Daniel Q. Tong, Thomas E. Gill, William A. Sprigg, Robert Scott Van Pelt, Alexander A. Baklanov, Bridget Marie Barker, Jesse E. Bell, Juan Castillo, Santiago Gassó, Cassandra J. Gaston, Dale W. Griffin, Nicolas Huneeus, Ralph A. Kahn, Arunas P. Kuciauskas, Luis A. Ladino, Junran Li, Olga L. Mayol-Bracero, Orion Z. McCotter, Pablo A. Méndez-Lázaro, Pierpaolo Mudu, Slobodan Nickovic, Damian Oyarzun, Joseph Prospero, Graciela B. Raga, Amit U. Raysoni, Ling Ren, Nikias Sarafoglou, Andrea Sealy, Ziheng Sun, Ana Vukovic Vimic
Risks associated with dust hazards are often underappreciated, a gap between the knowledge pool and public awareness that can be costly for impacted communities. This study reviews the emission sources and chemical, physical, and biological characteristics of airborne soil particles (dust) and their effects on human and environmental health and safety in the Pan-American region. American dust originates from both local sources (western United States, northern Mexico, Peru, Bolivia, Chile, and Argentina) and long-range transport from Africa and Asia. Dust properties, as well as the trends and interactions with criteria air pollutants, are summarized. Human exposure to dust is associated with adverse health effects, including asthma, allergies, fungal infections, and premature death. In the Americas, a well-documented and striking effect of soil dust is its association with Coccidioidomycosis, commonly known as Valley fever, an infection caused by inhalation of soil-dwelling fungi unique to this region. Besides human health, dust affects environmental health through nutrients that increase phytoplankton biomass, contaminants that diminish water supply and affect food (crops/fruits/vegetables and ready-to-eat meat), spread crop and marine pathogens, cause Valley fever among domestic and wild animals, transport heavy metals, radionuclides and microplastics, and reduce solar and wind power generation. Dust is also a safety hazard to road transportation and aviation, in the southwestern US where blowing dust is one of the deadliest weather hazards. To mitigate the harmful effects, coordinated regional and international efforts are needed to enhance dust observations and prediction capabilities, soil conservation measures, and Valley fever and other disease surveillance.
{"title":"Health and Safety Effects of Airborne Soil Dust in the Americas and Beyond","authors":"Daniel Q. Tong, Thomas E. Gill, William A. Sprigg, Robert Scott Van Pelt, Alexander A. Baklanov, Bridget Marie Barker, Jesse E. Bell, Juan Castillo, Santiago Gassó, Cassandra J. Gaston, Dale W. Griffin, Nicolas Huneeus, Ralph A. Kahn, Arunas P. Kuciauskas, Luis A. Ladino, Junran Li, Olga L. Mayol-Bracero, Orion Z. McCotter, Pablo A. Méndez-Lázaro, Pierpaolo Mudu, Slobodan Nickovic, Damian Oyarzun, Joseph Prospero, Graciela B. Raga, Amit U. Raysoni, Ling Ren, Nikias Sarafoglou, Andrea Sealy, Ziheng Sun, Ana Vukovic Vimic","doi":"10.1029/2021RG000763","DOIUrl":"https://doi.org/10.1029/2021RG000763","url":null,"abstract":"<p>Risks associated with dust hazards are often underappreciated, a gap between the knowledge pool and public awareness that can be costly for impacted communities. This study reviews the emission sources and chemical, physical, and biological characteristics of airborne soil particles (dust) and their effects on human and environmental health and safety in the Pan-American region. American dust originates from both local sources (western United States, northern Mexico, Peru, Bolivia, Chile, and Argentina) and long-range transport from Africa and Asia. Dust properties, as well as the trends and interactions with criteria air pollutants, are summarized. Human exposure to dust is associated with adverse health effects, including asthma, allergies, fungal infections, and premature death. In the Americas, a well-documented and striking effect of soil dust is its association with Coccidioidomycosis, commonly known as Valley fever, an infection caused by inhalation of soil-dwelling fungi unique to this region. Besides human health, dust affects environmental health through nutrients that increase phytoplankton biomass, contaminants that diminish water supply and affect food (crops/fruits/vegetables and ready-to-eat meat), spread crop and marine pathogens, cause Valley fever among domestic and wild animals, transport heavy metals, radionuclides and microplastics, and reduce solar and wind power generation. Dust is also a safety hazard to road transportation and aviation, in the southwestern US where blowing dust is one of the deadliest weather hazards. To mitigate the harmful effects, coordinated regional and international efforts are needed to enhance dust observations and prediction capabilities, soil conservation measures, and Valley fever and other disease surveillance.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"61 2","pages":""},"PeriodicalIF":25.2,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000763","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5687232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Micheline Campbell, Liza McDonough, Pauline C. Treble, Andy Baker, Nevena Kosarac, Katie Coleborn, Peter M. Wynn, Axel K. Schmitt
Wildfires affect 40% of the earth's terrestrial biome, but much of our knowledge of wildfire activity is limited to the satellite era. Improved understanding of past fires is necessary to better forecast how fire regimes might change with future climate change, to understand ecosystem resilience to fire, and to improve data-model comparisons. Environmental proxy archives can extend our knowledge of past fire activity. Speleothems, naturally occurring cave formations, are widely used in paleoenvironmental research as they are absolutely dateable, occur on every ice-free continent, and include multiple proxies. Recently, speleothems have been shown to record past fire events (Argiriadis et al., 2019, https://doi.org/10.1021/acs.analchem.9b00767; McDonough et al., 2022, https://doi.org/10.1016/j.gca.2022.03.020; Homann et al., 2022, https://doi.org/10.1038/s41467-022-34950-x). Here we present a review of this emerging application in speleothem paleoenvironmental science. We give a concise overview of fire regimes and common paleofire proxies, describe past attempts to use stalagmites to investigate paleofire, and describe the physical basis through which speleothems can record past fires. We then describe the ideal speleothem sample for paleofire research and offer a summary of applicable laboratory and statistical methods. Finally, we present four case studies from southwest Australia which: (a) explore the geochemistry of ash leachates, (b) detail how sulfate isotopes may be a proxy for post fire ecological recovery, (c) demonstrate how a catastrophic paleofire was linked to changes in climate and land management, and (d) investigate whether deep caves can record past fire events. We conclude the paper by outlining future research directions for paleofire applications.
野火影响着地球上40%的陆地生物群落,但我们对野火活动的了解大多局限于卫星时代。提高对过去火灾的了解对于更好地预测火灾制度如何随未来气候变化而变化、了解生态系统对火灾的恢复能力以及改进数据模型比较是必要的。环境代理档案可以扩展我们对过去火灾活动的认识。洞穴是自然形成的洞穴结构,在古环境研究中被广泛使用,因为它们具有绝对的可追溯性,存在于每个无冰大陆,并包括多种代用物。最近,洞穴主题被证明可以记录过去的火灾事件(Argiriadis等人,2019,https://doi.org/10.1021/acs.analchem.9b00767;McDonough等人,2022,https://doi.org/10.1016/j.gca.2022.03.020;Homann et al., 2022, https://doi.org/10.1038/s41467-022-34950-x)。本文就该技术在洞穴古环境科学中的应用作一综述。本文简要概述了古火的形态和常见的古火代用物,描述了过去利用石笋研究古火的尝试,并描述了洞穴记录古火的物理基础。然后,我们描述了古火研究的理想洞穴样品,并总结了适用的实验室和统计方法。最后,我们介绍了澳大利亚西南部的四个案例研究:(a)探索灰烬渗出物的地球化学,(b)详细说明硫酸盐同位素如何作为火灾后生态恢复的代理,(c)证明灾难性古火灾如何与气候和土地管理变化联系在一起,以及(d)调查深洞是否可以记录过去的火灾事件。最后对古火应用的未来研究方向进行了展望。
{"title":"A Review of Speleothems as Archives for Paleofire Proxies, With Australian Case Studies","authors":"Micheline Campbell, Liza McDonough, Pauline C. Treble, Andy Baker, Nevena Kosarac, Katie Coleborn, Peter M. Wynn, Axel K. Schmitt","doi":"10.1029/2022RG000790","DOIUrl":"https://doi.org/10.1029/2022RG000790","url":null,"abstract":"<p>Wildfires affect 40% of the earth's terrestrial biome, but much of our knowledge of wildfire activity is limited to the satellite era. Improved understanding of past fires is necessary to better forecast how fire regimes might change with future climate change, to understand ecosystem resilience to fire, and to improve data-model comparisons. Environmental proxy archives can extend our knowledge of past fire activity. Speleothems, naturally occurring cave formations, are widely used in paleoenvironmental research as they are absolutely dateable, occur on every ice-free continent, and include multiple proxies. Recently, speleothems have been shown to record past fire events (Argiriadis et al., 2019, https://doi.org/10.1021/acs.analchem.9b00767; McDonough et al., 2022, https://doi.org/10.1016/j.gca.2022.03.020; Homann et al., 2022, https://doi.org/10.1038/s41467-022-34950-x). Here we present a review of this emerging application in speleothem paleoenvironmental science. We give a concise overview of fire regimes and common paleofire proxies, describe past attempts to use stalagmites to investigate paleofire, and describe the physical basis through which speleothems can record past fires. We then describe the ideal speleothem sample for paleofire research and offer a summary of applicable laboratory and statistical methods. Finally, we present four case studies from southwest Australia which: (a) explore the geochemistry of ash leachates, (b) detail how sulfate isotopes may be a proxy for post fire ecological recovery, (c) demonstrate how a catastrophic paleofire was linked to changes in climate and land management, and (d) investigate whether deep caves can record past fire events. We conclude the paper by outlining future research directions for paleofire applications.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"61 2","pages":""},"PeriodicalIF":25.2,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000790","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5807343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seaver Wang, Adrianna Foster, Elizabeth A. Lenz, John D. Kessler, Julienne C. Stroeve, Liana O. Anderson, Merritt Turetsky, Richard Betts, Sijia Zou, Wei Liu, William R. Boos, Zeke Hausfather
Tipping elements are components of the Earth system which may respond nonlinearly to anthropogenic climate change by transitioning toward substantially different long-term states upon passing key thresholds or “tipping points.” In some cases, such changes could produce additional greenhouse gas emissions or radiative forcing that could compound global warming. Improved understanding of tipping elements is important for predicting future climate risks and their impacts. Here we review mechanisms, predictions, impacts, and knowledge gaps associated with 10 notable Earth system components proposed to be tipping elements. We evaluate which tipping elements are approaching critical thresholds and whether shifts may manifest rapidly or over longer timescales. Some tipping elements have a higher risk of crossing tipping points under middle-of-the-road emissions pathways and will possibly affect major ecosystems, climate patterns, and/or carbon cycling within the 21st century. However, literature assessing different emissions scenarios indicates a strong potential to reduce impacts associated with many tipping elements through climate change mitigation. The studies synthesized in our review suggest most tipping elements do not possess the potential for abrupt future change within years, and some proposed tipping elements may not exhibit tipping behavior, rather responding more predictably and directly to the magnitude of forcing. Nevertheless, uncertainties remain associated with many tipping elements, highlighting an acute need for further research and modeling to better constrain risks.
{"title":"Mechanisms and Impacts of Earth System Tipping Elements","authors":"Seaver Wang, Adrianna Foster, Elizabeth A. Lenz, John D. Kessler, Julienne C. Stroeve, Liana O. Anderson, Merritt Turetsky, Richard Betts, Sijia Zou, Wei Liu, William R. Boos, Zeke Hausfather","doi":"10.1029/2021RG000757","DOIUrl":"https://doi.org/10.1029/2021RG000757","url":null,"abstract":"<p>Tipping elements are components of the Earth system which may respond nonlinearly to anthropogenic climate change by transitioning toward substantially different long-term states upon passing key thresholds or “tipping points.” In some cases, such changes could produce additional greenhouse gas emissions or radiative forcing that could compound global warming. Improved understanding of tipping elements is important for predicting future climate risks and their impacts. Here we review mechanisms, predictions, impacts, and knowledge gaps associated with 10 notable Earth system components proposed to be tipping elements. We evaluate which tipping elements are approaching critical thresholds and whether shifts may manifest rapidly or over longer timescales. Some tipping elements have a higher risk of crossing tipping points under middle-of-the-road emissions pathways and will possibly affect major ecosystems, climate patterns, and/or carbon cycling within the 21st century. However, literature assessing different emissions scenarios indicates a strong potential to reduce impacts associated with many tipping elements through climate change mitigation. The studies synthesized in our review suggest most tipping elements do not possess the potential for abrupt future change within years, and some proposed tipping elements may not exhibit tipping behavior, rather responding more predictably and directly to the magnitude of forcing. Nevertheless, uncertainties remain associated with many tipping elements, highlighting an acute need for further research and modeling to better constrain risks.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"61 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000757","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5865194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Federico Galetto, Matthew E. Pritchard, Adrian J. Hornby, Esteban Gazel, Natalie M. Mahowald
Volcanism is one of the main mechanisms transferring mass and energy between the interior of the Earth and the Earth's surface. However, the global mass flux of lava, volcanic ash and explosive pyroclastic deposits is not well constrained. Here we review published estimates of the mass of the erupted products from 1980 to 2019 by a global compilation. We identified 1,064 magmatic eruptions that occurred between 1980 and 2019 from the Smithsonian Global Volcanism Program database. For each eruption, we reported both the total erupted mass and its partitioning into the different volcanic products. Using this data set, we quantified the temporal and spatial evolution of subaerial volcanism and its products from 1980 to 2019 at a global and regional scale. The mass of magma erupted in each analyzed decade ranged from 1.1–4.9 × 1013 kg. Lava is the main subaerial erupted product representing ∼57% of the total erupted mass of magma. The products related to the biggest eruptions (Magnitude ≥6), with long recurrence times, can temporarily make explosive products more abundant than lava (e.g., decade 1990–1999). Twenty-three volcanoes produced ∼72% of the total mass, while two different sets of 15 volcanoes erupted >70% of the total mass of either effusive or explosive products. At a global scale, the 10 and 40-year average eruptive rates calculated from 1980 to 2019 have the same magnitude as the long-term average eruptive rates (from thousand to millions of years), because in both cases rates are scaled for times comparable to the recurrence time of the biggest eruptions occurred.
{"title":"Spatial and Temporal Quantification of Subaerial Volcanism From 1980 to 2019: Solid Products, Masses, and Average Eruptive Rates","authors":"Federico Galetto, Matthew E. Pritchard, Adrian J. Hornby, Esteban Gazel, Natalie M. Mahowald","doi":"10.1029/2022RG000783","DOIUrl":"https://doi.org/10.1029/2022RG000783","url":null,"abstract":"<p>Volcanism is one of the main mechanisms transferring mass and energy between the interior of the Earth and the Earth's surface. However, the global mass flux of lava, volcanic ash and explosive pyroclastic deposits is not well constrained. Here we review published estimates of the mass of the erupted products from 1980 to 2019 by a global compilation. We identified 1,064 magmatic eruptions that occurred between 1980 and 2019 from the Smithsonian Global Volcanism Program database. For each eruption, we reported both the total erupted mass and its partitioning into the different volcanic products. Using this data set, we quantified the temporal and spatial evolution of subaerial volcanism and its products from 1980 to 2019 at a global and regional scale. The mass of magma erupted in each analyzed decade ranged from 1.1–4.9 × 10<sup>13</sup> kg. Lava is the main subaerial erupted product representing ∼57% of the total erupted mass of magma. The products related to the biggest eruptions (Magnitude ≥6), with long recurrence times, can temporarily make explosive products more abundant than lava (e.g., decade 1990–1999). Twenty-three volcanoes produced ∼72% of the total mass, while two different sets of 15 volcanoes erupted >70% of the total mass of either effusive or explosive products. At a global scale, the 10 and 40-year average eruptive rates calculated from 1980 to 2019 have the same magnitude as the long-term average eruptive rates (from thousand to millions of years), because in both cases rates are scaled for times comparable to the recurrence time of the biggest eruptions occurred.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"61 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6183492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Land surface temperature (LST) is a crucial parameter that reflects land–atmosphere interaction and has thus attracted wide interest from geoscientists. Owing to the rapid development of Earth observation technologies, remotely sensed LST is playing an increasingly essential role in various fields. This review aims to summarize the progress in LST estimation algorithms and accelerate its further applications. Thus, we briefly review the most-used thermal infrared (TIR) LST estimation algorithms. More importantly, this review provides a comprehensive collection of the widely used TIR-based LST products and offers important insights into the uncertainties in these products with respect to different land cover conditions via a systematic intercomparison analysis of several representative products. In addition to the discussion on product accuracy, we address problems related to the spatial discontinuity, spatiotemporal incomparability, and short time span of current LST products by introducing the most effective methods. With the aim of overcoming these challenges in available LST products, much progress has been made in developing spatiotemporal seamless LST data, which significantly promotes the successful applications of these products in the field of surface evapotranspiration and soil moisture estimation, agriculture drought monitoring, thermal environment monitoring, thermal anomaly monitoring, and climate change. Overall, this review encompasses the most recent advances in TIR-based LST and the state-of-the-art of applications of LST products at various spatial and temporal scales, identifies critical further research needs and directions to advance and optimize retrieval methods, and promotes the application of LST to improve the understanding of surface thermal dynamics and exchanges.
{"title":"Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications","authors":"Zhao-Liang Li, Hua Wu, Si-Bo Duan, Wei Zhao, Huazhong Ren, Xiangyang Liu, Pei Leng, Ronglin Tang, Xin Ye, Jinshun Zhu, Yingwei Sun, Menglin Si, Meng Liu, Jiahao Li, Xia Zhang, Guofei Shang, Bo-Hui Tang, Guangjian Yan, Chenghu Zhou","doi":"10.1029/2022RG000777","DOIUrl":"https://doi.org/10.1029/2022RG000777","url":null,"abstract":"<p>Land surface temperature (LST) is a crucial parameter that reflects land–atmosphere interaction and has thus attracted wide interest from geoscientists. Owing to the rapid development of Earth observation technologies, remotely sensed LST is playing an increasingly essential role in various fields. This review aims to summarize the progress in LST estimation algorithms and accelerate its further applications. Thus, we briefly review the most-used thermal infrared (TIR) LST estimation algorithms. More importantly, this review provides a comprehensive collection of the widely used TIR-based LST products and offers important insights into the uncertainties in these products with respect to different land cover conditions via a systematic intercomparison analysis of several representative products. In addition to the discussion on product accuracy, we address problems related to the spatial discontinuity, spatiotemporal incomparability, and short time span of current LST products by introducing the most effective methods. With the aim of overcoming these challenges in available LST products, much progress has been made in developing spatiotemporal seamless LST data, which significantly promotes the successful applications of these products in the field of surface evapotranspiration and soil moisture estimation, agriculture drought monitoring, thermal environment monitoring, thermal anomaly monitoring, and climate change. Overall, this review encompasses the most recent advances in TIR-based LST and the state-of-the-art of applications of LST products at various spatial and temporal scales, identifies critical further research needs and directions to advance and optimize retrieval methods, and promotes the application of LST to improve the understanding of surface thermal dynamics and exchanges.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"61 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000777","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5799921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peter A. Cawood, Priyadarshi Chowdhury, Jacob A. Mulder, Chris J. Hawkesworth, Fabio A. Capitanio, Prasanna M. Gunawardana, Oliver Nebel
Understanding of secular evolution of the Earth system is based largely on the rock and mineral archive preserved in the continental lithosphere. Based on the frequency and range of accessible data preserved in this record, we divide the secular evolution into seven phases: (a) “Proto-Earth” (ca. 4.57–4.45 Ga); (b) “Primordial Earth” (ca. 4.45–3.80 Ga); (c) “Primitive Earth” (ca. 3.8–3.2 Ga); (d) “Juvenile Earth” (ca. 3.2–2.5 Ga); (e) “Youthful Earth” (ca. 2.5–1.8 Ga); (f) “Middle Earth” (ca. 1.8–0.8 Ga); and (g) “Contemporary Earth” (since ca. 0.8 Ga). Integrating this record with knowledge of secular cooling of the mantle and lithospheric rheology constrains the changes in the tectonic modes that operated through Earth history. Initial accretion and the Moon forming impact during the Proto-Earth phase likely resulted in a magma ocean. The solidification of this magma ocean produced the Primordial Earth lithosphere, which preserves evidence for intra-lithospheric reworking of a rigid lid, but which also likely experienced partial recycling through mantle overturn and meteorite impacts. Evidence for craton formation and stabilization from ca. 3.8 to 2.5 Ga, during the Primitive and Juvenile Earth phases, likely reflects some degree of coupling between the convecting mantle and a lithosphere initially weak enough to favor an internally deformable, squishy-lid behavior, which led to a transition to more rigid, plate like, behavior by the end of the early Earth phases. The Youthful to Contemporary phases of Earth, all occurred within a plate tectonic framework with changes between phases linked to lithospheric behavior and the supercontinent cycle.
{"title":"Secular Evolution of Continents and the Earth System","authors":"Peter A. Cawood, Priyadarshi Chowdhury, Jacob A. Mulder, Chris J. Hawkesworth, Fabio A. Capitanio, Prasanna M. Gunawardana, Oliver Nebel","doi":"10.1029/2022RG000789","DOIUrl":"https://doi.org/10.1029/2022RG000789","url":null,"abstract":"<p>Understanding of secular evolution of the Earth system is based largely on the rock and mineral archive preserved in the continental lithosphere. Based on the frequency and range of accessible data preserved in this record, we divide the secular evolution into seven phases: (a) “<i>Proto-Earth</i>” (ca. 4.57–4.45 Ga); (b) “<i>Primordial Earth</i>” (ca. 4.45–3.80 Ga); (c) “<i>Primitive Earth</i>” (ca. 3.8–3.2 Ga); (d) “Juvenile <i>Earth</i>” (ca. 3.2–2.5 Ga); (e) “<i>Youthful Earth</i>” (ca. 2.5–1.8 Ga); (f) “<i>Middle Earth</i>” (ca. 1.8–0.8 Ga); and (g) “<i>Contemporary Earth</i>” (since ca. 0.8 Ga). Integrating this record with knowledge of secular cooling of the mantle and lithospheric rheology constrains the changes in the tectonic modes that operated through Earth history. Initial accretion and the Moon forming impact during the Proto-Earth phase likely resulted in a magma ocean. The solidification of this magma ocean produced the Primordial Earth lithosphere, which preserves evidence for intra-lithospheric reworking of a rigid lid, but which also likely experienced partial recycling through mantle overturn and meteorite impacts. Evidence for craton formation and stabilization from ca. 3.8 to 2.5 Ga, during the Primitive and Juvenile Earth phases, likely reflects some degree of coupling between the convecting mantle and a lithosphere initially weak enough to favor an internally deformable, squishy-lid behavior, which led to a transition to more rigid, plate like, behavior by the end of the early Earth phases. The Youthful to Contemporary phases of Earth, all occurred within a plate tectonic framework with changes between phases linked to lithospheric behavior and the supercontinent cycle.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 4","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000789","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6120786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eelco J. Rohling, Gavin L. Foster, Thomas M. Gernon, Katharine M. Grant, David Heslop, Fiona D. Hibbert, Andrew P. Roberts, Jimin Yu
Global ice volume (sea level) and deep-sea temperature are key measures of Earth's climatic state. We synthesize evidence for multi-centennial to millennial ice-volume and deep-sea temperature variations over the past 40 million years, which encompass the early glaciation of Antarctica at ∼34 million years ago (Ma), the end of the Middle Miocene Climate Optimum, and the descent into bipolar glaciation from ∼3.4 Ma. We compare different sea-level and deep-water temperature reconstructions to build a resource for validating long-term numerical model-based approaches. We present: (a) a new template synthesis of ice-volume and deep-sea temperature variations for the past 5.3 million years; (b) an extended template for the interval between 5.3 and 40 Ma; and (c) a discussion of uncertainties and limitations. We highlight key issues associated with glacial state changes in the geological record from 40 Ma to present that require attention in further research. These include offsets between calibration-sensitive versus thermodynamically guided deep-sea paleothermometry proxy measurements; a conundrum related to the magnitudes of sea-level and deep-sea temperature change at the Eocene-Oligocene transition at 34 Ma; a discrepancy in deep-sea temperature levels during the Middle Miocene; and a hitherto unquantified non-linear reduction of glacial deep-sea temperatures through the past 3.4 million years toward a near-freezing deep-sea temperature asymptote, while sea level stepped down in a more uniform manner. Uncertainties in proxy-based reconstructions hinder further distinction of “reality” among reconstructions. It seems more promising to further narrow this using three-dimensional ice-sheet models with realistic ice-climate-ocean-topography-lithosphere coupling, as computational capacities improve.
{"title":"Comparison and Synthesis of Sea-Level and Deep-Sea Temperature Variations Over the Past 40 Million Years","authors":"Eelco J. Rohling, Gavin L. Foster, Thomas M. Gernon, Katharine M. Grant, David Heslop, Fiona D. Hibbert, Andrew P. Roberts, Jimin Yu","doi":"10.1029/2022RG000775","DOIUrl":"https://doi.org/10.1029/2022RG000775","url":null,"abstract":"<p>Global ice volume (sea level) and deep-sea temperature are key measures of Earth's climatic state. We synthesize evidence for multi-centennial to millennial ice-volume and deep-sea temperature variations over the past 40 million years, which encompass the early glaciation of Antarctica at ∼34 million years ago (Ma), the end of the Middle Miocene Climate Optimum, and the descent into bipolar glaciation from ∼3.4 Ma. We compare different sea-level and deep-water temperature reconstructions to build a resource for validating long-term numerical model-based approaches. We present: (a) a new template synthesis of ice-volume and deep-sea temperature variations for the past 5.3 million years; (b) an extended template for the interval between 5.3 and 40 Ma; and (c) a discussion of uncertainties and limitations. We highlight key issues associated with glacial state changes in the geological record from 40 Ma to present that require attention in further research. These include offsets between calibration-sensitive versus thermodynamically guided deep-sea paleothermometry proxy measurements; a conundrum related to the magnitudes of sea-level and deep-sea temperature change at the Eocene-Oligocene transition at 34 Ma; a discrepancy in deep-sea temperature levels during the Middle Miocene; and a hitherto unquantified non-linear reduction of glacial deep-sea temperatures through the past 3.4 million years toward a near-freezing deep-sea temperature asymptote, while sea level stepped down in a more uniform manner. Uncertainties in proxy-based reconstructions hinder further distinction of “reality” among reconstructions. It seems more promising to further narrow this using three-dimensional ice-sheet models with realistic ice-climate-ocean-topography-lithosphere coupling, as computational capacities improve.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 4","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000775","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6007192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dieter Bilitza, Michael Pezzopane, Vladimir Truhlik, David Altadill, Bodo W. Reinisch, Alessio Pignalberi
This paper is a review of the International Reference Ionosphere (IRI) project and model. IRI is recognized as the official standard for the Earth's ionosphere by the International Standardization Organization, the International Union of Radio Science, the Committee on Space Research, and the European Cooperation for Space Standardization. As requested by these organizations, IRI is an empirical (data-based) model representing the primary ionospheric parameters based on the long data record that exists from ground and space observations of the ionosphere. The core model describes monthly averages of the electron density, electron temperature, ion temperature, and ion composition globally in the altitude range from 60 to 2,000 km. Over time additional parameters were added in response to requests from the user community, this includes the equatorial ion drift, the occurrence probability of spread-F and of an F1 layer, auroral boundaries and the electron content from the bottom of the ionosphere to user-specified altitude. IRI has undergone extensive validations and is used for a wide range of applications in science, engineering, and education. This review is the result of many requests we have received for a comprehensive description of the model. It is also meant as a guide for users who are interested in a deeper understanding of the model architecture and its mathematical formalism.
{"title":"The International Reference Ionosphere Model: A Review and Description of an Ionospheric Benchmark","authors":"Dieter Bilitza, Michael Pezzopane, Vladimir Truhlik, David Altadill, Bodo W. Reinisch, Alessio Pignalberi","doi":"10.1029/2022RG000792","DOIUrl":"https://doi.org/10.1029/2022RG000792","url":null,"abstract":"<p>This paper is a review of the International Reference Ionosphere (IRI) project and model. IRI is recognized as the official standard for the Earth's ionosphere by the International Standardization Organization, the International Union of Radio Science, the Committee on Space Research, and the European Cooperation for Space Standardization. As requested by these organizations, IRI is an empirical (data-based) model representing the primary ionospheric parameters based on the long data record that exists from ground and space observations of the ionosphere. The core model describes monthly averages of the electron density, electron temperature, ion temperature, and ion composition globally in the altitude range from 60 to 2,000 km. Over time additional parameters were added in response to requests from the user community, this includes the equatorial ion drift, the occurrence probability of spread-F and of an F1 layer, auroral boundaries and the electron content from the bottom of the ionosphere to user-specified altitude. IRI has undergone extensive validations and is used for a wide range of applications in science, engineering, and education. This review is the result of many requests we have received for a comprehensive description of the model. It is also meant as a guide for users who are interested in a deeper understanding of the model architecture and its mathematical formalism.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 4","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000792","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5871999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. S. Borma, M. H. Costa, H. R. da Rocha, J. Arieira, N. C. C. Nascimento, C. Jaramillo-Giraldo, G. Ambrosio, R. G. Carneiro, M. Venzon, A. F. Neto, R. van der Hoff, B. F. A. Oliveira, R. Raj?o, C. A. Nobre
Tropical forests are recognized for their role in providing diverse ecosystem services (ESs), with carbon uptake the best recognized. The capacity of tropical forests to provide ESs is strongly linked to their enormous biodiversity. However, causal relationships between biodiversity and ESs are poorly understood. This may be because biodiversity is often translated into species richness. Here, we argue that focusing on multiple attributes of biodiversity—structure, composition, and function—will make relationships between biodiversity and ESs clearer. In this review, we discuss the ecological processes behind ESs from tropical humid and subhumid forests of South America. Our main goal is to understand the links between the ESs and those three biodiversity attributes. While supporting and regulating services relate more closely to forest structure and function, provisioning services relate more closely to forest composition and function, and cultural services are more related to structure and composition attributes. In this sense, ESs from subhumid forests (savannas) differ from those provided by the Amazon Forest, although both ecosystems are recognized as harboring tremendous biodiversity. Given this, if anthropogenic drivers of change promote a shift in the Amazon Forest toward savanna—the savannization hypothesis—the types of services provided will change, especially climate regulating services. This review emphasizes the importance of deeply understanding ecosystem structure, composition, and function to better understand the services ecosystems provide. Understanding that anthropogenic impacts on biodiversity occur through these three main attributes, it becomes easier to anticipate how humans will impact ESs.
{"title":"Beyond Carbon: The Contributions of South American Tropical Humid and Subhumid Forests to Ecosystem Services","authors":"L. S. Borma, M. H. Costa, H. R. da Rocha, J. Arieira, N. C. C. Nascimento, C. Jaramillo-Giraldo, G. Ambrosio, R. G. Carneiro, M. Venzon, A. F. Neto, R. van der Hoff, B. F. A. Oliveira, R. Raj?o, C. A. Nobre","doi":"10.1029/2021RG000766","DOIUrl":"https://doi.org/10.1029/2021RG000766","url":null,"abstract":"<p>Tropical forests are recognized for their role in providing diverse ecosystem services (ESs), with carbon uptake the best recognized. The capacity of tropical forests to provide ESs is strongly linked to their enormous biodiversity. However, causal relationships between biodiversity and ESs are poorly understood. This may be because biodiversity is often translated into species richness. Here, we argue that focusing on multiple attributes of biodiversity—structure, composition, and function—will make relationships between biodiversity and ESs clearer. In this review, we discuss the ecological processes behind ESs from tropical humid and subhumid forests of South America. Our main goal is to understand the links between the ESs and those three biodiversity attributes. While supporting and regulating services relate more closely to forest structure and function, provisioning services relate more closely to forest composition and function, and cultural services are more related to structure and composition attributes. In this sense, ESs from subhumid forests (savannas) differ from those provided by the Amazon Forest, although both ecosystems are recognized as harboring tremendous biodiversity. Given this, if anthropogenic drivers of change promote a shift in the Amazon Forest toward savanna—the savannization hypothesis—the types of services provided will change, especially climate regulating services. This review emphasizes the importance of deeply understanding ecosystem structure, composition, and function to better understand the services ecosystems provide. Understanding that anthropogenic impacts on biodiversity occur through these three main attributes, it becomes easier to anticipate how humans will impact ESs.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 4","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000766","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5827669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xueyan Lyu, Feng Xiao, Chongyang Shen, Jingjing Chen, Chang Min Park, Yuanyuan Sun, Markus Flury, Dengjun Wang
Per- and polyfluoroalkyl substances (PFASs), also known as “forever chemicals,” are manmade chemicals that have been increasingly detected in various geological settings since the early 2000s. The soil and subsurface environments are the geological media commonly affected by PFAS. We conducted a comprehensive review of peer-reviewed articles published from 2010 through 2022 concerning the fate and transport of PFAS in subsurface environments. This review is organized into different subsections, covering the basics of PFAS properties and how they affect the occurrence, fate, and transport of PFAS, the fundamental processes affecting subsurface transport and fate of PFAS, and mathematical models for describing and predicting PFAS transport behaviors. Mechanisms governing PFAS transport in the subsurface environment, including the sorption of PFAS at the air-water interface, solid-water interface, and nonaqueous phase liquids-water interface, were explored in detail. Challenges and future research priorities are identified to better mitigate the global challenges of PFAS contamination.
{"title":"Per- and Polyfluoroalkyl Substances (PFAS) in Subsurface Environments: Occurrence, Fate, Transport, and Research Prospect","authors":"Xueyan Lyu, Feng Xiao, Chongyang Shen, Jingjing Chen, Chang Min Park, Yuanyuan Sun, Markus Flury, Dengjun Wang","doi":"10.1029/2021RG000765","DOIUrl":"https://doi.org/10.1029/2021RG000765","url":null,"abstract":"<p>Per- and polyfluoroalkyl substances (PFASs), also known as “forever chemicals,” are manmade chemicals that have been increasingly detected in various geological settings since the early 2000s. The soil and subsurface environments are the geological media commonly affected by PFAS. We conducted a comprehensive review of peer-reviewed articles published from 2010 through 2022 concerning the fate and transport of PFAS in subsurface environments. This review is organized into different subsections, covering the basics of PFAS properties and how they affect the occurrence, fate, and transport of PFAS, the fundamental processes affecting subsurface transport and fate of PFAS, and mathematical models for describing and predicting PFAS transport behaviors. Mechanisms governing PFAS transport in the subsurface environment, including the sorption of PFAS at the air-water interface, solid-water interface, and nonaqueous phase liquids-water interface, were explored in detail. Challenges and future research priorities are identified to better mitigate the global challenges of PFAS contamination.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 3","pages":""},"PeriodicalIF":25.2,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6111513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}