首页 > 最新文献

Reviews of Geophysics最新文献

英文 中文
Expressing Gratitude to Reviewers: A Message From the Editors of Reviews of Geophysics for 2024 感谢审稿人:2024年《地球物理学评论》编辑寄语
IF 37.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-03-05 DOI: 10.1029/2025RG000886
Qingyun Duan, Valerio Acocella, Ann Marie Carlton, Minhan Dai, Paolo D’Odorico, Josh Feinberg, Fabio Florindo, Natalia Ganjushkina, Andrew Gettelman, Ruth Harris, Gesine Mollenhauer, Alan Robock, Claudine Stirling, Yusuke Yokoyama

On behalf of the authors and readers of Reviews of Geophysics (RoG), the American Geophysical Union, and the broader scientific community, the editors wish to wholeheartedly thank those who reviewed manuscripts for RoG in 2024.

编辑们谨代表《地球物理学评论》(Reviews of Geophysics, RoG)的作者和读者、美国地球物理联合会(American Geophysical Union)以及更广泛的科学界,衷心感谢那些在2024年为《地球物理学评论》(RoG)审稿的人。
{"title":"Expressing Gratitude to Reviewers: A Message From the Editors of Reviews of Geophysics for 2024","authors":"Qingyun Duan,&nbsp;Valerio Acocella,&nbsp;Ann Marie Carlton,&nbsp;Minhan Dai,&nbsp;Paolo D’Odorico,&nbsp;Josh Feinberg,&nbsp;Fabio Florindo,&nbsp;Natalia Ganjushkina,&nbsp;Andrew Gettelman,&nbsp;Ruth Harris,&nbsp;Gesine Mollenhauer,&nbsp;Alan Robock,&nbsp;Claudine Stirling,&nbsp;Yusuke Yokoyama","doi":"10.1029/2025RG000886","DOIUrl":"10.1029/2025RG000886","url":null,"abstract":"<p>On behalf of the authors and readers of Reviews of Geophysics (RoG), the American Geophysical Union, and the broader scientific community, the editors wish to wholeheartedly thank those who reviewed manuscripts for RoG in 2024.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":37.3,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025RG000886","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143554458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate and Hydrogeological Controls on Water Tracks in Permafrost Landscapes 气候和水文地质对永久冻土区水迹的控制
IF 37.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-02-26 DOI: 10.1029/2024RG000854
Joanmarie Del Vecchio, Sarah G. Evans

Climate change drives disturbance in hydrology and geomorphology in terrestrial polar landscapes underlain by permafrost, yet measurements of, and theories to understand, these changes are limited. Water flowing from permafrost hillslopes to channels is often modulated by water tracks, zones of enhanced soil moisture in unchannelized depressions that concentrate water flow downslope. Water tracks, which dominate hillslope hydrology in some permafrost landscapes, lack a consistent definition and identification method, and their global occurrence, morphology, climate relationships, and geomorphic roles remain understudied despite their role in the permafrost carbon cycle. Combining a literature review with a synthesis of prior work, we identify uniting and distinguishing characteristics between water tracks from disparate polar sites with a toolkit for future field and remotely sensed identification of water tracks. We place previous studies within a quantitative framework of “top-down” climate and “bottom-up” geology controls on track morphology and hydrogeomorphic function. We find the term “water track” is applied to a broad category of concentrated suprapermafrost flowpaths exhibiting varying morphology, degrees of self-organization, hydraulic characteristics, subsurface composition, vegetation, relationships to thaw tables, and stream order/hillslope position. We propose that the widespread occurrence of water tracks on both poles across varying geologic, ecologic, and climatic factors implies that water tracks are in dynamic equilibrium with the permafrost environment but that they may experience change as the climate continues to warm. Current knowledge gaps include these features' trajectories in the face of ongoing climate change and their role as an analog landform for an active Martian hydrosphere.

气候变化导致冻土下陆地极地景观的水文和地貌扰动,但对这些变化的测量和理论理解都是有限的。从永久冻土带山坡流向河道的水经常受到水轨的调节,水轨是在未渠化的洼地中土壤湿度增强的区域,它将水流集中到下坡。在一些永久冻土景观中,水轨迹在山坡水文中占主导地位,但缺乏一致的定义和识别方法,尽管它们在永久冻土碳循环中起着重要作用,但它们的全球分布、形态、气候关系和地貌作用仍未得到充分研究。结合文献综述和先前工作的综合,我们确定了来自不同极地站点的水迹之间的统一和区分特征,并为未来的实地和遥感水迹识别提供了工具包。我们将以前的研究置于“自上而下”的气候和“自下而上”的地质控制轨道形态和水文地貌功能的定量框架内。我们发现,“水迹”一词适用于广泛的集中的上层冻土流道,这些流道表现出不同的形态、自组织程度、水力特征、地下成分、植被、与融雪表的关系以及溪流顺序/山坡位置。我们认为,在不同的地质、生态和气候因素下,水迹在两极广泛存在,这意味着水迹与永久冻土环境处于动态平衡状态,但随着气候持续变暖,它们可能会发生变化。目前的知识缺口包括这些特征在面对持续的气候变化时的轨迹,以及它们作为活跃的火星水圈的模拟地形的作用。
{"title":"Climate and Hydrogeological Controls on Water Tracks in Permafrost Landscapes","authors":"Joanmarie Del Vecchio,&nbsp;Sarah G. Evans","doi":"10.1029/2024RG000854","DOIUrl":"10.1029/2024RG000854","url":null,"abstract":"<p>Climate change drives disturbance in hydrology and geomorphology in terrestrial polar landscapes underlain by permafrost, yet measurements of, and theories to understand, these changes are limited. Water flowing from permafrost hillslopes to channels is often modulated by water tracks, zones of enhanced soil moisture in unchannelized depressions that concentrate water flow downslope. Water tracks, which dominate hillslope hydrology in some permafrost landscapes, lack a consistent definition and identification method, and their global occurrence, morphology, climate relationships, and geomorphic roles remain understudied despite their role in the permafrost carbon cycle. Combining a literature review with a synthesis of prior work, we identify uniting and distinguishing characteristics between water tracks from disparate polar sites with a toolkit for future field and remotely sensed identification of water tracks. We place previous studies within a quantitative framework of “top-down” climate and “bottom-up” geology controls on track morphology and hydrogeomorphic function. We find the term “water track” is applied to a broad category of concentrated suprapermafrost flowpaths exhibiting varying morphology, degrees of self-organization, hydraulic characteristics, subsurface composition, vegetation, relationships to thaw tables, and stream order/hillslope position. We propose that the widespread occurrence of water tracks on both poles across varying geologic, ecologic, and climatic factors implies that water tracks are in dynamic equilibrium with the permafrost environment but that they may experience change as the climate continues to warm. Current knowledge gaps include these features' trajectories in the face of ongoing climate change and their role as an analog landform for an active Martian hydrosphere.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":37.3,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024RG000854","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143490007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pan-European Landslide Risk Assessment: From Theory to Practice 泛欧洲滑坡风险评估:从理论到实践
IF 37.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-02-21 DOI: 10.1029/2023RG000825
Francesco Caleca, Luigi Lombardo, Stefan Steger, Hakan Tanyas, Federico Raspini, Ashok Dahal, Constantinos Nefros, Mihai Ciprian Mărgărint, Vincent Drouin, Mateja Jemec-Auflič, Alessandro Novellino, Marj Tonini, Marco Loche, Nicola Casagli, Veronica Tofani

Assessing landslide risk is a fundamental requirement to plan suitable prevention actions. To date, most risk studies focus on individual slopes or catchments. Whereas regional, national or continental scale assessments are hardly available because of methodological and/or data limitations. In this contribution, we present an overview of all requirements and limitations in landslide risk studies across all spatial scales, by means of a hybrid form that combines elements of original research with the comprehensive characteristics of a review study. The review critically analyses each component in the landslide risk analysis providing a detailed explanation of their state-of-the-art, with dedicated sections on susceptibility, hazard, exposure, and vulnerability. To put the theoretical framework to test, we also dive into a case study, expressed at the continental scale. Specifically, we take the main European mountain ranges and provide the reader with a textbook example of risk assessment for such a large territory. In doing so, we take into account issues associated with cross-national differences in landslide mapping. As a result, we identify landslide-prone European landscape and explore the associated possible economic consequences (human settlements and agricultural areas). We also analyze the population at risk during daytime and nighttime. Moreover, a modern view of the problem is explored in the form of how risk outcomes should be delivered to master planners and geoscientific personnel alike. Specifically, we convert our output into an interactive Web Application (https://pan-european-landslide-risk.github.io/) to include notions of scientific communication both to a large public as well as to a technical audience.

评估滑坡风险是规划适当的预防措施的基本要求。迄今为止,大多数风险研究都集中在个别斜坡或集水区。由于方法和(或)数据的限制,很难获得区域、国家或大陆规模的评估。在这篇文章中,我们通过将原始研究的元素与综述研究的综合特征相结合的混合形式,概述了所有空间尺度上滑坡风险研究的所有要求和限制。该综述对滑坡风险分析中的每个组成部分进行了批判性分析,提供了其最新技术的详细解释,并专门介绍了易感性、危害、暴露和脆弱性。为了检验理论框架,我们还深入研究了一个在大陆尺度上表达的案例研究。具体来说,我们以欧洲的主要山脉为例,为读者提供了一个教科书式的风险评估的例子。在这样做时,我们考虑到与滑坡测绘的跨国差异有关的问题。因此,我们确定了容易发生山体滑坡的欧洲景观,并探讨了相关的可能的经济后果(人类住区和农业区)。我们还分析了白天和夜间的高危人群。此外,本书还探讨了如何将风险结果传递给总体规划者和地球科学人员等方面的问题。具体地说,我们将输出转换为交互式Web应用程序(https://pan-european-landslide-risk.github.io/),以包括向广大公众和技术受众进行科学交流的概念。
{"title":"Pan-European Landslide Risk Assessment: From Theory to Practice","authors":"Francesco Caleca,&nbsp;Luigi Lombardo,&nbsp;Stefan Steger,&nbsp;Hakan Tanyas,&nbsp;Federico Raspini,&nbsp;Ashok Dahal,&nbsp;Constantinos Nefros,&nbsp;Mihai Ciprian Mărgărint,&nbsp;Vincent Drouin,&nbsp;Mateja Jemec-Auflič,&nbsp;Alessandro Novellino,&nbsp;Marj Tonini,&nbsp;Marco Loche,&nbsp;Nicola Casagli,&nbsp;Veronica Tofani","doi":"10.1029/2023RG000825","DOIUrl":"10.1029/2023RG000825","url":null,"abstract":"<p>Assessing landslide risk is a fundamental requirement to plan suitable prevention actions. To date, most risk studies focus on individual slopes or catchments. Whereas regional, national or continental scale assessments are hardly available because of methodological and/or data limitations. In this contribution, we present an overview of all requirements and limitations in landslide risk studies across all spatial scales, by means of a hybrid form that combines elements of original research with the comprehensive characteristics of a review study. The review critically analyses each component in the landslide risk analysis providing a detailed explanation of their state-of-the-art, with dedicated sections on susceptibility, hazard, exposure, and vulnerability. To put the theoretical framework to test, we also dive into a case study, expressed at the continental scale. Specifically, we take the main European mountain ranges and provide the reader with a textbook example of risk assessment for such a large territory. In doing so, we take into account issues associated with cross-national differences in landslide mapping. As a result, we identify landslide-prone European landscape and explore the associated possible economic consequences (human settlements and agricultural areas). We also analyze the population at risk during daytime and nighttime. Moreover, a modern view of the problem is explored in the form of how risk outcomes should be delivered to master planners and geoscientific personnel alike. Specifically, we convert our output into an interactive Web Application (https://pan-european-landslide-risk.github.io/) to include notions of scientific communication both to a large public as well as to a technical audience.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":37.3,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000825","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Karst Water Resources in a Changing World: Review of Solute Transport Modeling Approaches 变化世界中的岩溶水资源:溶质运移模型方法综述
IF 37.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-02-14 DOI: 10.1029/2023RG000811
K. Ö. Çallı, G. Chiogna, D. Bittner, V. Sivelle, D. Labat, B. Richieri, S. S. Çallı, A. Hartmann

Karst water resources are valuable freshwater sources for around 10% of the world's population. Nonetheless, anthropogenic impacts and global changes have seriously deteriorated karst water quality and dependent ecosystems. Multiscale karstic heterogeneity—referring to the spatial variations of the karst aquifer's physical and chemical characteristics at varying scales—is the main challenge in describing karst flow and contaminant transport dynamics. Solute transport models are powerful tools to represent and predict the spatiotemporal behaviors of contaminant migration in karst water resources. By enhancing our understanding of the transport processes, the solute transport models enable us to explore contamination risks and potential outcomes of the contamination-related issues in karst systems. Because of that, they are often used for monitoring, controlling, and managing karst water quality and dependent ecosystem functioning. This paper reviews the current state of knowledge on the modeling of karst transport processes with a focus on single-phase solute transport. By unveiling the fundamental challenges underlying a successful real-world application of karst transport models, we discuss to what extent and how we can handle these challenges. By further deriving the key challenges afront the successful modeling applications in karst systems, we, therefore, provide directions to ensure the reliable modeling of karst transport dynamics in the present context of global changes.

喀斯特水资源是世界上约10%人口的宝贵淡水资源。然而,人为影响和全球变化严重恶化了喀斯特水质和依赖生态系统。多尺度岩溶非均质性是指喀斯特含水层在不同尺度上的物理和化学特征的空间变化,是描述喀斯特流动和污染物运移动力学的主要挑战。溶质运移模型是表征和预测喀斯特水资源中污染物迁移时空行为的有力工具。通过加强我们对运移过程的理解,溶质运移模型使我们能够探索喀斯特系统中污染相关问题的污染风险和潜在结果。正因为如此,它们经常被用于监测、控制和管理喀斯特水质和依赖的生态系统功能。本文以单相溶质运移为重点,综述了喀斯特运移过程建模的研究现状。通过揭示喀斯特运输模型在现实世界中成功应用的基本挑战,我们讨论了我们可以在多大程度上以及如何应对这些挑战。通过进一步推导岩溶系统成功建模应用所面临的关键挑战,为确保在当前全球变化背景下可靠地模拟岩溶输运动力学提供了方向。
{"title":"Karst Water Resources in a Changing World: Review of Solute Transport Modeling Approaches","authors":"K. Ö. Çallı,&nbsp;G. Chiogna,&nbsp;D. Bittner,&nbsp;V. Sivelle,&nbsp;D. Labat,&nbsp;B. Richieri,&nbsp;S. S. Çallı,&nbsp;A. Hartmann","doi":"10.1029/2023RG000811","DOIUrl":"10.1029/2023RG000811","url":null,"abstract":"<p>Karst water resources are valuable freshwater sources for around 10% of the world's population. Nonetheless, anthropogenic impacts and global changes have seriously deteriorated karst water quality and dependent ecosystems. Multiscale karstic heterogeneity—referring to the spatial variations of the karst aquifer's physical and chemical characteristics at varying scales—is the main challenge in describing karst flow and contaminant transport dynamics. Solute transport models are powerful tools to represent and predict the spatiotemporal behaviors of contaminant migration in karst water resources. By enhancing our understanding of the transport processes, the solute transport models enable us to explore contamination risks and potential outcomes of the contamination-related issues in karst systems. Because of that, they are often used for monitoring, controlling, and managing karst water quality and dependent ecosystem functioning. This paper reviews the current state of knowledge on the modeling of karst transport processes with a focus on single-phase solute transport. By unveiling the fundamental challenges underlying a successful real-world application of karst transport models, we discuss to what extent and how we can handle these challenges. By further deriving the key challenges afront the successful modeling applications in karst systems, we, therefore, provide directions to ensure the reliable modeling of karst transport dynamics in the present context of global changes.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":37.3,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000811","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rock Glacier Velocity: An Essential Climate Variable Quantity for Permafrost 岩石冰川速度:冻土的一个重要气候变量
IF 37.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-01-26 DOI: 10.1029/2024RG000847
Yan Hu, Lukas U. Arenson, Chloé Barboux, Xavier Bodin, Alessandro Cicoira, Reynald Delaloye, Isabelle Gärtner-Roer, Andreas Kääb, Andreas Kellerer-Pirklbauer, Christophe Lambiel, Lin Liu, Cécile Pellet, Line Rouyet, Philippe Schoeneich, Gernot Seier, Tazio Strozzi

Rock glaciers are distinctive debris landforms found worldwide in cold mountainous regions. They express the long-term movement of perennially frozen ground. Rock Glacier Velocity (RGV), defined as the time series of the annualized surface velocity of a rock glacier unit or a part of it, has been accepted as an Essential Climate Variable Permafrost Quantity in 2022. This review aims to highlight the relationship between rock glacier velocity and climatic factors, emphasizing the scientific relevance of interannual rock glacier velocity in generating RGV products within the context of observed rock glacier kinematics. Under global warming, rock glacier velocity exhibits widespread (multi-)decennial acceleration. This acceleration varies regionally in onset timing (from the 1950s to the 2010s) and magnitude (up to a factor of 10), and has been observed in regions such as the European Alps, High Mountain Asia, and the Andes. Despite different local conditions, a synchronous interannual velocity pattern prevails in the European Alps since the 2000s, highlighting the primary influence of climate. A common pattern is the seasonal velocity rhythm, which peaks in late summer to autumn and declines in spring. RGV assesses permafrost evolution via (multi-)decennial and interannual changes in rock glacier velocity, influenced by air temperature shifts with varying time lags and snow cover effects. Although not integrated into the RGV products, seasonal variations should be examined. This rhythmic behavior is attributed to alterations in pore water pressure influenced by air temperature, snow cover, and ground water conditions.

岩石冰川是一种独特的碎屑地貌,在世界各地寒冷的山区都有发现。它们表现了常年冻土的长期运动。岩石冰川速度(Rock Glacier Velocity, RGV)是指一个或部分岩石冰川单元的年化地表速度的时间序列,已被公认为2022年基本气候变量冻土数量。本文旨在强调岩石冰川速度与气候因子之间的关系,强调在观测岩石冰川运动学的背景下,年际岩石冰川速度在生成RGV产品中的科学相关性。在全球变暖的背景下,岩石冰川速度表现出广泛的(多)十年加速。这种加速在发生时间(从20世纪50年代到2010年代)和幅度(高达10倍)上因区域而异,在欧洲阿尔卑斯山脉、亚洲高山和安第斯山脉等地区已经观察到这种加速。尽管当地条件不同,但自2000年代以来,欧洲阿尔卑斯地区普遍存在同步的年际速度模式,突出了气候的主要影响。一种常见的模式是季节性的速度节奏,在夏末到秋天达到顶峰,在春天下降。RGV通过岩石冰川速度的(多)十年和年际变化来评估多年冻土的演变,这种变化受不同时间滞后的气温变化和积雪效应的影响。虽然没有纳入RGV产品,但应检查季节变化。这种节律性行为归因于受气温、积雪和地下水条件影响的孔隙水压力的变化。
{"title":"Rock Glacier Velocity: An Essential Climate Variable Quantity for Permafrost","authors":"Yan Hu,&nbsp;Lukas U. Arenson,&nbsp;Chloé Barboux,&nbsp;Xavier Bodin,&nbsp;Alessandro Cicoira,&nbsp;Reynald Delaloye,&nbsp;Isabelle Gärtner-Roer,&nbsp;Andreas Kääb,&nbsp;Andreas Kellerer-Pirklbauer,&nbsp;Christophe Lambiel,&nbsp;Lin Liu,&nbsp;Cécile Pellet,&nbsp;Line Rouyet,&nbsp;Philippe Schoeneich,&nbsp;Gernot Seier,&nbsp;Tazio Strozzi","doi":"10.1029/2024RG000847","DOIUrl":"10.1029/2024RG000847","url":null,"abstract":"<p>Rock glaciers are distinctive debris landforms found worldwide in cold mountainous regions. They express the long-term movement of perennially frozen ground. Rock Glacier Velocity (RGV), defined as the time series of the annualized surface velocity of a rock glacier unit or a part of it, has been accepted as an Essential Climate Variable Permafrost Quantity in 2022. This review aims to highlight the relationship between rock glacier velocity and climatic factors, emphasizing the scientific relevance of interannual rock glacier velocity in generating RGV products within the context of observed rock glacier kinematics. Under global warming, rock glacier velocity exhibits widespread (multi-)decennial acceleration. This acceleration varies regionally in onset timing (from the 1950s to the 2010s) and magnitude (up to a factor of 10), and has been observed in regions such as the European Alps, High Mountain Asia, and the Andes. Despite different local conditions, a synchronous interannual velocity pattern prevails in the European Alps since the 2000s, highlighting the primary influence of climate. A common pattern is the seasonal velocity rhythm, which peaks in late summer to autumn and declines in spring. RGV assesses permafrost evolution via (multi-)decennial and interannual changes in rock glacier velocity, influenced by air temperature shifts with varying time lags and snow cover effects. Although not integrated into the RGV products, seasonal variations should be examined. This rhythmic behavior is attributed to alterations in pore water pressure influenced by air temperature, snow cover, and ground water conditions.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":37.3,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024RG000847","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monitoring and Modeling the Soil-Plant System Toward Understanding Soil Health 土壤-植物系统监测与建模对土壤健康的认识
IF 37.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-01-25 DOI: 10.1029/2024RG000836
Yijian Zeng, Anne Verhoef, Harry Vereecken, Eyal Ben-Dor, Tom Veldkamp, Liz Shaw, Martine Van Der Ploeg, Yunfei Wang, Zhongbo Su

The soil health assessment has evolved from focusing primarily on agricultural productivity to an integrated evaluation of soil biota and biotic processes that impact soil properties. Consequently, soil health assessment has shifted from a predominantly physicochemical approach to incorporating ecological, biological and molecular microbiology indicators. This shift enables a comprehensive exploration of soil microbial community properties and their responses to environmental changes arising from climate change and anthropogenic disturbances. Despite the increasing availability of soil health indicators (physical, chemical, and biological) and data, a holistic mechanistic linkage has not yet been fully established between indicators and soil functions across multiple spatiotemporal scales. This article reviews the state-of-the-art of soil health monitoring, focusing on understanding how soil-microbiome-plant processes contribute to feedback mechanisms and causes of changes in soil properties, as well as the impact these changes have on soil functions. Furthermore, we survey the opportunities afforded by the soil-plant digital twin approach, an integrative framework that amalgamates process-based models, Earth Observation data, data assimilation, and physics-informed machine learning, to achieve a nuanced comprehension of soil health. This review delineates the prospective trajectory for monitoring soil health by embracing a digital twin approach to systematically observe and model the soil-plant system. We further identify gaps and opportunities, and provide perspectives for future research for an enhanced understanding of the intricate interplay between soil properties, soil hydrological processes, soil-plant hydraulics, soil microbiome, and landscape genomics.

土壤健康评估已从主要关注农业生产力发展到对影响土壤特性的土壤生物群和生物过程进行综合评价。因此,土壤健康评估已从主要采用物理化学方法转向纳入生态、生物和分子微生物学指标。这一转变使我们能够全面探索土壤微生物群落特性及其对气候变化和人为干扰引起的环境变化的响应。尽管土壤健康指标(物理、化学和生物)和数据的可用性不断增加,但在多个时空尺度上,指标与土壤功能之间的整体机制联系尚未完全建立。本文综述了土壤健康监测的最新进展,重点了解土壤-微生物组-植物过程如何促进土壤性质变化的反馈机制和原因,以及这些变化对土壤功能的影响。此外,我们调查了土壤-植物数字孪生方法提供的机会,这是一个整合基于过程的模型、地球观测数据、数据同化和物理信息机器学习的综合框架,以实现对土壤健康的细致理解。本文概述了采用数字孪生方法系统地观察和模拟土壤-植物系统来监测土壤健康的未来轨迹。我们进一步确定了差距和机会,并为未来的研究提供了视角,以增强对土壤特性、土壤水文过程、土壤-植物水力学、土壤微生物组和景观基因组学之间复杂相互作用的理解。
{"title":"Monitoring and Modeling the Soil-Plant System Toward Understanding Soil Health","authors":"Yijian Zeng,&nbsp;Anne Verhoef,&nbsp;Harry Vereecken,&nbsp;Eyal Ben-Dor,&nbsp;Tom Veldkamp,&nbsp;Liz Shaw,&nbsp;Martine Van Der Ploeg,&nbsp;Yunfei Wang,&nbsp;Zhongbo Su","doi":"10.1029/2024RG000836","DOIUrl":"10.1029/2024RG000836","url":null,"abstract":"<p>The soil health assessment has evolved from focusing primarily on agricultural productivity to an integrated evaluation of soil biota and biotic processes that impact soil properties. Consequently, soil health assessment has shifted from a predominantly physicochemical approach to incorporating ecological, biological and molecular microbiology indicators. This shift enables a comprehensive exploration of soil microbial community properties and their responses to environmental changes arising from climate change and anthropogenic disturbances. Despite the increasing availability of soil health indicators (physical, chemical, and biological) and data, a holistic mechanistic linkage has not yet been fully established between indicators and soil functions across multiple spatiotemporal scales. This article reviews the state-of-the-art of soil health monitoring, focusing on understanding how soil-microbiome-plant processes contribute to feedback mechanisms and causes of changes in soil properties, as well as the impact these changes have on soil functions. Furthermore, we survey the opportunities afforded by the soil-plant digital twin approach, an integrative framework that amalgamates process-based models, Earth Observation data, data assimilation, and physics-informed machine learning, to achieve a nuanced comprehension of soil health. This review delineates the prospective trajectory for monitoring soil health by embracing a digital twin approach to systematically observe and model the soil-plant system. We further identify gaps and opportunities, and provide perspectives for future research for an enhanced understanding of the intricate interplay between soil properties, soil hydrological processes, soil-plant hydraulics, soil microbiome, and landscape genomics.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":37.3,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024RG000836","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of Topography on the Global Terrestrial Water Cycle 地形对全球陆地水循环的影响
IF 37.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-01-03 DOI: 10.1029/2023RG000810
Sebastian Gnann, Jane W. Baldwin, Mark O. Cuthbert, Tom Gleeson, Wolfgang Schwanghart, Thorsten Wagener

Topography affects the distribution and movement of water on Earth, yet new insights about topographic controls continue to surprise us and exciting puzzles remain. Here we combine literature review and data synthesis to explore the influence of topography on the global terrestrial water cycle, from the atmosphere down to the groundwater. Above the land surface, topography induces gradients and contrasts in water and energy availability. Long-term precipitation usually increases with elevation in the mid-latitudes, while it peaks at low- to mid-elevations in the tropics. Potential evaporation tends to decrease with elevation in all climate zones. At the land surface, topography is expressed in snow distribution, vegetation zonation, geomorphic landforms, the critical zone, and drainage networks. Evaporation and vegetation activity are often highest at low- to mid-elevations where neither temperature, nor energy availability, nor water availability—often modulated by lateral moisture redistribution—impose strong limitations. Below the land surface, topography drives the movement of groundwater from local to continental scales. In many steep upland regions, groundwater systems are well connected to streams and provide ample baseflow, and streams often start losing water in foothills where bedrock transitions into highly permeable sediment. We conclude by presenting organizing principles, discussing the implications of climate change and human activity, and identifying data needs and knowledge gaps. A defining feature resulting from topography is the presence of gradients and contrasts, whose interactions explain many of the patterns we observe in nature and how they might change in the future.

地形影响着地球上水的分布和运动,但关于地形控制的新见解不断给我们带来惊喜,令人兴奋的谜题仍然存在。本文将文献综述与数据综合相结合,探讨地形对全球陆地水循环的影响,从大气到地下水。在陆地表面以上,地形导致了水和能量可用性的梯度和对比。在中纬度地区,长期降水通常随着海拔的升高而增加,而在热带地区,长期降水在中低海拔地区达到峰值。在所有气候带,潜在蒸发量随海拔升高而减小。在陆地表面,地形表现为积雪分布、植被带、地貌地貌、临界带和排水网络。蒸发和植被活动通常在低至中海拔地区最高,在那里,温度、能量可利用性和水分可利用性(通常由侧向水分再分配调节)都没有很强的限制。在地表以下,地形驱动着地下水从局部到大陆的运动。在许多陡峭的高地地区,地下水系统与溪流连接良好,并提供充足的基流,而在基岩转变为高渗透性沉积物的山麓,溪流经常开始失水。最后,我们提出了组织原则,讨论了气候变化和人类活动的影响,并确定了数据需求和知识差距。地形的一个决定性特征是梯度和对比的存在,它们的相互作用解释了我们在自然界中观察到的许多模式,以及它们在未来可能发生的变化。
{"title":"The Influence of Topography on the Global Terrestrial Water Cycle","authors":"Sebastian Gnann,&nbsp;Jane W. Baldwin,&nbsp;Mark O. Cuthbert,&nbsp;Tom Gleeson,&nbsp;Wolfgang Schwanghart,&nbsp;Thorsten Wagener","doi":"10.1029/2023RG000810","DOIUrl":"10.1029/2023RG000810","url":null,"abstract":"<p>Topography affects the distribution and movement of water on Earth, yet new insights about topographic controls continue to surprise us and exciting puzzles remain. Here we combine literature review and data synthesis to explore the influence of topography on the global terrestrial water cycle, from the atmosphere down to the groundwater. Above the land surface, topography induces gradients and contrasts in water and energy availability. Long-term precipitation usually increases with elevation in the mid-latitudes, while it peaks at low- to mid-elevations in the tropics. Potential evaporation tends to decrease with elevation in all climate zones. At the land surface, topography is expressed in snow distribution, vegetation zonation, geomorphic landforms, the critical zone, and drainage networks. Evaporation and vegetation activity are often highest at low- to mid-elevations where neither temperature, nor energy availability, nor water availability—often modulated by lateral moisture redistribution—impose strong limitations. Below the land surface, topography drives the movement of groundwater from local to continental scales. In many steep upland regions, groundwater systems are well connected to streams and provide ample baseflow, and streams often start losing water in foothills where bedrock transitions into highly permeable sediment. We conclude by presenting organizing principles, discussing the implications of climate change and human activity, and identifying data needs and knowledge gaps. A defining feature resulting from topography is the presence of gradients and contrasts, whose interactions explain many of the patterns we observe in nature and how they might change in the future.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":37.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000810","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142924463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impacts of Erosion on the Carbon Cycle 侵蚀对碳循环的影响
IF 37.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-01-02 DOI: 10.1029/2023RG000829
Haiyan Zheng, Chiyuan Miao, Chris Huntingford, Paolo Tarolli, Dongfeng Li, Panos Panagos, Yao Yue, Pasquale Borrelli, Kristof Van Oost

Physical and chemical erosion associated with water both affect land–atmosphere carbon exchanges. However, previous studies have often addressed these processes separately or used oversimplified mechanisms, leading to ongoing debates and uncertainties about erosion-induced carbon fluxes. We provide an overview of the on-site carbon uptake fluxes induced by physical erosion (0.05–0.29 Pg C yr−1, globally) and chemical erosion (0.26–0.48 Pg C yr−1). Then, we discuss off-site carbon dynamics (during transport, deposition, and burial). Soil organic carbon mineralization during transport is nearly 0.37–1.20 Pg C yr−1 on the globe. We also summarize the overall carbon fluxes into estuaries (0.71–1.06 Pg C yr−1) and identify the sources of different types of carbon within them, most of which are associated with land erosion. Current approaches for quantifying physical-erosion-induced vertical carbon fluxes focus on two distinct temporal scales: short-term dynamics (ranging from minutes to decades), emphasizing net vertical carbon flux, and long-term dynamics (spanning millennial to geological timescales), examining the fate of eroded carbon over extended periods. In addition to direct chemical measurement and modeling approaches, estimation using indicators of riverine material is popular for constraining chemical-erosion-driven carbon fluxes. Lastly, we highlight the key challenges for quantifying related fluxes. To overcome potential biases in future studies, we strongly recommend integrated research that addresses both physical and chemical erosion over a well-defined timescale. A comprehensive understanding of the mechanisms driving erosion-induced lateral and vertical carbon fluxes is crucial for closing the global carbon budget.

与水有关的物理和化学侵蚀都影响陆地-大气碳交换。然而,以前的研究往往单独处理这些过程或使用过于简化的机制,导致关于侵蚀引起的碳通量的持续争论和不确定性。我们概述了物理侵蚀(全球范围内0.05-0.29 Pg C yr - 1)和化学侵蚀(0.26-0.48 Pg C yr - 1)诱导的现场碳吸收通量。然后,我们讨论了场外碳动力学(在运输、沉积和掩埋过程中)。运输过程中全球土壤有机碳矿化约为0.37 ~ 1.20 Pg C yr−1。我们还总结了河口的总体碳通量(0.71-1.06 Pg C yr−1),并确定了河口内不同类型碳的来源,其中大部分与土地侵蚀有关。目前量化物理侵蚀引起的垂直碳通量的方法侧重于两个不同的时间尺度:短期动态(从几分钟到几十年),强调净垂直碳通量;长期动态(跨越千年到地质时间尺度),研究长期侵蚀碳的命运。除了直接的化学测量和建模方法外,利用河流物质指标进行估算是限制化学侵蚀驱动的碳通量的常用方法。最后,我们强调了量化相关通量的主要挑战。为了克服未来研究中潜在的偏差,我们强烈建议在一个明确的时间尺度上进行物理和化学侵蚀的综合研究。全面了解侵蚀引起的横向和垂直碳通量的驱动机制对于关闭全球碳预算至关重要。
{"title":"The Impacts of Erosion on the Carbon Cycle","authors":"Haiyan Zheng,&nbsp;Chiyuan Miao,&nbsp;Chris Huntingford,&nbsp;Paolo Tarolli,&nbsp;Dongfeng Li,&nbsp;Panos Panagos,&nbsp;Yao Yue,&nbsp;Pasquale Borrelli,&nbsp;Kristof Van Oost","doi":"10.1029/2023RG000829","DOIUrl":"10.1029/2023RG000829","url":null,"abstract":"<p>Physical and chemical erosion associated with water both affect land–atmosphere carbon exchanges. However, previous studies have often addressed these processes separately or used oversimplified mechanisms, leading to ongoing debates and uncertainties about erosion-induced carbon fluxes. We provide an overview of the on-site carbon uptake fluxes induced by physical erosion (0.05–0.29 Pg C yr<sup>−1</sup>, globally) and chemical erosion (0.26–0.48 Pg C yr<sup>−1</sup>). Then, we discuss off-site carbon dynamics (during transport, deposition, and burial). Soil organic carbon mineralization during transport is nearly 0.37–1.20 Pg C yr<sup>−1</sup> on the globe. We also summarize the overall carbon fluxes into estuaries (0.71–1.06 Pg C yr<sup>−1</sup>) and identify the sources of different types of carbon within them, most of which are associated with land erosion. Current approaches for quantifying physical-erosion-induced vertical carbon fluxes focus on two distinct temporal scales: short-term dynamics (ranging from minutes to decades), emphasizing net vertical carbon flux, and long-term dynamics (spanning millennial to geological timescales), examining the fate of eroded carbon over extended periods. In addition to direct chemical measurement and modeling approaches, estimation using indicators of riverine material is popular for constraining chemical-erosion-driven carbon fluxes. Lastly, we highlight the key challenges for quantifying related fluxes. To overcome potential biases in future studies, we strongly recommend integrated research that addresses both physical and chemical erosion over a well-defined timescale. A comprehensive understanding of the mechanisms driving erosion-induced lateral and vertical carbon fluxes is crucial for closing the global carbon budget.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":37.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000829","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effects of Changing Environments, Abiotic Stresses, and Management Practices on Cropland Evapotranspiration: A Review 变化的环境、非生物胁迫和管理措施对农田蒸散的影响
IF 37.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-12-30 DOI: 10.1029/2024RG000858
Rangjian Qiu, Gabriel G. Katul, Lu Zhang, Shunjing Qin, Xuelian Jiang

The significance of crop evapotranspiration (ETa) to climate science, agronomic research, and water resources is not in dispute. What continues to draw attention is how variability in ETa is driven by changing environments, abiotic stresses, and management practices. Here, the impacts of elevated CO2 concentration (e[CO2]), elevated ozone concentration (e[O3]), warming, abiotic stresses (water, salinity, heat stresses), and management practices (planting density, irrigation methods, mulching, nitrogen application) on cropland ETa were reviewed, along with their possible causes and estimation. Water and salinity stresses, e[O3], and drip irrigation adoption generally led to lower total growing–season ETa. However, total growing–season ETa responses to e[CO2], warming, heat stress, mulching, planting density, and nitrogen supplement appear inconsistent across empirical studies. The effects of e[CO2], e[O3], water and salinity stresses on total growing–season ETa are attributed to their influence on stomatal conductance, root water uptake, root and leaf area development, microclimate, and potentially phenology. Total growing–season ETa in response to warming is affected by variations in ambient growing–season mean air temperature and phenology. The differences in crop ETa under varying planting densities are due to their differences in leaf area. The responses of ETa to heat stress, mulching, and nitrogen application represent trade–off between their opposite effects on transpiration and evaporation, along with possibly phenology. Modified ETa models currently in use can estimate the response of ETa to the many aforementioned factors except for e[O3], heat stress, and nitrogen application. These factors offer a blueprint for future research inquiries.

作物蒸散量(ETa)对气候科学、农艺研究和水资源的重要性是无可争议的。持续引起关注的是ETa的可变性是如何由不断变化的环境、非生物压力和管理实践驱动的。本文综述了CO2浓度升高(e[CO2])、臭氧浓度升高(e[O3])、气候变暖、非生物胁迫(水、盐、热胁迫)和管理措施(种植密度、灌溉方式、覆盖、施氮)对农田ETa的影响,以及它们的可能原因和估计。水分和盐分胁迫,e[O3]和采用滴灌通常导致生长季总ETa降低。然而,在不同的实证研究中,总生长季ETa对e[CO2]、增温、热胁迫、覆盖、种植密度和补氮的响应并不一致。e[CO2]、e[O3]、水和盐胁迫对整个生长季ETa的影响主要来自于气孔导度、根系水分吸收、根和叶面积发育、小气候以及潜在的物候。总生长季ETa对变暖的响应受环境生长季平均气温和物候变化的影响。不同种植密度下作物ETa的差异是由于叶片面积的差异造成的。ETa对热胁迫、覆盖和施氮的响应反映了它们对蒸腾和蒸发的相反影响之间的权衡,以及可能的物候特征。目前使用的修正ETa模型可以估计除e[O3]、热应力和施氮外,ETa对上述许多因素的响应。这些因素为今后的研究提供了蓝图。
{"title":"The Effects of Changing Environments, Abiotic Stresses, and Management Practices on Cropland Evapotranspiration: A Review","authors":"Rangjian Qiu,&nbsp;Gabriel G. Katul,&nbsp;Lu Zhang,&nbsp;Shunjing Qin,&nbsp;Xuelian Jiang","doi":"10.1029/2024RG000858","DOIUrl":"10.1029/2024RG000858","url":null,"abstract":"<p>The significance of crop evapotranspiration (ET<sub>a</sub>) to climate science, agronomic research, and water resources is not in dispute. What continues to draw attention is how variability in ET<sub>a</sub> is driven by changing environments, abiotic stresses, and management practices. Here, the impacts of elevated CO<sub>2</sub> concentration (e[CO<sub>2</sub>]), elevated ozone concentration (e[O<sub>3</sub>]), warming, abiotic stresses (water, salinity, heat stresses), and management practices (planting density, irrigation methods, mulching, nitrogen application) on cropland ET<sub>a</sub> were reviewed, along with their possible causes and estimation. Water and salinity stresses, e[O<sub>3</sub>], and drip irrigation adoption generally led to lower total growing–season ET<sub>a</sub>. However, total growing–season ET<sub>a</sub> responses to e[CO<sub>2</sub>], warming, heat stress, mulching, planting density, and nitrogen supplement appear inconsistent across empirical studies. The effects of e[CO<sub>2</sub>], e[O<sub>3</sub>], water and salinity stresses on total growing–season ET<sub>a</sub> are attributed to their influence on stomatal conductance, root water uptake, root and leaf area development, microclimate, and potentially phenology. Total growing–season ET<sub>a</sub> in response to warming is affected by variations in ambient growing–season mean air temperature and phenology. The differences in crop ET<sub>a</sub> under varying planting densities are due to their differences in leaf area. The responses of ET<sub>a</sub> to heat stress, mulching, and nitrogen application represent trade–off between their opposite effects on transpiration and evaporation, along with possibly phenology. Modified ET<sub>a</sub> models currently in use can estimate the response of ET<sub>a</sub> to the many aforementioned factors except for e[O<sub>3</sub>], heat stress, and nitrogen application. These factors offer a blueprint for future research inquiries.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":37.3,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coastal Flooding in Asian Megadeltas: Recent Advances, Persistent Challenges, and Call for Actions Amidst Local and Global Changes 亚洲大三角洲沿海洪灾:近期进展、持续挑战以及在地方和全球变化中采取行动的呼吁
IF 37.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-12-16 DOI: 10.1029/2024RG000846
M. Becker, K. Seeger, A. Paszkowski, M. Marcos, F. Papa, R. Almar, P. Bates, C. France-Lanord, Md S. Hossain, Md J. U. Khan, M. A. Karegar, M. Karpytchev, N. Long, P. S. J. Minderhoud, J. Neal, R. J. Nicholls, J. Syvitski

Asian megadeltas, specifically the Ganges-Brahmaputra-Meghna, Irrawaddy, Chao Phraya, Mekong, and Red River deltas host half of the world's deltaic population and are vital for Asian countries' ecosystems and food production. These deltas are extremely vulnerable to global change. Accelerating relative sea-level rise, combined with rapid socio-economic development intensifies these vulnerabilities and calls for a comprehensive understanding of current and future coastal flood dynamics. Here we provide a state-of-the-art on the current knowledge and recent advances in quantifying and understanding the drivers of coastal flood-related hazards in these deltas. We discuss the environmental and physical drivers, including climate influence, hydrology, oceanography, geomorphology, and geophysical processes and how they interact from short to long-term changes, including during extreme events. We also jointly examine how human disturbances, with catchment interventions, land use changes and resource exploitations, contribute to coastal flooding in the deltas. Through a systems perspective, we characterize the current state of the deltaic systems and provide essential insights for shaping their sustainable future trajectories regarding the multifaceted challenges of coastal flooding.

亚洲的大三角洲,特别是恒河-布拉马普特拉河-梅格纳河、伊洛瓦底江、湄南河、湄公河和红河三角洲,拥有世界三角洲人口的一半,对亚洲国家的生态系统和粮食生产至关重要。这些三角洲极易受到全球变化的影响。海平面相对上升的加速,加上社会经济的快速发展,加剧了这些脆弱性,需要全面了解当前和未来沿海洪水的动态。在这里,我们提供了在量化和理解这些三角洲沿海洪水相关灾害的驱动因素方面的最新知识和最新进展。我们讨论了环境和物理驱动因素,包括气候影响、水文、海洋学、地貌和地球物理过程,以及它们如何从短期到长期的变化相互作用,包括在极端事件期间。我们还共同研究了人类干扰,包括集水区干预、土地利用变化和资源开发,是如何导致三角洲沿海洪水的。通过系统的角度,我们描述了三角洲系统的现状,并就沿海洪水的多方面挑战为塑造其可持续的未来轨迹提供了重要的见解。
{"title":"Coastal Flooding in Asian Megadeltas: Recent Advances, Persistent Challenges, and Call for Actions Amidst Local and Global Changes","authors":"M. Becker,&nbsp;K. Seeger,&nbsp;A. Paszkowski,&nbsp;M. Marcos,&nbsp;F. Papa,&nbsp;R. Almar,&nbsp;P. Bates,&nbsp;C. France-Lanord,&nbsp;Md S. Hossain,&nbsp;Md J. U. Khan,&nbsp;M. A. Karegar,&nbsp;M. Karpytchev,&nbsp;N. Long,&nbsp;P. S. J. Minderhoud,&nbsp;J. Neal,&nbsp;R. J. Nicholls,&nbsp;J. Syvitski","doi":"10.1029/2024RG000846","DOIUrl":"10.1029/2024RG000846","url":null,"abstract":"<p>Asian megadeltas, specifically the Ganges-Brahmaputra-Meghna, Irrawaddy, Chao Phraya, Mekong, and Red River deltas host half of the world's deltaic population and are vital for Asian countries' ecosystems and food production. These deltas are extremely vulnerable to global change. Accelerating relative sea-level rise, combined with rapid socio-economic development intensifies these vulnerabilities and calls for a comprehensive understanding of current and future coastal flood dynamics. Here we provide a state-of-the-art on the current knowledge and recent advances in quantifying and understanding the drivers of coastal flood-related hazards in these deltas. We discuss the environmental and physical drivers, including climate influence, hydrology, oceanography, geomorphology, and geophysical processes and how they interact from short to long-term changes, including during extreme events. We also jointly examine how human disturbances, with catchment interventions, land use changes and resource exploitations, contribute to coastal flooding in the deltas. Through a systems perspective, we characterize the current state of the deltaic systems and provide essential insights for shaping their sustainable future trajectories regarding the multifaceted challenges of coastal flooding.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"62 4","pages":""},"PeriodicalIF":37.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024RG000846","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Reviews of Geophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1