首页 > 最新文献

Reviews of Geophysics最新文献

英文 中文
Ice-Nucleating Particles That Impact Clouds and Climate: Observational and Modeling Research Needs 影响云和气候的冰核粒子:观测和模拟研究需求
IF 25.2 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-04-21 DOI: 10.1029/2021RG000745
Susannah M. Burrows, Christina S. McCluskey, Gavin Cornwell, Isabelle Steinke, Kai Zhang, Bin Zhao, Maria Zawadowicz, Aishwarya Raman, Gourihar Kulkarni, Swarup China, Alla Zelenyuk, Paul J. DeMott

Atmospheric ice-nucleating particles (INPs) play a critical role in cloud freezing processes, with important implications for precipitation formation and cloud radiative properties, and thus for weather and climate. Additionally, INP emissions respond to changes in the Earth System and climate, for example, desertification, agricultural practices, and fires, and therefore may introduce climate feedbacks that are still poorly understood. As knowledge of the nature and origins of INPs has advanced, regional and global weather, climate, and Earth system models have increasingly begun to link cloud ice processes to model-simulated aerosol abundance and types. While these recent advances are exciting, coupling cloud processes to simulated aerosol also makes cloud physics simulations increasingly susceptible to uncertainties in simulation of INPs, which are still poorly constrained by observations. Advancing the predictability of INP abundance with reasonable spatiotemporal resolution will require an increased focus on research that bridges the measurement and modeling communities. This review summarizes the current state of knowledge and identifies critical knowledge gaps from both observational and modeling perspectives. In particular, we emphasize needs in two key areas: (a) observational closure between aerosol and INP quantities and (b) skillful simulation of INPs within existing weather and climate models. We discuss the state of knowledge on various INP particle types and briefly discuss the challenges faced in understanding the cloud impacts of INPs with present-day models. Finally, we identify priority research directions for both observations and models to improve understanding of INPs and their interactions with the Earth System.

大气冰核粒子(INPs)在云冻结过程中起着关键作用,对降水形成和云辐射特性以及天气和气候具有重要意义。此外,INP排放对地球系统和气候的变化作出反应,例如荒漠化、农业实践和火灾,因此可能引入尚不清楚的气候反馈。随着对INPs的性质和起源的了解不断深入,区域和全球天气、气候和地球系统模式越来越多地开始将云冰过程与模式模拟的气溶胶丰度和类型联系起来。虽然这些最近的进展令人兴奋,但将云过程与模拟气溶胶相耦合也使云物理模拟越来越容易受到INPs模拟中的不确定性的影响,而INPs的模拟仍然很少受到观测的约束。以合理的时空分辨率推进INP丰度的可预测性将需要更多地关注连接测量和建模社区的研究。这篇综述总结了目前的知识状况,并从观察和建模的角度确定了关键的知识差距。我们特别强调在两个关键领域的需要:(a)气溶胶和INP量之间的观测关闭和(b)在现有天气和气候模式内熟练地模拟INP。我们讨论了各种INP粒子类型的知识状况,并简要讨论了用当前模式理解INP云影响所面临的挑战。最后,我们确定了观测和模式的优先研究方向,以提高对INPs及其与地球系统相互作用的理解。
{"title":"Ice-Nucleating Particles That Impact Clouds and Climate: Observational and Modeling Research Needs","authors":"Susannah M. Burrows,&nbsp;Christina S. McCluskey,&nbsp;Gavin Cornwell,&nbsp;Isabelle Steinke,&nbsp;Kai Zhang,&nbsp;Bin Zhao,&nbsp;Maria Zawadowicz,&nbsp;Aishwarya Raman,&nbsp;Gourihar Kulkarni,&nbsp;Swarup China,&nbsp;Alla Zelenyuk,&nbsp;Paul J. DeMott","doi":"10.1029/2021RG000745","DOIUrl":"10.1029/2021RG000745","url":null,"abstract":"<p>Atmospheric ice-nucleating particles (INPs) play a critical role in cloud freezing processes, with important implications for precipitation formation and cloud radiative properties, and thus for weather and climate. Additionally, INP emissions respond to changes in the Earth System and climate, for example, desertification, agricultural practices, and fires, and therefore may introduce climate feedbacks that are still poorly understood. As knowledge of the nature and origins of INPs has advanced, regional and global weather, climate, and Earth system models have increasingly begun to link cloud ice processes to model-simulated aerosol abundance and types. While these recent advances are exciting, coupling cloud processes to simulated aerosol also makes cloud physics simulations increasingly susceptible to uncertainties in simulation of INPs, which are still poorly constrained by observations. Advancing the predictability of INP abundance with reasonable spatiotemporal resolution will require an increased focus on research that bridges the measurement and modeling communities. This review summarizes the current state of knowledge and identifies critical knowledge gaps from both observational and modeling perspectives. In particular, we emphasize needs in two key areas: (a) observational closure between aerosol and INP quantities and (b) skillful simulation of INPs within existing weather and climate models. We discuss the state of knowledge on various INP particle types and briefly discuss the challenges faced in understanding the cloud impacts of INPs with present-day models. Finally, we identify priority research directions for both observations and models to improve understanding of INPs and their interactions with the Earth System.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 2","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000745","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90583642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Global and Regional Trends and Drivers of Fire Under Climate Change 气候变化下全球和区域火灾趋势及驱动因素
IF 25.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-04-11 DOI: 10.1029/2020RG000726
Matthew W. Jones, John T. Abatzoglou, Sander Veraverbeke, Niels Andela, Gitta Lasslop, Matthias Forkel, Adam J. P. Smith, Chantelle Burton, Richard A. Betts, Guido R. van der Werf, Stephen Sitch, Josep G. Canadell, Cristina Santín, Crystal Kolden, Stefan H. Doerr, Corinne Le Quéré

Recent wildfire outbreaks around the world have prompted concern that climate change is increasing fire incidence, threatening human livelihood and biodiversity, and perpetuating climate change. Here, we review current understanding of the impacts of climate change on fire weather (weather conditions conducive to the ignition and spread of wildfires) and the consequences for regional fire activity as mediated by a range of other bioclimatic factors (including vegetation biogeography, productivity and lightning) and human factors (including ignition, suppression, and land use). Through supplemental analyses, we present a stocktake of regional trends in fire weather and burned area (BA) during recent decades, and we examine how fire activity relates to its bioclimatic and human drivers. Fire weather controls the annual timing of fires in most world regions and also drives inter-annual variability in BA in the Mediterranean, the Pacific US and high latitude forests. Increases in the frequency and extremity of fire weather have been globally pervasive due to climate change during 1979–2019, meaning that landscapes are primed to burn more frequently. Correspondingly, increases in BA of ∼50% or higher have been seen in some extratropical forest ecoregions including in the Pacific US and high-latitude forests during 2001–2019, though interannual variability remains large in these regions. Nonetheless, other bioclimatic and human factors can override the relationship between BA and fire weather. For example, BA in savannahs relates more strongly to patterns of fuel production or to the fragmentation of naturally fire-prone landscapes by agriculture. Similarly, BA trends in tropical forests relate more strongly to deforestation rates and forest degradation than to changing fire weather. Overall, BA has reduced by 27% globally in the past two decades, due in large part to a decline in BA in African savannahs. According to climate models, the prevalence and extremity of fire weather has already emerged beyond its pre-industrial variability in the Mediterranean due to climate change, and emergence will become increasingly widespread at additional levels of warming. Moreover, several of the major wildfires experienced in recent years, including the Australian bushfires of 2019/2020, have occurred amidst fire weather conditions that were considerably more likely due to climate change. Current fire models incompletely reproduce the observed spatial patterns of BA based on their existing representations of the relationships between fire and its bioclimatic and human controls, and historical trends in BA also vary considerably across models. Advances in the observation of fire and understanding of its controlling factors are supporting the addition or optimization of a range of processes in models. Overall, climate change is exerting a pervasive upwards pressure on fire globally by increasing the frequency and intensity of fire weather, and this upwards pressu

最近世界各地发生的野火引发了人们的担忧,即气候变化正在增加火灾发生率,威胁人类生计和生物多样性,并使气候变化永久化。在这里,我们回顾了目前对气候变化对火灾天气(有利于野火着火和蔓延的天气条件)的影响以及一系列其他生物气候因素(包括植被、生物地理、生产力和闪电)和人为因素(包括着火、扑灭和土地利用)介导的区域火灾活动的后果的理解。通过补充分析,我们总结了近几十年来火灾天气和烧伤面积(BA)的区域趋势,并研究了火灾活动与生物气候和人类驱动因素的关系。火灾天气控制着世界上大多数地区的年度火灾时间,也驱动着地中海、太平洋美国和高纬度森林的BA年际变化。1979年至2019年期间,由于气候变化,火灾天气的频率和极端程度在全球范围内普遍增加,这意味着景观将更频繁地燃烧。相应地,在2001-2019年期间,包括美国太平洋和高纬度森林在内的一些温带森林生态区的BA增加了~ 50%或更高,尽管这些地区的年际变率仍然很大。尽管如此,其他生物气候和人为因素可以超越BA和火灾天气之间的关系。例如,大草原上的BA与燃料生产模式或农业对自然火灾易发景观的破坏关系更大。同样,热带森林的BA趋势与毁林率和森林退化的关系比与变化的火灾天气的关系更大。总的来说,在过去的二十年里,全球的BA减少了27%,这在很大程度上是由于非洲大草原BA的减少。根据气候模型,由于气候变化,地中海地区火灾天气的流行程度和极端程度已经超出了工业化前的多变性,而且在额外的变暖水平下,火灾天气的出现将变得越来越普遍。此外,近年来发生的几起重大野火,包括2019/2020年的澳大利亚森林大火,都是在火灾天气条件下发生的,而气候变化更有可能导致火灾天气条件。目前的火灾模型基于现有的火灾及其生物气候和人类控制之间关系的表征,不能完全再现观测到的BA空间格局,并且不同模型之间BA的历史趋势也存在很大差异。对火灾的观察和对其控制因素的理解的进展正在支持模型中一系列过程的添加或优化。总体而言,气候变化通过增加火灾天气的频率和强度,正在全球范围内对火灾施加普遍的上行压力,并且这种上行压力将随着全球变暖的每一次增加而升级。为了预测未来的火灾活动并减轻其后果,需要改进火灾模型,更好地了解气候、极端气候、人类和火灾之间的相互作用。
{"title":"Global and Regional Trends and Drivers of Fire Under Climate Change","authors":"Matthew W. Jones,&nbsp;John T. Abatzoglou,&nbsp;Sander Veraverbeke,&nbsp;Niels Andela,&nbsp;Gitta Lasslop,&nbsp;Matthias Forkel,&nbsp;Adam J. P. Smith,&nbsp;Chantelle Burton,&nbsp;Richard A. Betts,&nbsp;Guido R. van der Werf,&nbsp;Stephen Sitch,&nbsp;Josep G. Canadell,&nbsp;Cristina Santín,&nbsp;Crystal Kolden,&nbsp;Stefan H. Doerr,&nbsp;Corinne Le Quéré","doi":"10.1029/2020RG000726","DOIUrl":"https://doi.org/10.1029/2020RG000726","url":null,"abstract":"<p>Recent wildfire outbreaks around the world have prompted concern that climate change is increasing fire incidence, threatening human livelihood and biodiversity, and perpetuating climate change. Here, we review current understanding of the impacts of climate change on fire weather (weather conditions conducive to the ignition and spread of wildfires) and the consequences for regional fire activity as mediated by a range of other bioclimatic factors (including vegetation biogeography, productivity and lightning) and human factors (including ignition, suppression, and land use). Through supplemental analyses, we present a stocktake of regional trends in fire weather and burned area (BA) during recent decades, and we examine how fire activity relates to its bioclimatic and human drivers. Fire weather controls the annual timing of fires in most world regions and also drives inter-annual variability in BA in the Mediterranean, the Pacific US and high latitude forests. Increases in the frequency and extremity of fire weather have been globally pervasive due to climate change during 1979–2019, meaning that landscapes are primed to burn more frequently. Correspondingly, increases in BA of ∼50% or higher have been seen in some extratropical forest ecoregions including in the Pacific US and high-latitude forests during 2001–2019, though interannual variability remains large in these regions. Nonetheless, other bioclimatic and human factors can override the relationship between BA and fire weather. For example, BA in savannahs relates more strongly to patterns of fuel production or to the fragmentation of naturally fire-prone landscapes by agriculture. Similarly, BA trends in tropical forests relate more strongly to deforestation rates and forest degradation than to changing fire weather. Overall, BA has reduced by 27% globally in the past two decades, due in large part to a decline in BA in African savannahs. According to climate models, the prevalence and extremity of fire weather has already emerged beyond its pre-industrial variability in the Mediterranean due to climate change, and emergence will become increasingly widespread at additional levels of warming. Moreover, several of the major wildfires experienced in recent years, including the Australian bushfires of 2019/2020, have occurred amidst fire weather conditions that were considerably more likely due to climate change. Current fire models incompletely reproduce the observed spatial patterns of BA based on their existing representations of the relationships between fire and its bioclimatic and human controls, and historical trends in BA also vary considerably across models. Advances in the observation of fire and understanding of its controlling factors are supporting the addition or optimization of a range of processes in models. Overall, climate change is exerting a pervasive upwards pressure on fire globally by increasing the frequency and intensity of fire weather, and this upwards pressu","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 3","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2020RG000726","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6172077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 101
How Well Do We Understand the Land-Ocean-Atmosphere Carbon Cycle? 我们对陆地-海洋-大气碳循环的了解有多深?
IF 25.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-04-08 DOI: 10.1029/2021RG000736
David Crisp, Han Dolman, Toste Tanhua, Galen A. McKinley, Judith Hauck, Ana Bastos, Stephen Sitch, Simon Eggleston, Valentin Aich

Fossil fuel combustion, land use change and other human activities have increased the atmospheric carbon dioxide (CO2) abundance by about 50% since the beginning of the industrial age. The atmospheric CO2 growth rates would have been much larger if natural sinks in the land biosphere and ocean had not removed over half of this anthropogenic CO2. As these CO2 emissions grew, uptake by the ocean increased in response to increases in atmospheric CO2 partial pressure (pCO2). On land, gross primary production also increased, but the dynamics of other key aspects of the land carbon cycle varied regionally. Over the past three decades, CO2 uptake by intact tropical humid forests declined, but these changes are offset by increased uptake across mid- and high-latitudes. While there have been substantial improvements in our ability to study the carbon cycle, measurement and modeling gaps still limit our understanding of the processes driving its evolution. Continued ship-based observations combined with expanded deployments of autonomous platforms are needed to quantify ocean-atmosphere fluxes and interior ocean carbon storage on policy-relevant spatial and temporal scales. There is also an urgent need for more comprehensive measurements of stocks, fluxes and atmospheric CO2 in humid tropical forests and across the Arctic and boreal regions, which are experiencing rapid change. Here, we review our understanding of the atmosphere, ocean, and land carbon cycles and their interactions, identify emerging measurement and modeling capabilities and gaps and the need for a sustainable, operational framework to ensure a scientific basis for carbon management.

自工业时代开始以来,化石燃料燃烧、土地利用变化和其他人类活动使大气中的二氧化碳(CO2)丰度增加了约50%。如果陆地生物圈和海洋中的自然汇没有消除一半以上的人为二氧化碳,大气中的二氧化碳增长率将会大得多。随着这些二氧化碳排放量的增加,海洋的吸收量也随着大气二氧化碳分压(pCO2)的增加而增加。在土地上,初级生产总值也有所增加,但土地碳循环其他关键方面的动态因区域而异。在过去三十年中,完整的热带潮湿森林的二氧化碳吸收量下降,但这些变化被中高纬度地区吸收量的增加所抵消。虽然我们研究碳循环的能力有了实质性的提高,但测量和建模的差距仍然限制了我们对推动其演变的过程的理解。要在与政策相关的时空尺度上量化海洋-大气通量和海洋内部碳储量,需要持续的船舶观测与自主平台的扩大部署相结合。还迫切需要更全面地测量潮湿的热带森林以及整个北极和北方地区的二氧化碳储量、通量和大气中的二氧化碳,这些地区正在经历迅速的变化。在这里,我们回顾了我们对大气、海洋和陆地碳循环及其相互作用的认识,确定了新兴的测量和建模能力和差距,以及需要一个可持续的、可操作的框架,以确保碳管理的科学基础。
{"title":"How Well Do We Understand the Land-Ocean-Atmosphere Carbon Cycle?","authors":"David Crisp,&nbsp;Han Dolman,&nbsp;Toste Tanhua,&nbsp;Galen A. McKinley,&nbsp;Judith Hauck,&nbsp;Ana Bastos,&nbsp;Stephen Sitch,&nbsp;Simon Eggleston,&nbsp;Valentin Aich","doi":"10.1029/2021RG000736","DOIUrl":"10.1029/2021RG000736","url":null,"abstract":"<p>Fossil fuel combustion, land use change and other human activities have increased the atmospheric carbon dioxide (CO<sub>2</sub>) abundance by about 50% since the beginning of the industrial age. The atmospheric CO<sub>2</sub> growth rates would have been much larger if natural sinks in the land biosphere and ocean had not removed over half of this anthropogenic CO<sub>2</sub>. As these CO<sub>2</sub> emissions grew, uptake by the ocean increased in response to increases in atmospheric CO<sub>2</sub> partial pressure (pCO<sub>2</sub>). On land, gross primary production also increased, but the dynamics of other key aspects of the land carbon cycle varied regionally. Over the past three decades, CO<sub>2</sub> uptake by intact tropical humid forests declined, but these changes are offset by increased uptake across mid- and high-latitudes. While there have been substantial improvements in our ability to study the carbon cycle, measurement and modeling gaps still limit our understanding of the processes driving its evolution. Continued ship-based observations combined with expanded deployments of autonomous platforms are needed to quantify ocean-atmosphere fluxes and interior ocean carbon storage on policy-relevant spatial and temporal scales. There is also an urgent need for more comprehensive measurements of stocks, fluxes and atmospheric CO<sub>2</sub> in humid tropical forests and across the Arctic and boreal regions, which are experiencing rapid change. Here, we review our understanding of the atmosphere, ocean, and land carbon cycles and their interactions, identify emerging measurement and modeling capabilities and gaps and the need for a sustainable, operational framework to ensure a scientific basis for carbon management.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 2","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000736","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80383004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 30
The Role of Quartz Cementation in the Seismic Cycle: A Critical Review 石英胶结作用在地震旋回中的重要作用
IF 25.2 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-03-06 DOI: 10.1029/2021RG000768
Randolph T. Williams, ?ke Fagereng

Because quartz veins are common in fault zones exhumed from earthquake nucleation temperatures (150°C–350°C), quartz cementation may be an important mechanism of strength recovery between earthquakes. This interpretation requires that cementation occurs within a single interseismic period. We review slip-related processes that have been argued to allow rapid quartz precipitation in faults, including: advection of silica-saturated fluids, coseismic pore-fluid pressure drops, frictional heating, dissolution-precipitation creep, precipitation of amorphous phases, and variations in fluid and mineral-surface chemistry. We assess the rate and magnitude of quartz growth that may result from each of the examined mechanisms. We find limitations to the kinetics and mass balance of silica precipitation that emphasize two end-member regimes. First, the mechanisms we explore, given current kinetic constraints, cannot explain mesoscale fault-fracture vein networks developing, even incrementally, on interseismic timescales. On the other hand, some mechanisms appear capable, isolated or in combination, of cementing micrometer-to-millimeter thick principal slip surfaces in days to years. This does not explain extensive vein networks in fault damage zones, but allows the involvement of quartz cements in fault healing. These end-members lead us to hypothesize that high flux scenarios, although more important for voluminous hydrothermal mineralization, may be of subsidiary importance to local, diffusive mass transport in low fluid-flux faults when discussing the mechanical implications of quartz cements. A renewed emphasis on the controls on quartz cementation rates in fault zones will, however, be integral to developing a more complete understanding of strength recovery following earthquake rupture.

由于石英脉在地震成核温度(150°C - 350°C)下的断裂带中很常见,石英胶结可能是地震间强度恢复的重要机制。这种解释要求胶结作用发生在单一的地震间期。我们回顾了与滑动相关的过程,这些过程被认为允许在断层中快速沉淀石英,包括:硅饱和流体的平流,同震孔隙流体压力降,摩擦加热,溶解-沉淀蠕变,非晶相的沉淀,以及流体和矿物表面化学的变化。我们评估了石英生长的速率和幅度,这可能是由每一种被检查的机制造成的。我们发现限制动力学和质量平衡的二氧化硅沉淀,强调两个端元制度。首先,考虑到目前的动力学约束,我们所探索的机制无法解释中尺度断层-破裂脉网在震间时间尺度上的发展,甚至是渐进的发展。另一方面,某些机制似乎能够在几天到几年的时间内,单独或组合地固井微米到毫米厚的主滑移面。这并不能解释断层破坏带中广泛的脉网,但允许石英胶结物参与断层愈合。这些端元使我们假设,尽管高通量情景对大规模热液成矿作用更为重要,但在讨论石英胶结物的力学意义时,可能对低通量断层的局部弥漫性质量输运具有辅助作用。然而,重新强调对断裂带石英胶结速率的控制,对于更全面地了解地震破裂后的强度恢复是不可或缺的。
{"title":"The Role of Quartz Cementation in the Seismic Cycle: A Critical Review","authors":"Randolph T. Williams,&nbsp;?ke Fagereng","doi":"10.1029/2021RG000768","DOIUrl":"https://doi.org/10.1029/2021RG000768","url":null,"abstract":"<p>Because quartz veins are common in fault zones exhumed from earthquake nucleation temperatures (150°C–350°C), quartz cementation may be an important mechanism of strength recovery between earthquakes. This interpretation requires that cementation occurs within a single interseismic period. We review slip-related processes that have been argued to allow rapid quartz precipitation in faults, including: advection of silica-saturated fluids, coseismic pore-fluid pressure drops, frictional heating, dissolution-precipitation creep, precipitation of amorphous phases, and variations in fluid and mineral-surface chemistry. We assess the rate and magnitude of quartz growth that may result from each of the examined mechanisms. We find limitations to the kinetics and mass balance of silica precipitation that emphasize two end-member regimes. First, the mechanisms we explore, given current kinetic constraints, cannot explain mesoscale fault-fracture vein networks developing, even incrementally, on interseismic timescales. On the other hand, some mechanisms appear capable, isolated or in combination, of cementing micrometer-to-millimeter thick principal slip surfaces in days to years. This does not explain extensive vein networks in fault damage zones, but allows the involvement of quartz cements in fault healing. These end-members lead us to hypothesize that high flux scenarios, although more important for voluminous hydrothermal mineralization, may be of subsidiary importance to local, diffusive mass transport in low fluid-flux faults when discussing the mechanical implications of quartz cements. A renewed emphasis on the controls on quartz cementation rates in fault zones will, however, be integral to developing a more complete understanding of strength recovery following earthquake rupture.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5728055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Surface Water and Groundwater Interactions in Salt Marshes and Their Impact on Plant Ecology and Coastal Biogeochemistry 盐沼地表水和地下水相互作用及其对植物生态和海岸生物地球化学的影响
IF 25.2 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-02-02 DOI: 10.1029/2021RG000740
Pei Xin, Alicia Wilson, Chengji Shen, Zhenming Ge, Kevan B. Moffett, Isaac R. Santos, Xiaogang Chen, Xinghua Xu, Yvonne Y. Y. Yau, Willard Moore, Ling Li, D. A. Barry

Salt marshes are highly productive intertidal wetlands providing important ecological services for maintaining coastal biodiversity, buffering against oceanic storms, and acting as efficient carbon sinks. However, about half of these wetlands have been lost globally due to human activities and climate change. Inundated periodically by tidal water, salt marshes are subjected to strong surface water and groundwater interactions, which affect marsh plant growth and biogeochemical exchange with coastal water. This paper reviews the state of knowledge and current approaches to quantifying marsh surface water and groundwater interactions with a focus on porewater flow and associated soil conditions in connection with plant zonation as well as carbon, nutrients, and greenhouse gas fluxes. Porewater flow and solute transport in salt marshes are primarily driven by tides with moderate regulation by rainfall, evapotranspiration and sea level rise. Tidal fluctuations play a key role in plant zonation through alteration of soil aeration and salt transport, and drive the export of significant fluxes of carbon and nutrients to coastal water. Despite recent progress, major knowledge gaps remain. Previous studies focused on flows in creek-perpendicular marsh sections and overlooked multi-scale 3D behaviors. Understanding of marsh ecological-hydrological links under combined influences of different forcing factors and boundary disturbances is lacking. Variations of surface water and groundwater temperatures affect porewater flow, soil conditions and biogeochemical exchanges, but the extent and underlying mechanisms remain unknown. We need to fill these knowledge gaps to advance understanding of salt marshes and thus enhance our ability to protect and restore them.

盐沼是高产的潮间带湿地,为维持沿海生物多样性、缓冲海洋风暴和有效的碳汇提供重要的生态服务。然而,由于人类活动和气候变化,全球约有一半的湿地已经消失。盐沼被潮汐周期性淹没,受到强烈的地表水和地下水相互作用,影响了沼泽植物的生长和与沿海水的生物地球化学交换。本文综述了定量沼泽地表水和地下水相互作用的知识现状和目前的方法,重点介绍了孔隙水流动和与植物地带性以及碳、养分和温室气体通量相关的土壤条件。盐沼孔隙水流动和溶质运移主要受潮汐驱动,降雨、蒸散发和海平面上升对其有适度调节。潮汐涨落通过改变土壤通气性和盐分运输在植物分区中起关键作用,并驱动大量碳和养分向沿海水域输出。尽管最近取得了进展,但仍存在重大的知识差距。以往的研究主要集中在垂直于小溪的沼泽区域,忽视了多尺度的三维特征。对不同强迫因子和边界扰动综合影响下的沼泽生态水文联系认识不足。地表水和地下水温度的变化影响孔隙水流动、土壤条件和生物地球化学交换,但其影响程度和潜在机制尚不清楚。我们需要填补这些知识空白,以增进对盐沼的了解,从而提高我们保护和恢复盐沼的能力。
{"title":"Surface Water and Groundwater Interactions in Salt Marshes and Their Impact on Plant Ecology and Coastal Biogeochemistry","authors":"Pei Xin,&nbsp;Alicia Wilson,&nbsp;Chengji Shen,&nbsp;Zhenming Ge,&nbsp;Kevan B. Moffett,&nbsp;Isaac R. Santos,&nbsp;Xiaogang Chen,&nbsp;Xinghua Xu,&nbsp;Yvonne Y. Y. Yau,&nbsp;Willard Moore,&nbsp;Ling Li,&nbsp;D. A. Barry","doi":"10.1029/2021RG000740","DOIUrl":"https://doi.org/10.1029/2021RG000740","url":null,"abstract":"<p>Salt marshes are highly productive intertidal wetlands providing important ecological services for maintaining coastal biodiversity, buffering against oceanic storms, and acting as efficient carbon sinks. However, about half of these wetlands have been lost globally due to human activities and climate change. Inundated periodically by tidal water, salt marshes are subjected to strong surface water and groundwater interactions, which affect marsh plant growth and biogeochemical exchange with coastal water. This paper reviews the state of knowledge and current approaches to quantifying marsh surface water and groundwater interactions with a focus on porewater flow and associated soil conditions in connection with plant zonation as well as carbon, nutrients, and greenhouse gas fluxes. Porewater flow and solute transport in salt marshes are primarily driven by tides with moderate regulation by rainfall, evapotranspiration and sea level rise. Tidal fluctuations play a key role in plant zonation through alteration of soil aeration and salt transport, and drive the export of significant fluxes of carbon and nutrients to coastal water. Despite recent progress, major knowledge gaps remain. Previous studies focused on flows in creek-perpendicular marsh sections and overlooked multi-scale 3D behaviors. Understanding of marsh ecological-hydrological links under combined influences of different forcing factors and boundary disturbances is lacking. Variations of surface water and groundwater temperatures affect porewater flow, soil conditions and biogeochemical exchanges, but the extent and underlying mechanisms remain unknown. We need to fill these knowledge gaps to advance understanding of salt marshes and thus enhance our ability to protect and restore them.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000740","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5929454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 45
From Fluid Flow to Coupled Processes in Fractured Rock: Recent Advances and New Frontiers 从流体流动到裂隙岩石的耦合过程:最新进展和新领域
IF 25.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-02-01 DOI: 10.1029/2021RG000744
H. S. Viswanathan, J. Ajo-Franklin, J. T. Birkholzer, J. W. Carey, Y. Guglielmi, J. D. Hyman, S. Karra, L. J. Pyrak-Nolte, H. Rajaram, G. Srinivasan, D. M. Tartakovsky

Quantitative predictions of natural and induced phenomena in fractured rock is one of the great challenges in the Earth and Energy Sciences with far-reaching economic and environmental impacts. Fractures occupy a very small volume of a subsurface formation but often dominate fluid flow, solute transport and mechanical deformation behavior. They play a central role in CO2 sequestration, nuclear waste disposal, hydrogen storage, geothermal energy production, nuclear nonproliferation, and hydrocarbon extraction. These applications require predictions of fracture-dependent quantities of interest such as CO2 leakage rate, hydrocarbon production, radionuclide plume migration, and seismicity; to be useful, these predictions must account for uncertainty inherent in subsurface systems. Here, we review recent advances in fractured rock research covering field- and laboratory-scale experimentation, numerical simulations, and uncertainty quantification. We discuss how these have greatly improved the fundamental understanding of fractures and one's ability to predict flow and transport in fractured systems. Dedicated field sites provide quantitative measurements of fracture flow that can be used to identify dominant coupled processes and to validate models. Laboratory-scale experiments fill critical knowledge gaps by providing direct observations and measurements of fracture geometry and flow under controlled conditions that cannot be obtained in the field. Physics-based simulation of flow and transport provide a bridge in understanding between controlled simple laboratory experiments and the massively complex field-scale fracture systems. Finally, we review the use of machine learning-based emulators to rapidly investigate different fracture property scenarios and accelerate physics-based models by orders of magnitude to enable uncertainty quantification and near real-time analysis.

裂缝性岩石中自然现象和诱发现象的定量预测是地球和能源科学的重大挑战之一,具有深远的经济和环境影响。裂缝在地下地层中只占很小的体积,但往往主导着流体流动、溶质运移和力学变形行为。它们在二氧化碳封存、核废料处理、储氢、地热能生产、核不扩散和碳氢化合物开采方面发挥着核心作用。这些应用需要预测与裂缝相关的相关量,如二氧化碳泄漏率、油气产量、放射性核素羽流迁移和地震活动性;为了发挥作用,这些预测必须考虑到地下系统固有的不确定性。在这里,我们回顾了裂缝岩石研究的最新进展,包括现场和实验室规模的实验、数值模拟和不确定性量化。我们讨论了这些如何极大地提高了对裂缝的基本理解以及预测裂缝系统中流动和输送的能力。专门的现场站点提供了裂缝流动的定量测量,可用于识别主要耦合过程并验证模型。实验室规模的实验通过提供在受控条件下无法在现场获得的裂缝几何形状和流动的直接观察和测量,填补了关键的知识空白。基于物理的流动和输运模拟为理解受控的简单实验室实验和大规模复杂的现场压裂系统提供了一座桥梁。最后,我们回顾了基于机器学习的模拟器的使用,以快速研究不同的裂缝性质场景,并通过数量级加速基于物理的模型,以实现不确定性量化和近实时分析。
{"title":"From Fluid Flow to Coupled Processes in Fractured Rock: Recent Advances and New Frontiers","authors":"H. S. Viswanathan,&nbsp;J. Ajo-Franklin,&nbsp;J. T. Birkholzer,&nbsp;J. W. Carey,&nbsp;Y. Guglielmi,&nbsp;J. D. Hyman,&nbsp;S. Karra,&nbsp;L. J. Pyrak-Nolte,&nbsp;H. Rajaram,&nbsp;G. Srinivasan,&nbsp;D. M. Tartakovsky","doi":"10.1029/2021RG000744","DOIUrl":"https://doi.org/10.1029/2021RG000744","url":null,"abstract":"<p>Quantitative predictions of natural and induced phenomena in fractured rock is one of the great challenges in the Earth and Energy Sciences with far-reaching economic and environmental impacts. Fractures occupy a very small volume of a subsurface formation but often dominate fluid flow, solute transport and mechanical deformation behavior. They play a central role in CO<sub>2</sub> sequestration, nuclear waste disposal, hydrogen storage, geothermal energy production, nuclear nonproliferation, and hydrocarbon extraction. These applications require predictions of fracture-dependent quantities of interest such as CO<sub>2</sub> leakage rate, hydrocarbon production, radionuclide plume migration, and seismicity; to be useful, these predictions must account for uncertainty inherent in subsurface systems. Here, we review recent advances in fractured rock research covering field- and laboratory-scale experimentation, numerical simulations, and uncertainty quantification. We discuss how these have greatly improved the fundamental understanding of fractures and one's ability to predict flow and transport in fractured systems. Dedicated field sites provide quantitative measurements of fracture flow that can be used to identify dominant coupled processes and to validate models. Laboratory-scale experiments fill critical knowledge gaps by providing direct observations and measurements of fracture geometry and flow under controlled conditions that cannot be obtained in the field. Physics-based simulation of flow and transport provide a bridge in understanding between controlled simple laboratory experiments and the massively complex field-scale fracture systems. Finally, we review the use of machine learning-based emulators to rapidly investigate different fracture property scenarios and accelerate physics-based models by orders of magnitude to enable uncertainty quantification and near real-time analysis.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000744","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5647498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 41
Radiocarbon as a Dating Tool and Tracer in Paleoceanography 放射性碳作为古海洋学测年工具和示踪剂
IF 25.2 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-01-12 DOI: 10.1029/2020RG000720
L. C. Skinner, E. Bard

Radiocarbon is an extremely useful carbon cycle tracer and radiometric dating tool. Here, we review the main principles and challenges involved in the use of radiocarbon in paleoceanography. First, we present a conceptual framework in which there are three possible uses of a radiocarbon measurement: (a) to obtain a calendar age interval, or a fossil entity's age; (b) to obtain an estimate of a carbon reservoir's past radiocarbon activity; or (c) to compare the relative radiocarbon activities of two contemporary carbon reservoirs. We discuss the analysis of marine fossil material, the generation of an atmospheric reference curve, and the interpretation of marine radiocarbon “ventilation metrics” in relation to this reference curve. It is emphasized that marine radiocarbon integrates the influences of: changing radiocarbon production; air-sea gas exchange effects at the sea surface; transport times within the ocean interior; and the mixing of water parcels with different transit times from the sea surface, and different sea-surface sources. These controls are what make radiocarbon such a powerful paleoceanographic tracer, though the difficulty of disentangling them is what makes marine radiocarbon dating and tracer studies so challenging. We discuss the implementation of radiocarbon in numerical models, and explore the theory linking ocean-atmosphere partitioning of radiocarbon and CO2. Finally, we review existing records of marine radiocarbon variability over the last ∼25,000 years, which highlight the influence of ocean-atmosphere carbon exchange on past atmospheric CO2 and climate, and point to emerging opportunities for resolving the global radiocarbon- and carbon budgets over the last glacial cycle.

放射性碳是一种非常有用的碳循环示踪剂和放射性测年工具。在这里,我们回顾了放射性碳在古海洋学中使用的主要原理和挑战。首先,我们提出了一个概念框架,其中放射性碳测量有三种可能的用途:(a)获得日历年龄间隔或化石实体的年龄;(b)获得对碳库过去放射性碳活度的估计;或(c)比较两个当代碳储集层的相对放射性碳活度。我们讨论了海洋化石材料的分析,大气参考曲线的生成,以及与该参考曲线相关的海洋放射性碳“通风指标”的解释。强调海洋放射性碳综合了以下因素的影响:变化的放射性碳产量;海面海气交换效应;海洋内部的运输时间;以及来自不同海面和不同海面来源的不同过境时间的水团的混合。这些控制因素使放射性碳成为一种强大的古海洋示踪剂,尽管解开它们的困难使海洋放射性碳测年和示踪剂研究变得如此具有挑战性。我们讨论了放射性碳在数值模式中的实现,并探讨了放射性碳与CO2在海洋-大气中分配的理论联系。最后,我们回顾了过去~ 25000年来海洋放射性碳变率的现有记录,这些记录强调了海洋-大气碳交换对过去大气CO2和气候的影响,并指出了解决上一个冰期周期全球放射性碳和碳收支的新机会。
{"title":"Radiocarbon as a Dating Tool and Tracer in Paleoceanography","authors":"L. C. Skinner,&nbsp;E. Bard","doi":"10.1029/2020RG000720","DOIUrl":"https://doi.org/10.1029/2020RG000720","url":null,"abstract":"<p>Radiocarbon is an extremely useful carbon cycle tracer and radiometric dating tool. Here, we review the main principles and challenges involved in the use of radiocarbon in paleoceanography. First, we present a conceptual framework in which there are three possible uses of a radiocarbon measurement: (a) to obtain a calendar age interval, or a fossil entity's age; (b) to obtain an estimate of a carbon reservoir's past radiocarbon activity; or (c) to compare the relative radiocarbon activities of two contemporary carbon reservoirs. We discuss the analysis of marine fossil material, the generation of an atmospheric reference curve, and the interpretation of marine radiocarbon “ventilation metrics” in relation to this reference curve. It is emphasized that marine radiocarbon integrates the influences of: changing radiocarbon production; air-sea gas exchange effects at the sea surface; transport times within the ocean interior; and the mixing of water parcels with different transit times from the sea surface, and different sea-surface sources. These controls are what make radiocarbon such a powerful paleoceanographic tracer, though the difficulty of disentangling them is what makes marine radiocarbon dating and tracer studies so challenging. We discuss the implementation of radiocarbon in numerical models, and explore the theory linking ocean-atmosphere partitioning of radiocarbon and CO<sub>2</sub>. Finally, we review existing records of marine radiocarbon variability over the last ∼25,000 years, which highlight the influence of ocean-atmosphere carbon exchange on past atmospheric CO<sub>2</sub> and climate, and point to emerging opportunities for resolving the global radiocarbon- and carbon budgets over the last glacial cycle.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2020RG000720","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5822561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Climate Changes and Their Elevational Patterns in the Mountains of the World 世界山区的气候变化及其海拔格局
IF 25.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-01-11 DOI: 10.1029/2020RG000730
N. C. Pepin, E. Arnone, A. Gobiet, K. Haslinger, S. Kotlarski, C. Notarnicola, E. Palazzi, P. Seibert, S. Serafin, W. Sch?ner, S. Terzago, J. M. Thornton, M. Vuille, C. Adler

Quantifying rates of climate change in mountain regions is of considerable interest, not least because mountains are viewed as climate “hotspots” where change can anticipate or amplify what is occurring elsewhere. Accelerating mountain climate change has extensive environmental impacts, including depletion of snow/ice reserves, critical for the world's water supply. Whilst the concept of elevation-dependent warming (EDW), whereby warming rates are stratified by elevation, is widely accepted, no consistent EDW profile at the global scale has been identified. Past assessments have also neglected elevation-dependent changes in precipitation. In this comprehensive analysis, both in situ station temperature and precipitation data from mountain regions, and global gridded data sets (observations, reanalyses, and model hindcasts) are employed to examine the elevation dependency of temperature and precipitation changes since 1900. In situ observations in paired studies (using adjacent stations) show a tendency toward enhanced warming at higher elevations. However, when all mountain/lowland studies are pooled into two groups, no systematic difference in high versus low elevation group warming rates is found. Precipitation changes based on station data are inconsistent with no systematic contrast between mountain and lowland precipitation trends. Gridded data sets (CRU, GISTEMP, GPCC, ERA5, and CMIP5) show increased warming rates at higher elevations in some regions, but on a global scale there is no universal amplification of warming in mountains. Increases in mountain precipitation are weaker than for low elevations worldwide, meaning reduced elevation-dependency of precipitation, especially in midlatitudes. Agreement on elevation-dependent changes between gridded data sets is weak for temperature but stronger for precipitation.

山区气候变化速率的量化具有相当大的意义,尤其是因为山区被视为气候“热点”,其变化可以预测或放大其他地方正在发生的变化。山区气候变化的加速对环境产生了广泛的影响,包括对世界供水至关重要的冰雪储备的枯竭。虽然海拔依赖性变暖(EDW)的概念被广泛接受,其中变暖速率按海拔分层,但尚未确定全球尺度上一致的EDW剖面。过去的评估也忽略了降水的海拔依赖性变化。本文综合分析了1900年以来的气温和降水变化对海拔的依赖关系,采用了山区的现场站温度和降水数据,以及全球网格化数据集(观测、再分析和模式预测)。成对研究(利用相邻站点)的现场观测显示,高海拔地区的增温趋势增强。然而,当所有山地/低地研究合并为两组时,没有发现高海拔和低海拔组变暖速率的系统差异。基于台站资料的降水变化不一致,山地和低地降水趋势没有系统对比。格网数据集(CRU、GISTEMP、GPCC、ERA5和CMIP5)显示,在一些地区,高海拔地区的变暖速度增加,但在全球尺度上,山区的变暖没有普遍放大。全球山地降水的增加弱于低海拔地区,这意味着降水的海拔依赖性降低,特别是在中纬度地区。格网数据集之间关于海拔相关变化的一致性在温度方面较弱,但在降水方面较强。
{"title":"Climate Changes and Their Elevational Patterns in the Mountains of the World","authors":"N. C. Pepin,&nbsp;E. Arnone,&nbsp;A. Gobiet,&nbsp;K. Haslinger,&nbsp;S. Kotlarski,&nbsp;C. Notarnicola,&nbsp;E. Palazzi,&nbsp;P. Seibert,&nbsp;S. Serafin,&nbsp;W. Sch?ner,&nbsp;S. Terzago,&nbsp;J. M. Thornton,&nbsp;M. Vuille,&nbsp;C. Adler","doi":"10.1029/2020RG000730","DOIUrl":"https://doi.org/10.1029/2020RG000730","url":null,"abstract":"<p>Quantifying rates of climate change in mountain regions is of considerable interest, not least because mountains are viewed as climate “hotspots” where change can anticipate or amplify what is occurring elsewhere. Accelerating mountain climate change has extensive environmental impacts, including depletion of snow/ice reserves, critical for the world's water supply. Whilst the concept of elevation-dependent warming (EDW), whereby warming rates are stratified by elevation, is widely accepted, no consistent EDW profile at the global scale has been identified. Past assessments have also neglected elevation-dependent changes in precipitation. In this comprehensive analysis, both in situ station temperature and precipitation data from mountain regions, and global gridded data sets (observations, reanalyses, and model hindcasts) are employed to examine the elevation dependency of temperature and precipitation changes since 1900. In situ observations in paired studies (using adjacent stations) show a tendency toward enhanced warming at higher elevations. However, when all mountain/lowland studies are pooled into two groups, no systematic difference in high versus low elevation group warming rates is found. Precipitation changes based on station data are inconsistent with no systematic contrast between mountain and lowland precipitation trends. Gridded data sets (CRU, GISTEMP, GPCC, ERA5, and CMIP5) show increased warming rates at higher elevations in some regions, but on a global scale there is no universal amplification of warming in mountains. Increases in mountain precipitation are weaker than for low elevations worldwide, meaning reduced elevation-dependency of precipitation, especially in midlatitudes. Agreement on elevation-dependent changes between gridded data sets is weak for temperature but stronger for precipitation.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2020RG000730","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5803229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 90
Realistic Forests and the Modeling of Forest-Atmosphere Exchange 真实森林与森林-大气交换模型
IF 25.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-01-04 DOI: 10.1029/2021RG000746
E. J. Bannister, A. R. MacKenzie, X.-M. Cai

Forests cover nearly a third of the Earth's land area and exchange mass, momentum, and energy with the atmosphere. Most studies of these exchanges, particularly using numerical models, consider forests whose structure has been heavily simplified. In many landscapes, these simplifications are unrealistic. Inhomogeneous landscapes and unsteady weather conditions generate fluid dynamical features that cause observations to be inaccurately interpreted, biased, or over-generalized. In Part I, we discuss experimental, theoretical, and numerical progress in the understanding of turbulent exchange over realistic forests. Scalar transport does not necessarily follow the flow in realistic settings, meaning scalar quantities are rarely at equilibrium around patchy forests, and significant scalar fluxes may form in the lee of forested hills. Gaps and patchiness generate significant spatial fluxes that current models and observations neglect. Atmospheric instability increases the distance over which fluxes adjust at forest edges. In deciduous forests, the effects of patchiness differ between seasons; counter intuitively, eddies reach further into leafy canopies (because they are rougher aerodynamically). Air parcel residence times are likely much lower in patchy forests than homogeneous ones, especially around edges. In Part II, we set out practical ways to make numerical models of forest-atmosphere more realistic, including by accounting for reconfiguration and realistic canopy structure and beginning to include more chemical and physical processes in turbulence resolving models. Future challenges include: (a) customizing numerical models to real study sites, (b) connecting space and time scales, and (c) incorporating a greater range of weather conditions in numerical models.

森林覆盖了地球陆地面积的近三分之一,并与大气交换质量、动量和能量。大多数关于这些交换的研究,特别是使用数值模型的研究,考虑的是结构已大大简化的森林。在许多情况下,这些简化是不现实的。不均匀的地形和不稳定的天气条件产生流体动力学特征,导致观测结果被不准确地解释、有偏差或过度概括。在第一部分中,我们讨论了在理解现实森林湍流交换方面的实验、理论和数值进展。在现实环境中,标量输运不一定跟随流动,这意味着标量量在斑块状森林周围很少处于平衡状态,而在森林山丘的背风处可能会形成显著的标量通量。间隙和斑块会产生重要的空间通量,而目前的模式和观测忽略了这一点。大气不稳定增加了森林边缘通量调整的距离。在落叶林中,斑块的影响因季节而异;与直觉相反的是,涡流深入到叶冠层(因为它们在空气动力学上更粗糙)。在斑驳的森林中,空气包裹的停留时间可能比均匀的森林要短得多,尤其是在边缘。在第二部分中,我们提出了使森林-大气数值模型更加真实的实际方法,包括考虑重构和真实的冠层结构,并开始在湍流解析模型中包括更多的化学和物理过程。未来的挑战包括:(a)根据实际研究地点定制数值模型,(b)连接空间和时间尺度,以及(c)在数值模型中纳入更大范围的天气条件。
{"title":"Realistic Forests and the Modeling of Forest-Atmosphere Exchange","authors":"E. J. Bannister,&nbsp;A. R. MacKenzie,&nbsp;X.-M. Cai","doi":"10.1029/2021RG000746","DOIUrl":"https://doi.org/10.1029/2021RG000746","url":null,"abstract":"<p>Forests cover nearly a third of the Earth's land area and exchange mass, momentum, and energy with the atmosphere. Most studies of these exchanges, particularly using numerical models, consider forests whose structure has been heavily simplified. In many landscapes, these simplifications are unrealistic. Inhomogeneous landscapes and unsteady weather conditions generate fluid dynamical features that cause observations to be inaccurately interpreted, biased, or over-generalized. In Part I, we discuss experimental, theoretical, and numerical progress in the understanding of turbulent exchange over realistic forests. Scalar transport does not necessarily follow the flow in realistic settings, meaning scalar quantities are rarely at equilibrium around patchy forests, and significant scalar fluxes may form in the lee of forested hills. Gaps and patchiness generate significant spatial fluxes that current models and observations neglect. Atmospheric instability increases the distance over which fluxes adjust at forest edges. In deciduous forests, the effects of patchiness differ between seasons; counter intuitively, eddies reach further into leafy canopies (because they are rougher aerodynamically). Air parcel residence times are likely much lower in patchy forests than homogeneous ones, especially around edges. In Part II, we set out practical ways to make numerical models of forest-atmosphere more realistic, including by accounting for reconfiguration and realistic canopy structure and beginning to include more chemical and physical processes in turbulence resolving models. Future challenges include: (a) customizing numerical models to real study sites, (b) connecting space and time scales, and (c) incorporating a greater range of weather conditions in numerical models.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000746","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6065251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The Magnetic and Color Reflectance Properties of Hematite: From Earth to Mars 赤铁矿的磁性和颜色反射特性:从地球到火星
IF 25.2 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2021-12-30 DOI: 10.1029/2020RG000698
Zhaoxia Jiang, Qingsong Liu, Andrew P. Roberts, Mark J. Dekkers, Vidal Barrón, José Torrent, Sanzhong Li

Hematite is a canted antiferromagnet with reddish color that occurs widely on Earth and Mars. Identification and quantification of hematite is conveniently achieved through its magnetic and color properties. Hematite characteristics and content are indispensable ingredients in studies of the iron cycle, paleoenvironmental evolution, paleogeographic reconstructions, and comparative planetology (e.g., Mars). However, the existing magnetic and color reflectance property framework for hematite is based largely on stoichiometric hematite and tends to neglect the effects of cation substitution, which occurs widely in natural hematite and influences the physical properties of hematite. Thus, magnetic parameters for stoichiometric hematite are insufficient for complete analysis of many natural hematite occurrences and can lead to ambiguous geological interpretations. Remagnetization, which occurs pervasively in red beds, is another ticklish problem involving hematite. Understanding red bed remagnetization requires investigation of hematite's formation and remanence recording mechanisms. We elaborate on the influence of cation substitution on the magnetic and color spectral properties of hematite, and on identifying hematite and quantifying its content in soils and sediments. Studies of remagnetization mechanisms are discussed, and we summarize methods to discriminate between primary and secondary remanences carried by hematite in natural samples to aid primary remanence extraction in partially remagnetized red beds. Although there remain unknown properties and unresolved issues that require future work, recognition of the properties of cation-substituted hematite and remagnetization mechanisms for hematite will aid identification and interpretation of the magnetic signals that it carries, which is environmentally important and responsible for magnetic signals on Earth and Mars.

赤铁矿是一种倾斜的反铁磁体,呈红色,广泛存在于地球和火星上。利用赤铁矿的磁性和色性,方便了赤铁矿的鉴定和定量。赤铁矿的特征和含量是铁循环、古环境演化、古地理重建和比较行星学(如火星)研究中不可缺少的组成部分。然而,现有的赤铁矿磁性和色反射率框架主要基于化学计量赤铁矿,往往忽略了阳离子取代的影响,而阳离子取代在天然赤铁矿中广泛存在,并影响赤铁矿的物理性质。因此,化学计量赤铁矿的磁性参数不足以对许多天然赤铁矿产状进行完整分析,并可能导致模棱两可的地质解释。在红层中普遍发生的再磁化是另一个涉及赤铁矿的棘手问题。了解红层再磁化需要对赤铁矿的形成和残留记录机制进行研究。本文阐述了阳离子取代对赤铁矿磁性和色谱性质的影响,以及对土壤和沉积物中赤铁矿的鉴定和定量的影响。本文讨论了再磁化机理的研究,总结了天然样品中赤铁矿携带原生和次生剩余物的区分方法,以帮助在部分再磁化的红层中提取原生剩余物。虽然仍有未知的性质和未解决的问题需要未来的工作,但认识到阳离子取代赤铁矿的性质和赤铁矿的再磁化机制将有助于识别和解释它所携带的磁性信号,这对环境很重要,对地球和火星上的磁性信号负责。
{"title":"The Magnetic and Color Reflectance Properties of Hematite: From Earth to Mars","authors":"Zhaoxia Jiang,&nbsp;Qingsong Liu,&nbsp;Andrew P. Roberts,&nbsp;Mark J. Dekkers,&nbsp;Vidal Barrón,&nbsp;José Torrent,&nbsp;Sanzhong Li","doi":"10.1029/2020RG000698","DOIUrl":"https://doi.org/10.1029/2020RG000698","url":null,"abstract":"<p>Hematite is a canted antiferromagnet with reddish color that occurs widely on Earth and Mars. Identification and quantification of hematite is conveniently achieved through its magnetic and color properties. Hematite characteristics and content are indispensable ingredients in studies of the iron cycle, paleoenvironmental evolution, paleogeographic reconstructions, and comparative planetology (e.g., Mars). However, the existing magnetic and color reflectance property framework for hematite is based largely on stoichiometric hematite and tends to neglect the effects of cation substitution, which occurs widely in natural hematite and influences the physical properties of hematite. Thus, magnetic parameters for stoichiometric hematite are insufficient for complete analysis of many natural hematite occurrences and can lead to ambiguous geological interpretations. Remagnetization, which occurs pervasively in red beds, is another ticklish problem involving hematite. Understanding red bed remagnetization requires investigation of hematite's formation and remanence recording mechanisms. We elaborate on the influence of cation substitution on the magnetic and color spectral properties of hematite, and on identifying hematite and quantifying its content in soils and sediments. Studies of remagnetization mechanisms are discussed, and we summarize methods to discriminate between primary and secondary remanences carried by hematite in natural samples to aid primary remanence extraction in partially remagnetized red beds. Although there remain unknown properties and unresolved issues that require future work, recognition of the properties of cation-substituted hematite and remagnetization mechanisms for hematite will aid identification and interpretation of the magnetic signals that it carries, which is environmentally important and responsible for magnetic signals on Earth and Mars.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5865224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
期刊
Reviews of Geophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1