首页 > 最新文献

Reviews of Geophysics最新文献

英文 中文
The International Reference Ionosphere Model: A Review and Description of an Ionospheric Benchmark 国际电离层参考模型:电离层基准的回顾和描述
IF 25.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-09-28 DOI: 10.1029/2022RG000792
Dieter Bilitza, Michael Pezzopane, Vladimir Truhlik, David Altadill, Bodo W. Reinisch, Alessio Pignalberi

This paper is a review of the International Reference Ionosphere (IRI) project and model. IRI is recognized as the official standard for the Earth's ionosphere by the International Standardization Organization, the International Union of Radio Science, the Committee on Space Research, and the European Cooperation for Space Standardization. As requested by these organizations, IRI is an empirical (data-based) model representing the primary ionospheric parameters based on the long data record that exists from ground and space observations of the ionosphere. The core model describes monthly averages of the electron density, electron temperature, ion temperature, and ion composition globally in the altitude range from 60 to 2,000 km. Over time additional parameters were added in response to requests from the user community, this includes the equatorial ion drift, the occurrence probability of spread-F and of an F1 layer, auroral boundaries and the electron content from the bottom of the ionosphere to user-specified altitude. IRI has undergone extensive validations and is used for a wide range of applications in science, engineering, and education. This review is the result of many requests we have received for a comprehensive description of the model. It is also meant as a guide for users who are interested in a deeper understanding of the model architecture and its mathematical formalism.

本文对国际参考电离层(IRI)项目和模型进行了综述。IRI被国际标准化组织、国际无线电科学联盟、空间研究委员会和欧洲空间标准化合作组织公认为地球电离层的官方标准。应这些组织的要求,IRI是一种经验(基于数据的)模型,根据地面和空间观测电离层的长期数据记录,代表电离层的主要参数。核心模型描述了海拔60至2000公里范围内全球电子密度、电子温度、离子温度和离子成分的月平均值。随着时间的推移,根据用户群体的要求,增加了额外的参数,包括赤道离子漂移、扩散f和F1层发生的概率、极光边界和从电离层底部到用户指定高度的电子含量。IRI经过了广泛的验证,在科学、工程和教育领域得到了广泛的应用。本次审查是我们收到的对该模型进行全面描述的许多请求的结果。对于有兴趣深入了解模型体系结构及其数学形式化的用户来说,它也是一个指南。
{"title":"The International Reference Ionosphere Model: A Review and Description of an Ionospheric Benchmark","authors":"Dieter Bilitza,&nbsp;Michael Pezzopane,&nbsp;Vladimir Truhlik,&nbsp;David Altadill,&nbsp;Bodo W. Reinisch,&nbsp;Alessio Pignalberi","doi":"10.1029/2022RG000792","DOIUrl":"https://doi.org/10.1029/2022RG000792","url":null,"abstract":"<p>This paper is a review of the International Reference Ionosphere (IRI) project and model. IRI is recognized as the official standard for the Earth's ionosphere by the International Standardization Organization, the International Union of Radio Science, the Committee on Space Research, and the European Cooperation for Space Standardization. As requested by these organizations, IRI is an empirical (data-based) model representing the primary ionospheric parameters based on the long data record that exists from ground and space observations of the ionosphere. The core model describes monthly averages of the electron density, electron temperature, ion temperature, and ion composition globally in the altitude range from 60 to 2,000 km. Over time additional parameters were added in response to requests from the user community, this includes the equatorial ion drift, the occurrence probability of spread-F and of an F1 layer, auroral boundaries and the electron content from the bottom of the ionosphere to user-specified altitude. IRI has undergone extensive validations and is used for a wide range of applications in science, engineering, and education. This review is the result of many requests we have received for a comprehensive description of the model. It is also meant as a guide for users who are interested in a deeper understanding of the model architecture and its mathematical formalism.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 4","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000792","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5871999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 39
Beyond Carbon: The Contributions of South American Tropical Humid and Subhumid Forests to Ecosystem Services 碳之外:南美热带湿润和半湿润森林对生态系统服务的贡献
IF 25.2 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-09-12 DOI: 10.1029/2021RG000766
L. S. Borma, M. H. Costa, H. R. da Rocha, J. Arieira, N. C. C. Nascimento, C. Jaramillo-Giraldo, G. Ambrosio, R. G. Carneiro, M. Venzon, A. F. Neto, R. van der Hoff, B. F. A. Oliveira, R. Raj?o, C. A. Nobre

Tropical forests are recognized for their role in providing diverse ecosystem services (ESs), with carbon uptake the best recognized. The capacity of tropical forests to provide ESs is strongly linked to their enormous biodiversity. However, causal relationships between biodiversity and ESs are poorly understood. This may be because biodiversity is often translated into species richness. Here, we argue that focusing on multiple attributes of biodiversity—structure, composition, and function—will make relationships between biodiversity and ESs clearer. In this review, we discuss the ecological processes behind ESs from tropical humid and subhumid forests of South America. Our main goal is to understand the links between the ESs and those three biodiversity attributes. While supporting and regulating services relate more closely to forest structure and function, provisioning services relate more closely to forest composition and function, and cultural services are more related to structure and composition attributes. In this sense, ESs from subhumid forests (savannas) differ from those provided by the Amazon Forest, although both ecosystems are recognized as harboring tremendous biodiversity. Given this, if anthropogenic drivers of change promote a shift in the Amazon Forest toward savanna—the savannization hypothesis—the types of services provided will change, especially climate regulating services. This review emphasizes the importance of deeply understanding ecosystem structure, composition, and function to better understand the services ecosystems provide. Understanding that anthropogenic impacts on biodiversity occur through these three main attributes, it becomes easier to anticipate how humans will impact ESs.

热带森林在提供多种生态系统服务(ESs)方面的作用得到了公认,其中碳吸收得到了最好的认可。热带森林提供生态环境的能力与其巨大的生物多样性密切相关。然而,生物多样性与生态环境之间的因果关系尚不清楚。这可能是因为生物多样性常常被转化为物种丰富度。在此,我们认为关注生物多样性的多个属性——结构、组成和功能——将使生物多样性与生态环境之间的关系更加清晰。在这篇综述中,我们讨论了来自南美洲热带湿润和半湿润森林的ESs背后的生态过程。我们的主要目标是了解ESs与这三个生物多样性属性之间的联系。支持和调节服务与森林结构和功能的关系更密切,供应服务与森林组成和功能的关系更密切,文化服务与结构和组成属性的关系更密切。从这个意义上说,半湿润森林(稀树草原)提供的生态系统不同于亚马逊森林提供的生态系统,尽管这两个生态系统都被认为蕴藏着巨大的生物多样性。考虑到这一点,如果人为的变化驱动因素促使亚马逊森林向稀树草原转移——即稀树草原化假说——所提供的服务类型将发生变化,尤其是气候调节服务。本文强调了深入了解生态系统的结构、组成和功能对更好地理解生态系统所提供的服务的重要性。了解人类对生物多样性的影响是通过这三个主要属性发生的,就更容易预测人类将如何影响生态系统。
{"title":"Beyond Carbon: The Contributions of South American Tropical Humid and Subhumid Forests to Ecosystem Services","authors":"L. S. Borma,&nbsp;M. H. Costa,&nbsp;H. R. da Rocha,&nbsp;J. Arieira,&nbsp;N. C. C. Nascimento,&nbsp;C. Jaramillo-Giraldo,&nbsp;G. Ambrosio,&nbsp;R. G. Carneiro,&nbsp;M. Venzon,&nbsp;A. F. Neto,&nbsp;R. van der Hoff,&nbsp;B. F. A. Oliveira,&nbsp;R. Raj?o,&nbsp;C. A. Nobre","doi":"10.1029/2021RG000766","DOIUrl":"https://doi.org/10.1029/2021RG000766","url":null,"abstract":"<p>Tropical forests are recognized for their role in providing diverse ecosystem services (ESs), with carbon uptake the best recognized. The capacity of tropical forests to provide ESs is strongly linked to their enormous biodiversity. However, causal relationships between biodiversity and ESs are poorly understood. This may be because biodiversity is often translated into species richness. Here, we argue that focusing on multiple attributes of biodiversity—structure, composition, and function—will make relationships between biodiversity and ESs clearer. In this review, we discuss the ecological processes behind ESs from tropical humid and subhumid forests of South America. Our main goal is to understand the links between the ESs and those three biodiversity attributes. While supporting and regulating services relate more closely to forest structure and function, provisioning services relate more closely to forest composition and function, and cultural services are more related to structure and composition attributes. In this sense, ESs from subhumid forests (savannas) differ from those provided by the Amazon Forest, although both ecosystems are recognized as harboring tremendous biodiversity. Given this, if anthropogenic drivers of change promote a shift in the Amazon Forest toward savanna—the savannization hypothesis—the types of services provided will change, especially climate regulating services. This review emphasizes the importance of deeply understanding ecosystem structure, composition, and function to better understand the services ecosystems provide. Understanding that anthropogenic impacts on biodiversity occur through these three main attributes, it becomes easier to anticipate how humans will impact ESs.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 4","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000766","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5827669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Per- and Polyfluoroalkyl Substances (PFAS) in Subsurface Environments: Occurrence, Fate, Transport, and Research Prospect 地下环境中的全氟和多氟烷基物质(PFAS):发生、命运、迁移和研究前景
IF 25.2 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-08-06 DOI: 10.1029/2021RG000765
Xueyan Lyu, Feng Xiao, Chongyang Shen, Jingjing Chen, Chang Min Park, Yuanyuan Sun, Markus Flury, Dengjun Wang

Per- and polyfluoroalkyl substances (PFASs), also known as “forever chemicals,” are manmade chemicals that have been increasingly detected in various geological settings since the early 2000s. The soil and subsurface environments are the geological media commonly affected by PFAS. We conducted a comprehensive review of peer-reviewed articles published from 2010 through 2022 concerning the fate and transport of PFAS in subsurface environments. This review is organized into different subsections, covering the basics of PFAS properties and how they affect the occurrence, fate, and transport of PFAS, the fundamental processes affecting subsurface transport and fate of PFAS, and mathematical models for describing and predicting PFAS transport behaviors. Mechanisms governing PFAS transport in the subsurface environment, including the sorption of PFAS at the air-water interface, solid-water interface, and nonaqueous phase liquids-water interface, were explored in detail. Challenges and future research priorities are identified to better mitigate the global challenges of PFAS contamination.

全氟烷基和多氟烷基物质(PFASs)也被称为“永久化学品”,是自21世纪初以来在各种地质环境中越来越多地检测到的人造化学品。土壤和地下环境是受PFAS影响最大的地质介质。我们对2010年至2022年发表的关于PFAS在地下环境中的命运和运输的同行评议文章进行了全面审查。本文主要介绍了PFAS的基本性质及其对PFAS的发生、命运和迁移的影响,影响PFAS地下迁移和迁移的基本过程,以及描述和预测PFAS迁移行为的数学模型。详细探讨了PFAS在地下环境中的运移机制,包括PFAS在空气-水界面、固-水界面和非水相液-水界面的吸附。确定了挑战和未来的研究重点,以更好地减轻PFAS污染的全球挑战。
{"title":"Per- and Polyfluoroalkyl Substances (PFAS) in Subsurface Environments: Occurrence, Fate, Transport, and Research Prospect","authors":"Xueyan Lyu,&nbsp;Feng Xiao,&nbsp;Chongyang Shen,&nbsp;Jingjing Chen,&nbsp;Chang Min Park,&nbsp;Yuanyuan Sun,&nbsp;Markus Flury,&nbsp;Dengjun Wang","doi":"10.1029/2021RG000765","DOIUrl":"https://doi.org/10.1029/2021RG000765","url":null,"abstract":"<p>Per- and polyfluoroalkyl substances (PFASs), also known as “forever chemicals,” are manmade chemicals that have been increasingly detected in various geological settings since the early 2000s. The soil and subsurface environments are the geological media commonly affected by PFAS. We conducted a comprehensive review of peer-reviewed articles published from 2010 through 2022 concerning the fate and transport of PFAS in subsurface environments. This review is organized into different subsections, covering the basics of PFAS properties and how they affect the occurrence, fate, and transport of PFAS, the fundamental processes affecting subsurface transport and fate of PFAS, and mathematical models for describing and predicting PFAS transport behaviors. Mechanisms governing PFAS transport in the subsurface environment, including the sorption of PFAS at the air-water interface, solid-water interface, and nonaqueous phase liquids-water interface, were explored in detail. Challenges and future research priorities are identified to better mitigate the global challenges of PFAS contamination.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 3","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6111513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Achievements and Prospects of Global Broadband Seismographic Networks After 30 Years of Continuous Geophysical Observations 30年连续地球物理观测后全球宽带地震台网的成就与展望
IF 25.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-07-19 DOI: 10.1029/2021RG000749
A. T. Ringler, R. E. Anthony, R. C. Aster, C. J. Ammon, S. Arrowsmith, H. Benz, C. Ebeling, A. Frassetto, W.-Y. Kim, P. Koelemeijer, H. C. P. Lau, V. Leki?, J. P. Montagner, P. G. Richards, D. P. Schaff, M. Vallée, W. Yeck

Global seismographic networks (GSNs) emerged during the late nineteenth and early twentieth centuries, facilitated by seminal international developments in theory, technology, instrumentation, and data exchange. The mid- to late-twentieth century saw the creation of the World-Wide Standardized Seismographic Network (1961) and International Deployment of Accelerometers (1976), which advanced global geographic coverage as seismometer bandwidth increased greatly allowing for the recording of the Earth's principal seismic spectrum. The modern era of global observations and rapid data access began during the 1980s, and notably included the inception of the GEOSCOPE initiative (1982) and GSN (1988). Through continual improvements, GEOSCOPE and the GSN have realized near-real time recording of ground motion with state-of-art data quality, dynamic range, and timing precision to encompass 180 seismic stations, many in very remote locations. Data from GSNs are increasingly integrated with other geophysical data (e.g., space geodesy, infrasound and Interferometric Synthetic Aperture Radar). Globally distributed seismic data are critical to resolving crust, mantle, and core structure; illuminating features of the plate tectonic and mantle convection system; rapid characterization of earthquakes; identification of potential tsunamis; global nuclear test verification; and provide sensitive proxies for environmental changes. As the global geosciences community continues to advance our understanding of Earth structure and processes controlling elastic wave propagation, GSN infrastructure offers a springboard to realize increasingly multi-instrument geophysical observatories. Here, we review the historical, scientific, and monitoring heritage of GSNs, summarize key discoveries, and discuss future associated opportunities for Earth Science.

全球地震台网(GSNs)出现于19世纪末和20世纪初,得益于理论、技术、仪器和数据交换方面的开创性国际发展。20世纪中后期建立了全球标准化地震台网(1961年)和国际加速度计部署(1976年),随着地震仪带宽的大大增加,可以记录地球的主要地震频谱,它们扩大了全球地理覆盖范围。全球观测和快速数据获取的现代时代始于20世纪80年代,主要包括GEOSCOPE倡议(1982年)和GSN(1988年)的启动。通过不断改进,GEOSCOPE和GSN已经实现了近实时的地面运动记录,具有最先进的数据质量,动态范围和定时精度,涵盖180个地震站,其中许多位于非常偏远的地区。来自gsn的数据越来越多地与其他地球物理数据(例如,空间大地测量、次声和干涉合成孔径雷达)相结合。全球分布的地震数据对于解析地壳、地幔和地核结构至关重要;板块构造与地幔对流系统的启发性特征地震的快速表征;识别潜在海啸;全球核试验核查;并为环境变化提供敏感的代理。随着全球地球科学界对地球结构和控制弹性波传播过程的理解不断加深,GSN基础设施为实现越来越多的多仪器地球物理观测提供了跳板。在这里,我们回顾了GSNs的历史、科学和监测遗产,总结了关键发现,并讨论了地球科学未来的相关机会。
{"title":"Achievements and Prospects of Global Broadband Seismographic Networks After 30 Years of Continuous Geophysical Observations","authors":"A. T. Ringler,&nbsp;R. E. Anthony,&nbsp;R. C. Aster,&nbsp;C. J. Ammon,&nbsp;S. Arrowsmith,&nbsp;H. Benz,&nbsp;C. Ebeling,&nbsp;A. Frassetto,&nbsp;W.-Y. Kim,&nbsp;P. Koelemeijer,&nbsp;H. C. P. Lau,&nbsp;V. Leki?,&nbsp;J. P. Montagner,&nbsp;P. G. Richards,&nbsp;D. P. Schaff,&nbsp;M. Vallée,&nbsp;W. Yeck","doi":"10.1029/2021RG000749","DOIUrl":"https://doi.org/10.1029/2021RG000749","url":null,"abstract":"<p>Global seismographic networks (GSNs) emerged during the late nineteenth and early twentieth centuries, facilitated by seminal international developments in theory, technology, instrumentation, and data exchange. The mid- to late-twentieth century saw the creation of the World-Wide Standardized Seismographic Network (1961) and International Deployment of Accelerometers (1976), which advanced global geographic coverage as seismometer bandwidth increased greatly allowing for the recording of the Earth's principal seismic spectrum. The modern era of global observations and rapid data access began during the 1980s, and notably included the inception of the GEOSCOPE initiative (1982) and GSN (1988). Through continual improvements, GEOSCOPE and the GSN have realized near-real time recording of ground motion with state-of-art data quality, dynamic range, and timing precision to encompass 180 seismic stations, many in very remote locations. Data from GSNs are increasingly integrated with other geophysical data (e.g., space geodesy, infrasound and Interferometric Synthetic Aperture Radar). Globally distributed seismic data are critical to resolving crust, mantle, and core structure; illuminating features of the plate tectonic and mantle convection system; rapid characterization of earthquakes; identification of potential tsunamis; global nuclear test verification; and provide sensitive proxies for environmental changes. As the global geosciences community continues to advance our understanding of Earth structure and processes controlling elastic wave propagation, GSN infrastructure offers a springboard to realize increasingly multi-instrument geophysical observatories. Here, we review the historical, scientific, and monitoring heritage of GSNs, summarize key discoveries, and discuss future associated opportunities for Earth Science.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 3","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000749","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6217877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East 地中海东部和中东的气候变化和极端天气
IF 25.2 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-06-28 DOI: 10.1029/2021RG000762
G. Zittis, M. Almazroui, P. Alpert, P. Ciais, W. Cramer, Y. Dahdal, M. Fnais, D. Francis, P. Hadjinicolaou, F. Howari, A. Jrrar, D. G. Kaskaoutis, M. Kulmala, G. Lazoglou, N. Mihalopoulos, X. Lin, Y. Rudich, J. Sciare, G. Stenchikov, E. Xoplaki, J. Lelieveld

Observation-based and modeling studies have identified the Eastern Mediterranean and Middle East (EMME) region as a prominent climate change hotspot. While several initiatives have addressed the impacts of climate change in parts of the EMME, here we present an updated assessment, covering a wide range of timescales, phenomena and future pathways. Our assessment is based on a revised analysis of recent observations and projections and an extensive overview of the recent scientific literature on the causes and effects of regional climate change. Greenhouse gas emissions in the EMME are growing rapidly, surpassing those of the European Union, hence contributing significantly to climate change. Over the past half-century and especially during recent decades, the EMME has warmed significantly faster than other inhabited regions. At the same time, changes in the hydrological cycle have become evident. The observed recent temperature increase of about 0.45°C per decade is projected to continue, although strong global greenhouse gas emission reductions could moderate this trend. In addition to projected changes in mean climate conditions, we call attention to extreme weather events with potentially disruptive societal impacts. These include the strongly increasing severity and duration of heatwaves, droughts and dust storms, as well as torrential rain events that can trigger flash floods. Our review is complemented by a discussion of atmospheric pollution and land-use change in the region, including urbanization, desertification and forest fires. Finally, we identify sectors that may be critically affected and formulate adaptation and research recommendations toward greater resilience of the EMME region to climate change.

基于观测和模拟的研究已经确定东地中海和中东(EMME)地区是一个突出的气候变化热点。虽然一些倡议已经解决了气候变化对EMME部分地区的影响,但在这里,我们提出了一项更新的评估,涵盖了广泛的时间尺度、现象和未来路径。我们的评估是基于对最近观测和预测的修订分析,以及对最近关于区域气候变化的原因和影响的科学文献的广泛概述。EMME的温室气体排放量正在迅速增长,超过欧盟,因此对气候变化做出了重大贡献。在过去的半个世纪里,特别是近几十年来,EMME的变暖速度明显快于其他有人居住的地区。与此同时,水文循环的变化也变得明显。最近观测到的每十年约0.45°C的温度上升趋势预计将继续,尽管全球温室气体的大力减排可能会减缓这一趋势。除了预测平均气候条件的变化外,我们还呼吁关注具有潜在破坏性社会影响的极端天气事件。其中包括热浪、干旱和沙尘暴的严重程度和持续时间急剧增加,以及可能引发山洪暴发的暴雨事件。我们的回顾还包括对该地区大气污染和土地利用变化的讨论,包括城市化、荒漠化和森林火灾。最后,我们确定了可能受到严重影响的部门,并制定了适应和研究建议,以提高EMME地区对气候变化的适应能力。
{"title":"Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East","authors":"G. Zittis,&nbsp;M. Almazroui,&nbsp;P. Alpert,&nbsp;P. Ciais,&nbsp;W. Cramer,&nbsp;Y. Dahdal,&nbsp;M. Fnais,&nbsp;D. Francis,&nbsp;P. Hadjinicolaou,&nbsp;F. Howari,&nbsp;A. Jrrar,&nbsp;D. G. Kaskaoutis,&nbsp;M. Kulmala,&nbsp;G. Lazoglou,&nbsp;N. Mihalopoulos,&nbsp;X. Lin,&nbsp;Y. Rudich,&nbsp;J. Sciare,&nbsp;G. Stenchikov,&nbsp;E. Xoplaki,&nbsp;J. Lelieveld","doi":"10.1029/2021RG000762","DOIUrl":"https://doi.org/10.1029/2021RG000762","url":null,"abstract":"<p>Observation-based and modeling studies have identified the Eastern Mediterranean and Middle East (EMME) region as a prominent climate change hotspot. While several initiatives have addressed the impacts of climate change in parts of the EMME, here we present an updated assessment, covering a wide range of timescales, phenomena and future pathways. Our assessment is based on a revised analysis of recent observations and projections and an extensive overview of the recent scientific literature on the causes and effects of regional climate change. Greenhouse gas emissions in the EMME are growing rapidly, surpassing those of the European Union, hence contributing significantly to climate change. Over the past half-century and especially during recent decades, the EMME has warmed significantly faster than other inhabited regions. At the same time, changes in the hydrological cycle have become evident. The observed recent temperature increase of about 0.45°C per decade is projected to continue, although strong global greenhouse gas emission reductions could moderate this trend. In addition to projected changes in mean climate conditions, we call attention to extreme weather events with potentially disruptive societal impacts. These include the strongly increasing severity and duration of heatwaves, droughts and dust storms, as well as torrential rain events that can trigger flash floods. Our review is complemented by a discussion of atmospheric pollution and land-use change in the region, including urbanization, desertification and forest fires. Finally, we identify sectors that may be critically affected and formulate adaptation and research recommendations toward greater resilience of the EMME region to climate change.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 3","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000762","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5866287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 65
A Review on Bank Retreat: Mechanisms, Observations, and Modeling 河岸退缩:机制、观测和模型研究综述
IF 25.2 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-06-07 DOI: 10.1029/2021RG000761
Kun Zhao, Giovanni Coco, Zheng Gong, Stephen E. Darby, Stefano Lanzoni, Fan Xu, Kaili Zhang, Ian Townend

Bank retreat plays a fundamental role in fluvial and estuarine dynamics. It affects the cross-sectional evolution of channels, provides a source of sediment, and modulates the diversity of habitats. Understanding and predicting the geomorphological response of fluvial/tidal channels to external driving forces underpins the robust management of water courses and the protection of wetlands. Here, we review bank retreat with respect to mechanisms, observations, and modeling, covering both rivers and (previously neglected) tidal channels. Our review encompasses both experimental and in situ observations of failure mechanisms and bank retreat rates, modeling approaches and numerical methods to simulate bank erosion. We identify that external forces, despite their distinct characteristics, may have similar effects on bank stability in both river and tidal channels, leading to the same failure mode. We review existing data and empirical functions for bank retreat rate across a range of spatial and temporal scales, and highlight the necessity to account for both hydraulic and geotechnical controls. Based on time scale considerations, we propose a new hierarchy of modeling styles that accounts for bank retreat, leading to clear recommendations for enhancing existing modeling approaches. Finally, we discuss systematically the feedbacks between bank retreat and morphodynamics, and suggest that to move this agenda forward will require a better understanding of multifactor-driven bank retreat across a range of temporal scales, with particular attention to the differences (and similarities) between riverine and estuarine environments, and the role of feedbacks exerted by the collapsed bank soil.

河岸后退在河流和河口动力学中起着重要作用。它影响河道的横断面演化,提供泥沙来源,调节生境的多样性。了解和预测河流/潮汐通道对外部驱动力的地貌响应是河道管理和湿地保护的基础。在这里,我们回顾了河岸撤退的机制、观测和建模,包括河流和(以前被忽视的)潮汐通道。我们的综述包括对破坏机制和河岸后退率的实验和现场观察,模拟河岸侵蚀的建模方法和数值方法。我们发现,尽管外部作用力具有不同的特征,但它们可能对河流和潮汐通道的河岸稳定性产生相似的影响,从而导致相同的破坏模式。我们回顾了现有的数据和在一系列空间和时间尺度上的银行撤退率的经验函数,并强调了考虑水力和岩土控制的必要性。基于时间尺度的考虑,我们提出了一种考虑银行撤退的新的建模风格层次结构,从而为增强现有的建模方法提出了明确的建议。最后,我们系统地讨论了河岸退缩与形态动力学之间的反馈,并建议为了推进这一议程,需要更好地理解跨时间尺度的多因素驱动的河岸退缩,特别注意河流和河口环境之间的差异(和相似),以及崩塌的河岸土壤所施加的反馈作用。
{"title":"A Review on Bank Retreat: Mechanisms, Observations, and Modeling","authors":"Kun Zhao,&nbsp;Giovanni Coco,&nbsp;Zheng Gong,&nbsp;Stephen E. Darby,&nbsp;Stefano Lanzoni,&nbsp;Fan Xu,&nbsp;Kaili Zhang,&nbsp;Ian Townend","doi":"10.1029/2021RG000761","DOIUrl":"10.1029/2021RG000761","url":null,"abstract":"<p>Bank retreat plays a fundamental role in fluvial and estuarine dynamics. It affects the cross-sectional evolution of channels, provides a source of sediment, and modulates the diversity of habitats. Understanding and predicting the geomorphological response of fluvial/tidal channels to external driving forces underpins the robust management of water courses and the protection of wetlands. Here, we review bank retreat with respect to mechanisms, observations, and modeling, covering both rivers and (previously neglected) tidal channels. Our review encompasses both experimental and in situ observations of failure mechanisms and bank retreat rates, modeling approaches and numerical methods to simulate bank erosion. We identify that external forces, despite their distinct characteristics, may have similar effects on bank stability in both river and tidal channels, leading to the same failure mode. We review existing data and empirical functions for bank retreat rate across a range of spatial and temporal scales, and highlight the necessity to account for both hydraulic and geotechnical controls. Based on time scale considerations, we propose a new hierarchy of modeling styles that accounts for bank retreat, leading to clear recommendations for enhancing existing modeling approaches. Finally, we discuss systematically the feedbacks between bank retreat and morphodynamics, and suggest that to move this agenda forward will require a better understanding of multifactor-driven bank retreat across a range of temporal scales, with particular attention to the differences (and similarities) between riverine and estuarine environments, and the role of feedbacks exerted by the collapsed bank soil.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 2","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000761","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82243539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Chemical Mohometry: Assessing Crustal Thickness of Ancient Orogens Using Geochemical and Isotopic Data 化学同源性:利用地球化学和同位素数据评估古代造山带的地壳厚度
IF 25.2 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-06-06 DOI: 10.1029/2021RG000753
P. Luffi, M. N. Ducea

Convergent plate boundaries are key sites for continental crustal formation and recycling. Quantifying the evolution of crustal thickness and paleoelevation along ancient convergent margins represents a major goal in orogenic system analyses. Chemical and in some cases isotopic compositions of igneous rocks formed in modern supra-subduction arcs and collisional belts are sensitive to Moho depths at the location of magmatism, implying that igneous suites from fossil orogens carry information about crustal thickness from the time they formed. Several whole-rock chemical parameters correlate with crustal thickness, some of which were calibrated to serve as “mohometers,” that is, quantitative proxies of paleo-Moho depths. Based on mineral-melt partition coefficients, this concept has been extended to detrital zircons, such that combined chemical and geochronological information extracted from these minerals allows us to reconstruct the crustal thickness evolution using the detrital archive. We discuss here the mohometric potential of a variety of chemical and isotopic parameters and show that their combined usage improves paleocrustal thickness estimates. Using a MATLAB® app developed for the underlying computations, we present examples from the modern and the deeper time geologic record to illustrate the promises and pitfalls of the technique. Since arcs are in isostatic equilibrium, mohometers are useful in reconstructing orogenic paleoelevation as well. Our analysis suggests that many global-scale correlations between magma composition and crustal thickness used in mohometry originate in the sub-arc mantle; additional effects resulting from intracrustal igneous differentiation depend on the compatible or incompatible behavior of the involved parameters.

会聚板块边界是大陆地壳形成和再循环的关键地点。量化古会聚边缘地壳厚度和古高程的演化是造山系分析的主要目标。现代超俯冲弧和碰撞带中形成的火成岩的化学成分和某些情况下的同位素组成对岩浆活动位置的莫霍深度敏感,这意味着来自造山带化石的火成岩套带着它们形成时的地壳厚度信息。几个全岩化学参数与地壳厚度相关,其中一些被校准为“母表”,即古莫霍深度的定量代理。基于矿物-熔体分配系数,这一概念已扩展到碎屑锆石,这样,从这些矿物中提取的化学和年代学信息结合起来,使我们能够利用碎屑档案重建地壳厚度演化。我们在这里讨论了各种化学和同位素参数的均势,并表明它们的组合使用改善了古地壳厚度的估计。使用为底层计算开发的MATLAB®应用程序,我们从现代和更深的时间地质记录中提供示例,以说明该技术的前景和陷阱。由于弧线处于均衡平衡状态,因此测温计在重建造山带古高程时也很有用。我们的分析表明,地壳厚度与岩浆组成在全球尺度上的相关性来源于弧下地幔;由壳内火成岩分异引起的附加效应取决于相关参数的相容或不相容行为。
{"title":"Chemical Mohometry: Assessing Crustal Thickness of Ancient Orogens Using Geochemical and Isotopic Data","authors":"P. Luffi,&nbsp;M. N. Ducea","doi":"10.1029/2021RG000753","DOIUrl":"10.1029/2021RG000753","url":null,"abstract":"<p>Convergent plate boundaries are key sites for continental crustal formation and recycling. Quantifying the evolution of crustal thickness and paleoelevation along ancient convergent margins represents a major goal in orogenic system analyses. Chemical and in some cases isotopic compositions of igneous rocks formed in modern supra-subduction arcs and collisional belts are sensitive to Moho depths at the location of magmatism, implying that igneous suites from fossil orogens carry information about crustal thickness from the time they formed. Several whole-rock chemical parameters correlate with crustal thickness, some of which were calibrated to serve as “mohometers,” that is, quantitative proxies of paleo-Moho depths. Based on mineral-melt partition coefficients, this concept has been extended to detrital zircons, such that combined chemical and geochronological information extracted from these minerals allows us to reconstruct the crustal thickness evolution using the detrital archive. We discuss here the mohometric potential of a variety of chemical and isotopic parameters and show that their combined usage improves paleocrustal thickness estimates. Using a MATLAB<sup>®</sup> app developed for the underlying computations, we present examples from the modern and the deeper time geologic record to illustrate the promises and pitfalls of the technique. Since arcs are in isostatic equilibrium, mohometers are useful in reconstructing orogenic paleoelevation as well. Our analysis suggests that many global-scale correlations between magma composition and crustal thickness used in mohometry originate in the sub-arc mantle; additional effects resulting from intracrustal igneous differentiation depend on the compatible or incompatible behavior of the involved parameters.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 2","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c4/a1/ROG-60-e2021RG000753.PMC9788079.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10467602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Ice-Dynamical Glacier Evolution Modeling—A Review 冰动力冰川演化模型研究进展
IF 25.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-04-23 DOI: 10.1029/2021RG000754
H. Zekollari, M. Huss, D. Farinotti, S. Lhermitte

Glaciers play a crucial role in the Earth System: they are important water suppliers to lower-lying areas during hot and dry periods, and they are major contributors to the observed present-day sea-level rise. Glaciers can also act as a source of natural hazards and have a major touristic value. Given their societal importance, there is large scientific interest in better understanding and accurately simulating the temporal evolution of glaciers, both in the past and in the future. Here, we give an overview of the state of the art of simulating the evolution of individual glaciers over decadal to centennial time scales with ice-dynamical models. We hereby highlight recent advances in the field and emphasize how these go hand-in-hand with an increasing availability of on-site and remotely sensed observations. We also focus on the gap between simplified studies that use parameterizations, typically used for regional and global projections, and detailed assessments for individual glaciers, and explain how recent advances now allow including ice dynamics when modeling glaciers at larger spatial scales. Finally, we provide concrete recommendations concerning the steps and factors to be considered when modeling the evolution of glaciers. We suggest paying particular attention to the model initialization, analyzing how related uncertainties in model input influence the modeled glacier evolution and strongly recommend evaluating the simulated glacier evolution against independent data.

冰川在地球系统中起着至关重要的作用:在炎热和干旱时期,它们是低洼地区的重要供水量,也是目前观测到的海平面上升的主要原因。冰川也可能成为自然灾害的来源,并具有重要的旅游价值。鉴于它们的社会重要性,更好地理解和准确地模拟冰川在过去和未来的时间演变具有很大的科学兴趣。在这里,我们概述了用冰动力模型模拟单个冰川在十年至百年时间尺度上的演变的最新进展。我们在此强调该领域的最新进展,并强调这些进展如何与越来越多的现场和遥感观测相结合。我们还关注了使用参数化的简化研究(通常用于区域和全球预测)与单个冰川的详细评估之间的差距,并解释了最近的进展如何允许在更大的空间尺度上模拟冰川时包括冰动力学。最后,我们就冰川演化模拟应考虑的步骤和因素提出了具体建议。我们建议特别关注模型初始化,分析模型输入中的相关不确定性如何影响模拟的冰川演化,并强烈建议根据独立数据评估模拟的冰川演化。
{"title":"Ice-Dynamical Glacier Evolution Modeling—A Review","authors":"H. Zekollari,&nbsp;M. Huss,&nbsp;D. Farinotti,&nbsp;S. Lhermitte","doi":"10.1029/2021RG000754","DOIUrl":"10.1029/2021RG000754","url":null,"abstract":"<p>Glaciers play a crucial role in the Earth System: they are important water suppliers to lower-lying areas during hot and dry periods, and they are major contributors to the observed present-day sea-level rise. Glaciers can also act as a source of natural hazards and have a major touristic value. Given their societal importance, there is large scientific interest in better understanding and accurately simulating the temporal evolution of glaciers, both in the past and in the future. Here, we give an overview of the state of the art of simulating the evolution of individual glaciers over decadal to centennial time scales with ice-dynamical models. We hereby highlight recent advances in the field and emphasize how these go hand-in-hand with an increasing availability of on-site and remotely sensed observations. We also focus on the gap between simplified studies that use parameterizations, typically used for regional and global projections, and detailed assessments for individual glaciers, and explain how recent advances now allow including ice dynamics when modeling glaciers at larger spatial scales. Finally, we provide concrete recommendations concerning the steps and factors to be considered when modeling the evolution of glaciers. We suggest paying particular attention to the model initialization, analyzing how related uncertainties in model input influence the modeled glacier evolution and strongly recommend evaluating the simulated glacier evolution against independent data.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 2","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000754","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85552545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Big Data Seismology 大数据地震学
IF 25.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-04-23 DOI: 10.1029/2021RG000769
S. J. Arrowsmith, D. T. Trugman, J. MacCarthy, K. J. Bergen, D. Lumley, M. B. Magnani

The discipline of seismology is based on observations of ground motion that are inherently undersampled in space and time. Our basic understanding of earthquake processes and our ability to resolve 4D Earth structure are fundamentally limited by data volume. Today, Big Data Seismology is an emergent revolution involving the use of large, data-dense inquiries that is providing new opportunities to make fundamental advances in these areas. This article reviews recent scientific advances enabled by Big Data Seismology through the context of three major drivers: the development of new data-dense sensor systems, improvements in computing, and the development of new types of techniques and algorithms. Each driver is explored in the context of both global and exploration seismology, alongside collaborative opportunities that combine the features of long-duration data collections (common to global seismology) with dense networks of sensors (common to exploration seismology). The review explores some of the unique challenges and opportunities that Big Data Seismology presents, drawing on parallels from other fields facing similar issues. Finally, recent scientific findings enabled by dense seismic data sets are discussed, and we assess the opportunities for significant advances made possible with Big Data Seismology. This review is designed to be a primer for seismologists who are interested in getting up-to-speed with how the Big Data revolution is advancing the field of seismology.

地震学的学科是建立在对地面运动的观测的基础上的,这些观测在空间和时间上都存在固有的采样不足。我们对地震过程的基本理解和我们解析四维地球结构的能力从根本上受到数据量的限制。如今,大数据地震学是一场新兴的革命,涉及使用大型、数据密集的查询,为在这些领域取得根本性进展提供了新的机会。本文通过三个主要驱动因素回顾了大数据地震学所带来的最新科学进展:新的数据密集传感器系统的发展、计算的改进以及新型技术和算法的发展。每个驱动程序都是在全球和勘探地震学的背景下进行探索的,同时还有将长时间数据收集(全球地震学常见)与密集传感器网络(勘探地震学常见)相结合的合作机会。这篇综述探讨了大数据地震学带来的一些独特挑战和机遇,并借鉴了面临类似问题的其他领域的相似之处。最后,讨论了密集地震数据集支持的最新科学发现,并评估了大数据地震学可能取得重大进展的机会。本文旨在为那些对大数据革命如何推动地震学领域发展感兴趣的地震学家提供一本入门读物。
{"title":"Big Data Seismology","authors":"S. J. Arrowsmith,&nbsp;D. T. Trugman,&nbsp;J. MacCarthy,&nbsp;K. J. Bergen,&nbsp;D. Lumley,&nbsp;M. B. Magnani","doi":"10.1029/2021RG000769","DOIUrl":"10.1029/2021RG000769","url":null,"abstract":"<p>The discipline of seismology is based on observations of ground motion that are inherently undersampled in space and time. Our basic understanding of earthquake processes and our ability to resolve 4D Earth structure are fundamentally limited by data volume. Today, Big Data Seismology is an emergent revolution involving the use of large, data-dense inquiries that is providing new opportunities to make fundamental advances in these areas. This article reviews recent scientific advances enabled by Big Data Seismology through the context of three major drivers: the development of new data-dense sensor systems, improvements in computing, and the development of new types of techniques and algorithms. Each driver is explored in the context of both global and exploration seismology, alongside collaborative opportunities that combine the features of long-duration data collections (common to global seismology) with dense networks of sensors (common to exploration seismology). The review explores some of the unique challenges and opportunities that Big Data Seismology presents, drawing on parallels from other fields facing similar issues. Finally, recent scientific findings enabled by dense seismic data sets are discussed, and we assess the opportunities for significant advances made possible with Big Data Seismology. This review is designed to be a primer for seismologists who are interested in getting up-to-speed with how the Big Data revolution is advancing the field of seismology.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 2","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74114842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Thank You to Our 2021 Peer Reviewers 感谢我们2021年的同行评审
IF 25.2 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-04-22 DOI: 10.1029/2022RG000779
Fabio Florindo, Annmarie G. Carlton, Paolo D’Odorico, Qingyun Duan, Jasper S. Halekas, Gesine Mollenhauer, Eelco J. Rohling, Robert G. Bingham, Emily E. Brodsky, Michel C. Crucifix, Andrew Gettelman, Alan Robock

Reviews of Geophysics is the top-rated journal in Geochemistry and Geophysics (ISI Web of Knowledge category) reflecting the many excellent contributions we received. It is an important milestone achieved with the reviewers' investment of time and effort. Their expertise ensures that the papers published in this journal meet the standards that the research community expects. We sincerely appreciate the time the reviewers spent reading and commenting on manuscripts, and we are very grateful for their willingness and readiness to serve in this role.

《地球物理学评论》是ISI知识网(Web of Knowledge)地球化学和地球物理学领域的顶级期刊,反映了我们收到的许多优秀的投稿。这是审稿人投入时间和精力所取得的一个重要里程碑。他们的专业知识确保在本刊上发表的论文符合研究界所期望的标准。我们真诚地感谢审稿人花时间阅读和评论稿件,我们非常感谢他们愿意和愿意担任这个角色。
{"title":"Thank You to Our 2021 Peer Reviewers","authors":"Fabio Florindo,&nbsp;Annmarie G. Carlton,&nbsp;Paolo D’Odorico,&nbsp;Qingyun Duan,&nbsp;Jasper S. Halekas,&nbsp;Gesine Mollenhauer,&nbsp;Eelco J. Rohling,&nbsp;Robert G. Bingham,&nbsp;Emily E. Brodsky,&nbsp;Michel C. Crucifix,&nbsp;Andrew Gettelman,&nbsp;Alan Robock","doi":"10.1029/2022RG000779","DOIUrl":"10.1029/2022RG000779","url":null,"abstract":"<p>Reviews of Geophysics is the top-rated journal in Geochemistry and Geophysics (ISI Web of Knowledge category) reflecting the many excellent contributions we received. It is an important milestone achieved with the reviewers' investment of time and effort. Their expertise ensures that the papers published in this journal meet the standards that the research community expects. We sincerely appreciate the time the reviewers spent reading and commenting on manuscripts, and we are very grateful for their willingness and readiness to serve in this role.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 2","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000779","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83229051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Reviews of Geophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1