S. Piccolroaz, S. Zhu, R. Ladwig, L. Carrea, S. Oliver, A. P. Piotrowski, M. Ptak, R. Shinohara, M. Sojka, R. I. Woolway, D. Z. Zhu
Lake thermal dynamics have been considerably impacted by climate change, with potential adverse effects on aquatic ecosystems. To better understand the potential impacts of future climate change on lake thermal dynamics and related processes, the use of mathematical models is essential. In this study, we provide a comprehensive review of lake water temperature modeling. We begin by discussing the physical concepts that regulate thermal dynamics in lakes, which serve as a primer for the description of process-based models. We then provide an overview of different sources of observational water temperature data, including in situ monitoring and satellite Earth observations, used in the field of lake water temperature modeling. We classify and review the various lake water temperature models available, and then discuss model performance, including commonly used performance metrics and optimization methods. Finally, we analyze emerging modeling approaches, including forecasting, digital twins, combining process-based modeling with deep learning, evaluating structural model differences through ensemble modeling, adapted water management, and coupling of climate and lake models. This review is aimed at a diverse group of professionals working in the fields of limnology and hydrology, including ecologists, biologists, physicists, engineers, and remote sensing researchers from the private and public sectors who are interested in understanding lake water temperature modeling and its potential applications.
{"title":"Lake Water Temperature Modeling in an Era of Climate Change: Data Sources, Models, and Future Prospects","authors":"S. Piccolroaz, S. Zhu, R. Ladwig, L. Carrea, S. Oliver, A. P. Piotrowski, M. Ptak, R. Shinohara, M. Sojka, R. I. Woolway, D. Z. Zhu","doi":"10.1029/2023RG000816","DOIUrl":"https://doi.org/10.1029/2023RG000816","url":null,"abstract":"<p>Lake thermal dynamics have been considerably impacted by climate change, with potential adverse effects on aquatic ecosystems. To better understand the potential impacts of future climate change on lake thermal dynamics and related processes, the use of mathematical models is essential. In this study, we provide a comprehensive review of lake water temperature modeling. We begin by discussing the physical concepts that regulate thermal dynamics in lakes, which serve as a primer for the description of process-based models. We then provide an overview of different sources of observational water temperature data, including in situ monitoring and satellite Earth observations, used in the field of lake water temperature modeling. We classify and review the various lake water temperature models available, and then discuss model performance, including commonly used performance metrics and optimization methods. Finally, we analyze emerging modeling approaches, including forecasting, digital twins, combining process-based modeling with deep learning, evaluating structural model differences through ensemble modeling, adapted water management, and coupling of climate and lake models. This review is aimed at a diverse group of professionals working in the fields of limnology and hydrology, including ecologists, biologists, physicists, engineers, and remote sensing researchers from the private and public sectors who are interested in understanding lake water temperature modeling and its potential applications.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"62 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000816","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139719928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiuwen Chen, Qinyuan Li, Yuqing Lin, Jianyun Zhang, Jun Xia, Jinren Ni, Steven J. Cooke, Jim Best, Shufeng He, Tao Feng, Yuchen Chen, Daniele Tonina, Rohan Benjankar, Sebastian Birk, Ayan Santos Fleischmann, Hanlu Yan, Lei Tang
River damming has brought great benefits to flood mitigation, energy and food production, and will continue to play a significant role in global energy supply, particularly in Asia, Africa, and South America. However, dams have extensively altered global river dynamics, including riverine connectivity, hydrological, thermal, sediment and solute regimes, and the channel morphology. These alterations have detrimental effects on the quality and quantity of fish habitat and associated impacts on aquatic life. Indeed, dams have been implicated in the decline of numerous fishes, emphasizing the need for effective conservation measures. Here, we present a global synthesis of critical issues concerning the impacts of river damming on physical fish habitats, with a particular focus on key fish species across continents. We also consider current fish conservation measures and their applicability in different contexts. Finally, we identify future research needs. The information presented herein will help support sustainable dam operation under the constraints of future climate change and human needs.
{"title":"River Damming Impacts on Fish Habitat and Associated Conservation Measures","authors":"Qiuwen Chen, Qinyuan Li, Yuqing Lin, Jianyun Zhang, Jun Xia, Jinren Ni, Steven J. Cooke, Jim Best, Shufeng He, Tao Feng, Yuchen Chen, Daniele Tonina, Rohan Benjankar, Sebastian Birk, Ayan Santos Fleischmann, Hanlu Yan, Lei Tang","doi":"10.1029/2023RG000819","DOIUrl":"https://doi.org/10.1029/2023RG000819","url":null,"abstract":"<p>River damming has brought great benefits to flood mitigation, energy and food production, and will continue to play a significant role in global energy supply, particularly in Asia, Africa, and South America. However, dams have extensively altered global river dynamics, including riverine connectivity, hydrological, thermal, sediment and solute regimes, and the channel morphology. These alterations have detrimental effects on the quality and quantity of fish habitat and associated impacts on aquatic life. Indeed, dams have been implicated in the decline of numerous fishes, emphasizing the need for effective conservation measures. Here, we present a global synthesis of critical issues concerning the impacts of river damming on physical fish habitats, with a particular focus on key fish species across continents. We also consider current fish conservation measures and their applicability in different contexts. Finally, we identify future research needs. The information presented herein will help support sustainable dam operation under the constraints of future climate change and human needs.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"61 4","pages":""},"PeriodicalIF":25.2,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000819","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138739870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Rosenfeld, Alexander Kokhanovsky, Tom Goren, Edward Gryspeerdt, Otto Hasekamp, Hailing Jia, Anton Lopatin, Johannes Quaas, Zengxin Pan, Odran Sourdeval
Atmospheric aerosols affect the Earth's climate in many ways, including acting as the seeds on which cloud droplets form. Since a large fraction of these particles is anthropogenic, the clouds' microphysical and radiative characteristics are influenced by human activity on a global scale leading to important climatic effects. The respective change in the energy budget at the top of the atmosphere is defined as the effective radiative forcing due to aerosol-cloud interaction (ERFaci). It is estimated that the ERFaci offsets presently nearly 1/4 of the greenhouse-induced warming, but the uncertainty is within a factor of two. A common method to calculate the ERFaci is by the multiplication of the susceptibility of the cloud radiative effect to changes in aerosols by the anthropogenic change of the aerosol concentration. This has to be done by integrating it over all cloud regimes. Here we review the various methods of the ERFaci estimation. Global measurements require satellites' global coverage. The challenge of quantifying aerosol amounts in cloudy atmospheres are met with the rapid development of novel methodologies reviewed here. The aerosol characteristics can be retrieved from space based on their optical properties, including polarization. The concentrations of the aerosols that serve as cloud drop condensation nuclei can be also estimated from their impact on the satellite-retrieved cloud drop number concentrations. These observations are critical for reducing the uncertainty in the ERFaci calculated from global climate models (GCMs), but further development is required to allow GCMs to properly simulate and benefit these novel observables.
{"title":"Frontiers in Satellite-Based Estimates of Cloud-Mediated Aerosol Forcing","authors":"Daniel Rosenfeld, Alexander Kokhanovsky, Tom Goren, Edward Gryspeerdt, Otto Hasekamp, Hailing Jia, Anton Lopatin, Johannes Quaas, Zengxin Pan, Odran Sourdeval","doi":"10.1029/2022RG000799","DOIUrl":"10.1029/2022RG000799","url":null,"abstract":"<p>Atmospheric aerosols affect the Earth's climate in many ways, including acting as the seeds on which cloud droplets form. Since a large fraction of these particles is anthropogenic, the clouds' microphysical and radiative characteristics are influenced by human activity on a global scale leading to important climatic effects. The respective change in the energy budget at the top of the atmosphere is defined as the effective radiative forcing due to aerosol-cloud interaction (ERF<sub>aci</sub>). It is estimated that the ERF<sub>aci</sub> offsets presently nearly 1/4 of the greenhouse-induced warming, but the uncertainty is within a factor of two. A common method to calculate the ERF<sub>aci</sub> is by the multiplication of the susceptibility of the cloud radiative effect to changes in aerosols by the anthropogenic change of the aerosol concentration. This has to be done by integrating it over all cloud regimes. Here we review the various methods of the ERF<sub>aci</sub> estimation. Global measurements require satellites' global coverage. The challenge of quantifying aerosol amounts in cloudy atmospheres are met with the rapid development of novel methodologies reviewed here. The aerosol characteristics can be retrieved from space based on their optical properties, including polarization. The concentrations of the aerosols that serve as cloud drop condensation nuclei can be also estimated from their impact on the satellite-retrieved cloud drop number concentrations. These observations are critical for reducing the uncertainty in the ERF<sub>aci</sub> calculated from global climate models (GCMs), but further development is required to allow GCMs to properly simulate and benefit these novel observables.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"61 4","pages":""},"PeriodicalIF":25.2,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135884108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jason E. Smerdon, Edward R. Cook, Nathan J. Steiger
Climate field reconstructions (CFRs) combine modern observational data with paleoclimatic proxies to estimate climate variables over spatiotemporal grids during time periods when widespread observations of climatic conditions do not exist. The Common Era (CE) has been a period over which many seasonally- and annually-resolved CFRs have been produced on regional to global scales. CFRs over the CE were first produced in the 1970s using dendroclimatic records and linear regression-based approaches. Since that time, many new CFRs have been produced using a wide range of proxy data sets and reconstruction techniques. We assess the early history of research on CFRs for the CE, which provides context for our review of advances in CFR research over the last two decades. We review efforts to derive gridded hydroclimatic CFRs over continental regions using networks of tree-ring proxies. We subsequently explore work to produce hemispheric- and global-scale CFRs of surface temperature using multi-proxy data sets, before specifically reviewing recently-developed data assimilation techniques and how they have been used to produce simultaneous reconstructions of multiple climatic fields globally. We then review efforts to develop standardized and digitized databases of proxy networks for use in CFR research, before concluding with some thoughts on important next steps for CFR development.
{"title":"The Historical Development of Large-Scale Paleoclimate Field Reconstructions Over the Common Era","authors":"Jason E. Smerdon, Edward R. Cook, Nathan J. Steiger","doi":"10.1029/2022RG000782","DOIUrl":"10.1029/2022RG000782","url":null,"abstract":"<p>Climate field reconstructions (CFRs) combine modern observational data with paleoclimatic proxies to estimate climate variables over spatiotemporal grids during time periods when widespread observations of climatic conditions do not exist. The Common Era (CE) has been a period over which many seasonally- and annually-resolved CFRs have been produced on regional to global scales. CFRs over the CE were first produced in the 1970s using dendroclimatic records and linear regression-based approaches. Since that time, many new CFRs have been produced using a wide range of proxy data sets and reconstruction techniques. We assess the early history of research on CFRs for the CE, which provides context for our review of advances in CFR research over the last two decades. We review efforts to derive gridded hydroclimatic CFRs over continental regions using networks of tree-ring proxies. We subsequently explore work to produce hemispheric- and global-scale CFRs of surface temperature using multi-proxy data sets, before specifically reviewing recently-developed data assimilation techniques and how they have been used to produce simultaneous reconstructions of multiple climatic fields globally. We then review efforts to develop standardized and digitized databases of proxy networks for use in CFR research, before concluding with some thoughts on important next steps for CFR development.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"61 4","pages":""},"PeriodicalIF":25.2,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000782","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135648622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peter Mani, Simon Allen, Stephen G. Evans, Jeffrey S. Kargel, Martin Mergili, Dmitry Petrakov, Markus Stoffel
Populations and infrastructure in high mountain regions are exposed to a wide range of natural hazards, the frequency, magnitude, and location of which are extremely sensitive to climate change. In cases where several hazards can occur simultaneously or where the occurrence of one event will change the disposition of another, assessments need to account for complex process chains. While process chains are widely recognized as a major threat, no systematic analysis has hitherto been undertaken. We therefore establish new understanding on the factors that directly trigger or alter the disposition for subsequent events in the chain and derive a novel classification scheme and parameters to aid natural hazard assessment. Process chains in high mountains are commonly associated with glacier retreat or permafrost degradation. Regional differences exist in the nature and rate of sequencing—some process chains are almost instantaneous, while other linkages are delayed. Process chains involving rapid sequences are difficult to predict, and impacts are often devastating. We demonstrate that process chains are triggered most frequently by progressive failures, being the result of gradual landscape weakening and not due to the occurrence of a distinct process. If fluvial processes are part of the process chain the reach (or mobility) of process chains is increased. Increased mobility can also occur if sediment deposition areas along river channels are activated. As climate changes causes glacial environments to transform into sediment-rich paraglacial and fluvial landscapes, it is expected that the mobility of process chains will increase in the future.
{"title":"Geomorphic Process Chains in High-Mountain Regions—A Review and Classification Approach for Natural Hazards Assessment","authors":"Peter Mani, Simon Allen, Stephen G. Evans, Jeffrey S. Kargel, Martin Mergili, Dmitry Petrakov, Markus Stoffel","doi":"10.1029/2022RG000791","DOIUrl":"10.1029/2022RG000791","url":null,"abstract":"<p>Populations and infrastructure in high mountain regions are exposed to a wide range of natural hazards, the frequency, magnitude, and location of which are extremely sensitive to climate change. In cases where several hazards can occur simultaneously or where the occurrence of one event will change the disposition of another, assessments need to account for complex process chains. While process chains are widely recognized as a major threat, no systematic analysis has hitherto been undertaken. We therefore establish new understanding on the factors that directly trigger or alter the disposition for subsequent events in the chain and derive a novel classification scheme and parameters to aid natural hazard assessment. Process chains in high mountains are commonly associated with glacier retreat or permafrost degradation. Regional differences exist in the nature and rate of sequencing—some process chains are almost instantaneous, while other linkages are delayed. Process chains involving rapid sequences are difficult to predict, and impacts are often devastating. We demonstrate that process chains are triggered most frequently by progressive failures, being the result of gradual landscape weakening and not due to the occurrence of a distinct process. If fluvial processes are part of the process chain the reach (or mobility) of process chains is increased. Increased mobility can also occur if sediment deposition areas along river channels are activated. As climate changes causes glacial environments to transform into sediment-rich paraglacial and fluvial landscapes, it is expected that the mobility of process chains will increase in the future.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"61 4","pages":""},"PeriodicalIF":25.2,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000791","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136272246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. R. A. Aitken, L. Li, B. Kulessa, D. Schroeder, T. A. Jordan, J. M. Whittaker, S. Anandakrishnan, E. J. Dawson, D. A. Wiens, O. Eisen, M. J. Siegert
Knowledge of Antarctica's sedimentary basins builds our understanding of the coupled evolution of tectonics, ice, ocean, and climate. Sedimentary basins have properties distinct from basement-dominated regions that impact ice-sheet dynamics, potentially influencing future ice-sheet change. Despite their importance, our knowledge of Antarctic sedimentary basins is restricted. Remoteness, the harsh environment, the overlying ice sheet, ice shelves, and sea ice all make fieldwork challenging. Nonetheless, in the past decade the geophysics community has made great progress in internationally coordinated data collection and compilation with parallel advances in data processing and analysis supporting a new insight into Antarctica's subglacial environment. Here, we summarize recent progress in understanding Antarctica's sedimentary basins. We review advances in the technical capability of radar, potential fields, seismic, and electromagnetic techniques to detect and characterize basins beneath ice and advances in integrated multi-data interpretation including machine-learning approaches. These new capabilities permit a continent-wide mapping of Antarctica's sedimentary basins and their characteristics, aiding definition of the tectonic development of the continent. Crucially, Antarctica's sedimentary basins interact with the overlying ice sheet through dynamic feedbacks that have the potential to contribute to rapid ice-sheet change. Looking ahead, future research directions include techniques to increase data coverage within logistical constraints, and resolving major knowledge gaps, including insufficient sampling of the ice-sheet bed and poor definition of subglacial basin structure and stratigraphy. Translating the knowledge of sedimentary basin processes into ice-sheet modeling studies is critical to underpin better capacity to predict future change.
{"title":"Antarctic Sedimentary Basins and Their Influence on Ice-Sheet Dynamics","authors":"A. R. A. Aitken, L. Li, B. Kulessa, D. Schroeder, T. A. Jordan, J. M. Whittaker, S. Anandakrishnan, E. J. Dawson, D. A. Wiens, O. Eisen, M. J. Siegert","doi":"10.1029/2021RG000767","DOIUrl":"10.1029/2021RG000767","url":null,"abstract":"<p>Knowledge of Antarctica's sedimentary basins builds our understanding of the coupled evolution of tectonics, ice, ocean, and climate. Sedimentary basins have properties distinct from basement-dominated regions that impact ice-sheet dynamics, potentially influencing future ice-sheet change. Despite their importance, our knowledge of Antarctic sedimentary basins is restricted. Remoteness, the harsh environment, the overlying ice sheet, ice shelves, and sea ice all make fieldwork challenging. Nonetheless, in the past decade the geophysics community has made great progress in internationally coordinated data collection and compilation with parallel advances in data processing and analysis supporting a new insight into Antarctica's subglacial environment. Here, we summarize recent progress in understanding Antarctica's sedimentary basins. We review advances in the technical capability of radar, potential fields, seismic, and electromagnetic techniques to detect and characterize basins beneath ice and advances in integrated multi-data interpretation including machine-learning approaches. These new capabilities permit a continent-wide mapping of Antarctica's sedimentary basins and their characteristics, aiding definition of the tectonic development of the continent. Crucially, Antarctica's sedimentary basins interact with the overlying ice sheet through dynamic feedbacks that have the potential to contribute to rapid ice-sheet change. Looking ahead, future research directions include techniques to increase data coverage within logistical constraints, and resolving major knowledge gaps, including insufficient sampling of the ice-sheet bed and poor definition of subglacial basin structure and stratigraphy. Translating the knowledge of sedimentary basin processes into ice-sheet modeling studies is critical to underpin better capacity to predict future change.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"61 3","pages":""},"PeriodicalIF":25.2,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000767","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80517164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Tibetan Plateau (TP) impacts local and remote atmospheric circulations, wherein it mechanically and thermally affects air masses or airflows. Moreover, the TP provides a key channel for substance transport between the troposphere and the stratosphere. This study reviews recent advances in research regarding land–atmosphere coupling processes over the TP. The TP experiences climate warming and wetting. Climate warming has caused glacier retreat, permafrost degradation, and a general increase in vegetation density, while climate wetting has led to a significant increase in the number of major lakes, primarily through increased precipitation. Local and regional climates are affected by interactions between the land and the atmosphere. Namely, the TP drives surface pollutants to the upper troposphere in an Asian summer monsoon (ASM) anticyclone circulation, before spreading to the lower stratosphere. Further, the thermal forcing of the TP plays an essential role in the ASM. TP forcing can modulate hemispheric-scale atmospheric circulations across all seasons. The TP interacts with remote oceans through a forced atmospheric response and is substantially affected by the evolution of the Earth's climate via promoting Atlantic meridional overturning circulation and eliminating Pacific meridional overturning circulation. The extensive influence of the TP is facilitated by its coupling with the ASM in the summer; whereas its winter influence on climate mainly occurs through Rossby waves. The observed increasing trends of temperature and precipitation over the TP are projected to continue throughout the 21st century.
{"title":"Global Climate Impacts of Land-Surface and Atmospheric Processes Over the Tibetan Plateau","authors":"Jianping Huang, Xiuji Zhou, Guoxiong Wu, Xiangde Xu, Qingyun Zhao, Yimin Liu, Anmin Duan, Yongkun Xie, Yaoming Ma, Ping Zhao, Song Yang, Kun Yang, Haijun Yang, Jianchun Bian, Yunfei Fu, Jinming Ge, Yuzhi Liu, Qigang Wu, Haipeng Yu, Binbin Wang, Qing Bao, Kai Qie","doi":"10.1029/2022RG000771","DOIUrl":"10.1029/2022RG000771","url":null,"abstract":"<p>The Tibetan Plateau (TP) impacts local and remote atmospheric circulations, wherein it mechanically and thermally affects air masses or airflows. Moreover, the TP provides a key channel for substance transport between the troposphere and the stratosphere. This study reviews recent advances in research regarding land–atmosphere coupling processes over the TP. The TP experiences climate warming and wetting. Climate warming has caused glacier retreat, permafrost degradation, and a general increase in vegetation density, while climate wetting has led to a significant increase in the number of major lakes, primarily through increased precipitation. Local and regional climates are affected by interactions between the land and the atmosphere. Namely, the TP drives surface pollutants to the upper troposphere in an Asian summer monsoon (ASM) anticyclone circulation, before spreading to the lower stratosphere. Further, the thermal forcing of the TP plays an essential role in the ASM. TP forcing can modulate hemispheric-scale atmospheric circulations across all seasons. The TP interacts with remote oceans through a forced atmospheric response and is substantially affected by the evolution of the Earth's climate via promoting Atlantic meridional overturning circulation and eliminating Pacific meridional overturning circulation. The extensive influence of the TP is facilitated by its coupling with the ASM in the summer; whereas its winter influence on climate mainly occurs through Rossby waves. The observed increasing trends of temperature and precipitation over the TP are projected to continue throughout the 21st century.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"61 3","pages":""},"PeriodicalIF":25.2,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82218601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. D. Fraser, P. Wongpan, P. J. Langhorne, A. R. Klekociuk, K. Kusahara, D. Lannuzel, R. A. Massom, K. M. Meiners, K. M. Swadling, D. P. Atwater, G. M. Brett, M. Corkill, L. A. Dalman, S. Fiddes, A. Granata, L. Guglielmo, P. Heil, G. H. Leonard, A. R. Mahoney, A. McMinn, P. van der Merwe, C. K. Weldrick, B. Wienecke
Antarctic landfast sea ice (fast ice) is stationary sea ice that is attached to the coast, grounded icebergs, ice shelves, or other protrusions on the continental shelf. Fast ice forms in narrow (generally up to 200 km wide) bands, and ranges in thickness from centimeters to tens of meters. In most regions, it forms in autumn, persists through the winter and melts in spring/summer, but can remain throughout the summer in particular locations, becoming multi-year ice. Despite its relatively limited extent (comprising between about 4% and 13% of overall sea ice), its presence, variability and seasonality are drivers of a wide range of physical, biological and biogeochemical processes, with both local and far-ranging ramifications for the Earth system. Antarctic fast ice has, until quite recently, been overlooked in studies, likely due to insufficient knowledge of its distribution, leading to its reputation as a “missing piece of the Antarctic puzzle.” This review presents a synthesis of current knowledge of the physical, biogeochemical and biological aspects of fast ice, based on the sub-domains of: fast ice growth, properties and seasonality; remote-sensing and distribution; interactions with the atmosphere and the ocean; biogeochemical interactions; its role in primary production; and fast ice as a habitat for grazers. Finally, we consider the potential state of Antarctic fast ice at the end of the 21st Century, underpinned by Coupled Model Intercomparison Project model projections. This review also gives recommendations for targeted future work to increase our understanding of this critically-important element of the global cryosphere.
{"title":"Antarctic Landfast Sea Ice: A Review of Its Physics, Biogeochemistry and Ecology","authors":"A. D. Fraser, P. Wongpan, P. J. Langhorne, A. R. Klekociuk, K. Kusahara, D. Lannuzel, R. A. Massom, K. M. Meiners, K. M. Swadling, D. P. Atwater, G. M. Brett, M. Corkill, L. A. Dalman, S. Fiddes, A. Granata, L. Guglielmo, P. Heil, G. H. Leonard, A. R. Mahoney, A. McMinn, P. van der Merwe, C. K. Weldrick, B. Wienecke","doi":"10.1029/2022RG000770","DOIUrl":"https://doi.org/10.1029/2022RG000770","url":null,"abstract":"<p>Antarctic landfast sea ice (fast ice) is stationary sea ice that is attached to the coast, grounded icebergs, ice shelves, or other protrusions on the continental shelf. Fast ice forms in narrow (generally up to 200 km wide) bands, and ranges in thickness from centimeters to tens of meters. In most regions, it forms in autumn, persists through the winter and melts in spring/summer, but can remain throughout the summer in particular locations, becoming multi-year ice. Despite its relatively limited extent (comprising between about 4% and 13% of overall sea ice), its presence, variability and seasonality are drivers of a wide range of physical, biological and biogeochemical processes, with both local and far-ranging ramifications for the Earth system. Antarctic fast ice has, until quite recently, been overlooked in studies, likely due to insufficient knowledge of its distribution, leading to its reputation as a “missing piece of the Antarctic puzzle.” This review presents a synthesis of current knowledge of the physical, biogeochemical and biological aspects of fast ice, based on the sub-domains of: fast ice growth, properties and seasonality; remote-sensing and distribution; interactions with the atmosphere and the ocean; biogeochemical interactions; its role in primary production; and fast ice as a habitat for grazers. Finally, we consider the potential state of Antarctic fast ice at the end of the 21st Century, underpinned by Coupled Model Intercomparison Project model projections. This review also gives recommendations for targeted future work to increase our understanding of this critically-important element of the global cryosphere.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"61 2","pages":""},"PeriodicalIF":25.2,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000770","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6004872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. L. McClymont, S. L. Ho, H. L. Ford, I. Bailey, M. A. Berke, C. T. Bolton, S. De Schepper, G. R. Grant, J. Groeneveld, G. N. Inglis, C. Karas, M. O. Patterson, G. E. A. Swann, K. Thirumalai, S. M. White, M. Alonso-Garcia, P. Anand, B. A. A. Hoogakker, K. Littler, B. F. Petrick, B. Risebrobakken, J. T. Abell, A. J. Crocker, F. de Graaf, S. J. Feakins, J. C. Hargreaves, C. L. Jones, M. Markowska, A. S. Ratnayake, C. Stepanek, D. Tangunan
The Pliocene Epoch (∼5.3–2.6 million years ago, Ma) was characterized by a warmer than present climate with smaller Northern Hemisphere ice sheets, and offers an example of a climate system in long-term equilibrium with current or predicted near-future atmospheric CO2 concentrations (pCO2). A long-term trend of ice-sheet expansion led to more pronounced glacial (cold) stages by the end of the Pliocene (∼2.6 Ma), known as the “intensification of Northern Hemisphere Glaciation” (iNHG). We assessed the spatial and temporal variability of ocean temperatures and ice-volume indicators through the late Pliocene and early Pleistocene (from 3.3 to 2.4 Ma) to determine the character of this climate transition. We identified asynchronous shifts in long-term means and the pacing and amplitude of shorter-term climate variability, between regions and between climate proxies. Early changes in Antarctic glaciation and Southern Hemisphere ocean properties occurred even during the mid-Piacenzian warm period (∼3.264–3.025 Ma) which has been used as an analog for future warming. Increased climate variability subsequently developed alongside signatures of larger Northern Hemisphere ice sheets (iNHG). Yet, some regions of the ocean felt no impact of iNHG, particularly in lower latitudes. Our analysis has demonstrated the complex, non-uniform and globally asynchronous nature of climate changes associated with the iNHG. Shifting ocean gateways and ocean circulation changes may have pre-conditioned the later evolution of ice sheets with falling atmospheric pCO2. Further development of high-resolution, multi-proxy reconstructions of climate is required so that the full potential of the rich and detailed geological records can be realized.
{"title":"Climate Evolution Through the Onset and Intensification of Northern Hemisphere Glaciation","authors":"E. L. McClymont, S. L. Ho, H. L. Ford, I. Bailey, M. A. Berke, C. T. Bolton, S. De Schepper, G. R. Grant, J. Groeneveld, G. N. Inglis, C. Karas, M. O. Patterson, G. E. A. Swann, K. Thirumalai, S. M. White, M. Alonso-Garcia, P. Anand, B. A. A. Hoogakker, K. Littler, B. F. Petrick, B. Risebrobakken, J. T. Abell, A. J. Crocker, F. de Graaf, S. J. Feakins, J. C. Hargreaves, C. L. Jones, M. Markowska, A. S. Ratnayake, C. Stepanek, D. Tangunan","doi":"10.1029/2022RG000793","DOIUrl":"https://doi.org/10.1029/2022RG000793","url":null,"abstract":"<p>The Pliocene Epoch (∼5.3–2.6 million years ago, Ma) was characterized by a warmer than present climate with smaller Northern Hemisphere ice sheets, and offers an example of a climate system in long-term equilibrium with current or predicted near-future atmospheric CO<sub>2</sub> concentrations (<i>p</i>CO<sub>2</sub>). A long-term trend of ice-sheet expansion led to more pronounced glacial (cold) stages by the end of the Pliocene (∼2.6 Ma), known as the “intensification of Northern Hemisphere Glaciation” (iNHG). We assessed the spatial and temporal variability of ocean temperatures and ice-volume indicators through the late Pliocene and early Pleistocene (from 3.3 to 2.4 Ma) to determine the character of this climate transition. We identified asynchronous shifts in long-term means and the pacing and amplitude of shorter-term climate variability, between regions and between climate proxies. Early changes in Antarctic glaciation and Southern Hemisphere ocean properties occurred even during the mid-Piacenzian warm period (∼3.264–3.025 Ma) which has been used as an analog for future warming. Increased climate variability subsequently developed alongside signatures of larger Northern Hemisphere ice sheets (iNHG). Yet, some regions of the ocean felt no impact of iNHG, particularly in lower latitudes. Our analysis has demonstrated the complex, non-uniform and globally asynchronous nature of climate changes associated with the iNHG. Shifting ocean gateways and ocean circulation changes may have pre-conditioned the later evolution of ice sheets with falling atmospheric <i>p</i>CO<sub>2</sub>. Further development of high-resolution, multi-proxy reconstructions of climate is required so that the full potential of the rich and detailed geological records can be realized.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"61 3","pages":""},"PeriodicalIF":25.2,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000793","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5854295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minhan Dai, Ya-Wei Luo, Eric P. Achterberg, Thomas J. Browning, Yihua Cai, Zhimian Cao, Fei Chai, Bingzhang Chen, Matthew J. Church, Dongjian Ci, Chuanjun Du, Kunshan Gao, Xianghui Guo, Zhendong Hu, Shuh-Ji Kao, Edward A. Laws, Zhongping Lee, Hongyang Lin, Qian Liu, Xin Liu, Weicheng Luo, Feifei Meng, Shaoling Shang, Dalin Shi, Hiroaki Saito, Luping Song, Xianhui Sean Wan, Yuntao Wang, Wei-Lei Wang, Zuozhu Wen, Peng Xiu, Jing Zhang, Ruifeng Zhang, Kuanbo Zhou
Subtropical gyres cover 26%–29% of the world's surface ocean and are conventionally regarded as ocean deserts due to their permanent stratification, depleted surface nutrients, and low biological productivity. Despite tremendous advances over the past three decades, particularly through the Hawaii Ocean Time-series and the Bermuda Atlantic Time-series Study, which have revolutionized our understanding of the biogeochemistry in oligotrophic marine ecosystems, the gyres remain understudied. We review current understanding of upper ocean biogeochemistry in the North Pacific Subtropical Gyre, considering other subtropical gyres for comparison. We focus our synthesis on spatial variability, which shows larger than expected dynamic ranges of properties such as nutrient concentrations, rates of N2 fixation, and biological production. This review provides new insights into how nutrient sources drive community structure and export in upper subtropical gyres. We examine the euphotic zone (EZ) in subtropical gyres as a two-layered vertically structured system: a nutrient-depleted layer above the top of the nutricline in the well-lit upper ocean and a nutrient-replete layer below in the dimly lit waters. These layers vary in nutrient supply and stoichiometries and physical forcing, promoting differences in community structure and food webs, with direct impacts on the magnitude and composition of export production. We evaluate long-term variations in key biogeochemical parameters in both of these EZ layers. Finally, we identify major knowledge gaps and research challenges in these vast and unique systems that offer opportunities for future studies.
{"title":"Upper Ocean Biogeochemistry of the Oligotrophic North Pacific Subtropical Gyre: From Nutrient Sources to Carbon Export","authors":"Minhan Dai, Ya-Wei Luo, Eric P. Achterberg, Thomas J. Browning, Yihua Cai, Zhimian Cao, Fei Chai, Bingzhang Chen, Matthew J. Church, Dongjian Ci, Chuanjun Du, Kunshan Gao, Xianghui Guo, Zhendong Hu, Shuh-Ji Kao, Edward A. Laws, Zhongping Lee, Hongyang Lin, Qian Liu, Xin Liu, Weicheng Luo, Feifei Meng, Shaoling Shang, Dalin Shi, Hiroaki Saito, Luping Song, Xianhui Sean Wan, Yuntao Wang, Wei-Lei Wang, Zuozhu Wen, Peng Xiu, Jing Zhang, Ruifeng Zhang, Kuanbo Zhou","doi":"10.1029/2022RG000800","DOIUrl":"https://doi.org/10.1029/2022RG000800","url":null,"abstract":"<p>Subtropical gyres cover 26%–29% of the world's surface ocean and are conventionally regarded as ocean deserts due to their permanent stratification, depleted surface nutrients, and low biological productivity. Despite tremendous advances over the past three decades, particularly through the Hawaii Ocean Time-series and the Bermuda Atlantic Time-series Study, which have revolutionized our understanding of the biogeochemistry in oligotrophic marine ecosystems, the gyres remain understudied. We review current understanding of upper ocean biogeochemistry in the North Pacific Subtropical Gyre, considering other subtropical gyres for comparison. We focus our synthesis on spatial variability, which shows larger than expected dynamic ranges of properties such as nutrient concentrations, rates of N<sub>2</sub> fixation, and biological production. This review provides new insights into how nutrient sources drive community structure and export in upper subtropical gyres. We examine the euphotic zone (EZ) in subtropical gyres as a two-layered vertically structured system: a nutrient-depleted layer above the top of the nutricline in the well-lit upper ocean and a nutrient-replete layer below in the dimly lit waters. These layers vary in nutrient supply and stoichiometries and physical forcing, promoting differences in community structure and food webs, with direct impacts on the magnitude and composition of export production. We evaluate long-term variations in key biogeochemical parameters in both of these EZ layers. Finally, we identify major knowledge gaps and research challenges in these vast and unique systems that offer opportunities for future studies.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"61 3","pages":""},"PeriodicalIF":25.2,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6090517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}