaction (ERF<sub>aci</sub>). It is estimated that the ERF<sub>aci</sub> offsets presently nearly 1/4 of the greenhouse-induced warming, but the uncertainty is within a factor of two. A common method to calculate the ERF<sub>aci</sub> is by the multiplication of the susceptibility of the cloud radiative effect to changes in aerosols by the anthropogenic change of the aerosol concentration. This has to be done by integrating it over all cloud regimes. Here we review the various methods of the ERF<sub>aci</sub> estimation. Global measurements require satellites' global coverage. The challenge of quantifying aerosol amounts in cloudy atmospheres are met with the rapid development of novel methodologies reviewed here. The aerosol characteristics can be retrieved from space based on their optical properties, including polarization. The concentrations of the aerosols that serve as cloud drop condensation nuclei can be also estimated from their impact on the satellite-retrieved cloud drop number concentrations. These observations are critical for reducing the uncertainty in the ERF<sub>aci</sub> calculated from global climate models (GCMs), but further development is required to allow GCMs to properly simulate and benefit these novel observables.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"61 4","pages":""},"PeriodicalIF":25.2,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135884108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Reviews of Geophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1