Hong Wang, Xiujun Xie, Wenhui Gu, Zhenbing Zheng, Jintao Zhuo, Zhizhuo Shao, Li Huan, Baoyu Zhang, Jianfeng Niu, Shan Gao, Xulei Wang, Guangce Wang
{"title":"Gene editing of economic macroalga Neopyropia yezoensis (Rhodophyta) will promote its development into a model species of marine algae","authors":"Hong Wang, Xiujun Xie, Wenhui Gu, Zhenbing Zheng, Jintao Zhuo, Zhizhuo Shao, Li Huan, Baoyu Zhang, Jianfeng Niu, Shan Gao, Xulei Wang, Guangce Wang","doi":"10.1111/nph.20123","DOIUrl":"https://doi.org/10.1111/nph.20123","url":null,"abstract":"","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xylem air embolism is the primary cause of drought-related tree mortality. Phenotypic plasticity of xylem traits is key for species acclimation to environmental variability and evolution. It is widely believed that plants increase xylem embolism resistance in response to drought. However, I argue that this hypothesis, based on extensive literature, relies on sampling methods that overlook predictable anatomical patterns, potentially biasing our understanding of acclimation and adaptation strategies.
{"title":"An appreciation of apex-to-base variation in xylem traits will lead to more precise understanding of xylem phenotypic plasticity","authors":"Giai Petit","doi":"10.1111/nph.20109","DOIUrl":"10.1111/nph.20109","url":null,"abstract":"<p>Xylem air embolism is the primary cause of drought-related tree mortality. Phenotypic plasticity of xylem traits is key for species acclimation to environmental variability and evolution. It is widely believed that plants increase xylem embolism resistance in response to drought. However, I argue that this hypothesis, based on extensive literature, relies on sampling methods that overlook predictable anatomical patterns, potentially biasing our understanding of acclimation and adaptation strategies.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.20109","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}