首页 > 最新文献

Semiconductor Science and Technology最新文献

英文 中文
Epitaxial growth of high-quality Ge layers on Si with Ge2H6 under UHV-CVD conditions 在超高真空-气相沉积条件下用 Ge2H6 在硅上外延生长高质量 Ge 层
IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-12 DOI: 10.1088/1361-6641/ad14ee
Changjiang Xie, Yue Li, Chi Xu, Yixin Wang, Hui Cong, Chunlai Xue
Epitaxial growth of Ge films on Si(100) substrates has been studied under ultra-high vacuum chemical vapor deposition (CVD) conditions by using digermane (Ge2H6) as the precursor. It was found out that high quality layers with thicknesses beyond 500 nm could be produced at complementary metal–oxide–semiconductor compatible conditions, demonstrating low defect density, sharp and narrow x-ray diffraction peaks, as well as room temperature photoluminescence around 1550 nm. The surface roughness values are comparable to prior reduced pressure CVD results at similar growth temperatures. By employing higher growth temperatures, growth rates are significantly enhanced, resulting in much thicker layers beyond 2000 nm. Smoother sample surface could also be obtained, yielding a state-of-the-art surface root-mean-square roughness value of 0.34 nm for the as-grown sample. At the same time, after being annealed at 750 °C for 20 min, the full width at half maximum (FWHM) of x-ray diffraction 004 rocking curve spectrum of the Ge layer is as low as 88 arcseconds, which stands the best among all Ge/Si samples. The current work has provided important reference for Ge/Si growth with Ge2H6 in low pressure regime and solidified material grounding for Ge-based optoelectronics and Si photonics.
在超高真空化学气相沉积(CVD)条件下,研究人员使用地锗(Ge2H6)作为前驱体,在硅(100)基底上外延生长 Ge 薄膜。研究发现,在互补金属-氧化物-半导体兼容的条件下,可以制备出厚度超过 500 nm 的高质量薄膜层,这些薄膜层具有较低的缺陷密度、尖锐而狭窄的 X 射线衍射峰以及 1550 nm 左右的室温光致发光。表面粗糙度值与之前在类似生长温度下的减压 CVD 结果相当。通过采用更高的生长温度,生长速度得到显著提高,从而得到厚度超过 2000 nm 的薄膜层。样品表面也变得更加光滑,生长后的样品表面均方根粗糙度值为 0.34 nm。同时,在 750 °C 下退火 20 分钟后,Ge 层的 X 射线衍射 004 摇摆曲线光谱的半最大全宽(FWHM)低至 88 弧秒,在所有 Ge/Si 样品中名列前茅。目前的研究工作为在低压条件下利用 Ge2H6 生长 Ge/Si 提供了重要参考,并为 Ge 基光电子学和硅光子学奠定了坚实的材料基础。
{"title":"Epitaxial growth of high-quality Ge layers on Si with Ge2H6 under UHV-CVD conditions","authors":"Changjiang Xie, Yue Li, Chi Xu, Yixin Wang, Hui Cong, Chunlai Xue","doi":"10.1088/1361-6641/ad14ee","DOIUrl":"https://doi.org/10.1088/1361-6641/ad14ee","url":null,"abstract":"Epitaxial growth of Ge films on Si(100) substrates has been studied under ultra-high vacuum chemical vapor deposition (CVD) conditions by using digermane (Ge2H6) as the precursor. It was found out that high quality layers with thicknesses beyond 500 nm could be produced at complementary metal–oxide–semiconductor compatible conditions, demonstrating low defect density, sharp and narrow x-ray diffraction peaks, as well as room temperature photoluminescence around 1550 nm. The surface roughness values are comparable to prior reduced pressure CVD results at similar growth temperatures. By employing higher growth temperatures, growth rates are significantly enhanced, resulting in much thicker layers beyond 2000 nm. Smoother sample surface could also be obtained, yielding a state-of-the-art surface root-mean-square roughness value of 0.34 nm for the as-grown sample. At the same time, after being annealed at 750 °C for 20 min, the full width at half maximum (FWHM) of x-ray diffraction 004 rocking curve spectrum of the Ge layer is as low as 88 arcseconds, which stands the best among all Ge/Si samples. The current work has provided important reference for Ge/Si growth with Ge2H6 in low pressure regime and solidified material grounding for Ge-based optoelectronics and Si photonics.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"17 7","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138977069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of junctionless and inversion-mode nanosheet FETs for self-heating effect mitigation 用于缓解自热效应的无结和反转模式纳米片场效应晶体管对比分析
IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-12 DOI: 10.1088/1361-6641/ad10c4
Do Gyun An, Garam Kim, Hyunwoo Kim, Sangwan Kim, Jang Hyun Kim
Artificial intelligence computing requires hardware like central processing units and graphic processing units for data processing. However, excessive heat generated during computations remains a challenge. The paper focuses on the heat issue in logic devices caused by transistor structures. To address the problem, the operational mechanism of the Junctionless Field-Effect Transistor (JLFET) is investigated. JLFET shows potential in mitigating heat-related issues and is compared to other nanosheet (ns) FETs. In the case of JL-nsFET, the change in mobility with increasing temperature is smaller compared to Con-nsFET, resulting in less susceptibility to lattice scattering and thermal resistance (Rth) in self-heating effect situation is 0.43 [K µW−1] for Con-nsFET and 0.414 [K µW−1] for JL-nsFET. The reason why the Rth of JL-nsFET is smaller than that of Con-nsFET is that JL-nsFET uses a source heat injection conduction mechanism and a large heat transfer area by using a bulk channel.
人工智能计算需要中央处理单元和图形处理单元等硬件进行数据处理。然而,计算过程中产生的过多热量仍然是一个挑战。本文的重点是晶体管结构导致的逻辑器件发热问题。为解决这一问题,本文研究了无结场效应晶体管(JLFET)的工作机制。JLFET 在缓解热相关问题方面显示出潜力,并与其他纳米片 (ns) FET 进行了比较。与 Con-nsFET 相比,JL-nsFET 的迁移率随温度升高而发生的变化较小,因此对晶格散射的敏感性较低,在自热效应情况下,Con-nsFET 的热阻(Rth)为 0.43 [K µW-1],而 JL-nsFET 的热阻(Rth)为 0.414 [K µW-1]。JL-nsFET 的 Rth 小于 Con-nsFET 的原因是,JL-nsFET 采用了源热注入传导机制,并通过使用散装沟道获得了较大的传热面积。
{"title":"Comparative analysis of junctionless and inversion-mode nanosheet FETs for self-heating effect mitigation","authors":"Do Gyun An, Garam Kim, Hyunwoo Kim, Sangwan Kim, Jang Hyun Kim","doi":"10.1088/1361-6641/ad10c4","DOIUrl":"https://doi.org/10.1088/1361-6641/ad10c4","url":null,"abstract":"Artificial intelligence computing requires hardware like central processing units and graphic processing units for data processing. However, excessive heat generated during computations remains a challenge. The paper focuses on the heat issue in logic devices caused by transistor structures. To address the problem, the operational mechanism of the Junctionless Field-Effect Transistor (JLFET) is investigated. JLFET shows potential in mitigating heat-related issues and is compared to other nanosheet (ns) FETs. In the case of JL-nsFET, the change in mobility with increasing temperature is smaller compared to Con-nsFET, resulting in less susceptibility to lattice scattering and thermal resistance (<italic toggle=\"yes\">R</italic>th) in self-heating effect situation is 0.43 [K <italic toggle=\"yes\">µ</italic>W<sup>−1</sup>] for Con-nsFET and 0.414 [K <italic toggle=\"yes\">µ</italic>W<sup>−1</sup>] for JL-nsFET. The reason why the <italic toggle=\"yes\">R</italic>th of JL-nsFET is smaller than that of Con-nsFET is that JL-nsFET uses a source heat injection conduction mechanism and a large heat transfer area by using a bulk channel.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"56 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138691427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silicon ultrafast recovery diode with leakage current reduced via the combined lifetime process of gold diffusion and electron-beam irradiation 通过金扩散和电子束辐照联合寿命过程降低漏电流的硅超快恢复二极管
IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-12 DOI: 10.1088/1361-6641/ad14ec
Hideto Onishi, Hajime Shirai
We investigated the reduction in the reverse-biased leakage current of Si ultrafast recovery diodes via a combined lifetime process involving Au diffusion and bulk electron-beam irradiation. The leakage current of the combined-processed diode was significantly reduced to less than one-third of that of the diode processed solely with Au diffusion, maintaining a similar switching time of 32 ns. This reduction was not achievable with the sole use of electron-beam irradiation. Deep-level transient spectroscopy revealed that the reduction in the leakage current was due to the coexistence of the deep trap level of Au (Ec-0.51 eV) and the shallow trap level of the defects (Ec-0.39 eV) generated via electron-beam irradiation as lifetime killers. By combining the deep and shallow trap levels, the lifetime of the carriers generated in the depletion layer of the reverse-biased p-n junction becomes long and consequently, the leakage current is reduced. By maintaining the trap density ratio of defects to diffused Au above 0.28, the leakage current was reduced to less than one-third of that in the solely Au-diffused diode, while maintaining a similar switching time.
我们研究了通过金扩散和体电子束辐照的组合寿命工艺来降低硅超高速恢复二极管的反向偏置漏电流。在保持类似的 32 ns 开关时间的情况下,组合工艺二极管的漏电流显著降低,不到单纯金扩散工艺二极管的三分之一。仅使用电子束辐照是无法实现这种降低的。深阱瞬态光谱显示,漏电流的降低是由于电子束辐照产生的金深阱电平(Ec-0.51 eV)和缺陷浅阱电平(Ec-0.39 eV)作为寿命杀手同时存在。通过结合深阱和浅阱电平,在反向偏置 p-n 结的耗尽层中产生的载流子的寿命变长,从而降低了漏电流。通过将缺陷与扩散金的陷阱密度比保持在 0.28 以上,漏电流降低到了纯金扩散二极管的三分之一以下,同时保持了相似的开关时间。
{"title":"Silicon ultrafast recovery diode with leakage current reduced via the combined lifetime process of gold diffusion and electron-beam irradiation","authors":"Hideto Onishi, Hajime Shirai","doi":"10.1088/1361-6641/ad14ec","DOIUrl":"https://doi.org/10.1088/1361-6641/ad14ec","url":null,"abstract":"\u0000 We investigated the reduction in the reverse-biased leakage current of Si ultrafast recovery diodes via a combined lifetime process involving Au diffusion and bulk electron-beam irradiation. The leakage current of the combined-processed diode was significantly reduced to less than one-third of that of the diode processed solely with Au diffusion, maintaining a similar switching time of 32 ns. This reduction was not achievable with the sole use of electron-beam irradiation. Deep-level transient spectroscopy revealed that the reduction in the leakage current was due to the coexistence of the deep trap level of Au (Ec-0.51 eV) and the shallow trap level of the defects (Ec-0.39 eV) generated via electron-beam irradiation as lifetime killers. By combining the deep and shallow trap levels, the lifetime of the carriers generated in the depletion layer of the reverse-biased p-n junction becomes long and consequently, the leakage current is reduced. By maintaining the trap density ratio of defects to diffused Au above 0.28, the leakage current was reduced to less than one-third of that in the solely Au-diffused diode, while maintaining a similar switching time.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"45 6","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139009815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress in modifications of g-C3N4 for photocatalytic hydrogen evolution and CO2 reduction 用于光催化氢气进化和二氧化碳还原的 g-C3N4 改性技术的最新进展
IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-11 DOI: 10.1088/1361-6641/ad0eea
Garima Rana, Pooja Dhiman, Amit Kumar, Elmuez A Dawi, Gaurav Sharma
Photocatalytic H2 evolution and CO2 reduction are promising technologies for addressing environmental and energy issues. g-C3N4 is one of most promising materials to form improved catalysts because of its exceptional electrical structure, physical and chemical characteristics, and distinctive metal-free feature. This article provides a summary of current advancements in g-C3N4-based catalysts from innovative design approaches and their applications. Hydrogen evolution has reached 6305.18 µmol g−1 h−1 and >9 h of stability using the SnS2/g-C3N4 heterojunction. Additionally, the ZnO/Au/g-C3N4 maintains a constant CO generation rate of 689.7 mol m−2 during the 8 h reaction. To fully understand the interior relationship of theory–structure performance on g-C3N4-based materials, modifications are studied simultaneously. Furthermore, the synthesis of g-C3N4 and g-C3N4-based materials, as well as their respective instances, have been reported. The reduction of CO2 and H2 generation is summarized. Lastly, a short overview of the present issues and potential alternatives for g-C3N4-based materials is provided.
光催化 H2 演化和二氧化碳还原是解决环境和能源问题的前景广阔的技术。g-C3N4 因其特殊的电学结构、物理和化学特性以及独特的无金属特性,是最有希望形成改良催化剂的材料之一。本文从创新设计方法及其应用出发,概述了目前在基于 g-C3N4 的催化剂方面取得的进展。利用 SnS2/g-C3N4 异质结,氢气进化达到了 6305.18 µmol g-1 h-1 和 9 h 的稳定性。此外,在 8 小时的反应过程中,ZnO/Au/g-C3N4 保持了 689.7 mol m-2 的恒定 CO 生成率。为了充分理解基于 g-C3N4 材料的理论-结构性能的内部关系,我们同时对改性进行了研究。此外,还报道了 g-C3N4 和 g-C3N4 基材料的合成及其各自的实例。此外,还总结了二氧化碳和 H2 生成的减少情况。最后,简要概述了 g-C3N4 基材料的当前问题和潜在替代品。
{"title":"Recent progress in modifications of g-C3N4 for photocatalytic hydrogen evolution and CO2 reduction","authors":"Garima Rana, Pooja Dhiman, Amit Kumar, Elmuez A Dawi, Gaurav Sharma","doi":"10.1088/1361-6641/ad0eea","DOIUrl":"https://doi.org/10.1088/1361-6641/ad0eea","url":null,"abstract":"Photocatalytic H<sub>2</sub> evolution and CO<sub>2</sub> reduction are promising technologies for addressing environmental and energy issues. g-C<sub>3</sub>N<sub>4</sub> is one of most promising materials to form improved catalysts because of its exceptional electrical structure, physical and chemical characteristics, and distinctive metal-free feature. This article provides a summary of current advancements in g-C<sub>3</sub>N<sub>4</sub>-based catalysts from innovative design approaches and their applications. Hydrogen evolution has reached 6305.18 <italic toggle=\"yes\">µ</italic>mol g<sup>−1</sup> h<sup>−1</sup> and &gt;9 h of stability using the SnS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunction. Additionally, the ZnO/Au/g-C<sub>3</sub>N<sub>4</sub> maintains a constant CO generation rate of 689.7 mol m<sup>−2</sup> during the 8 h reaction. To fully understand the interior relationship of theory–structure performance on g-C<sub>3</sub>N<sub>4</sub>-based materials, modifications are studied simultaneously. Furthermore, the synthesis of g-C<sub>3</sub>N<sub>4</sub> and g-C<sub>3</sub>N<sub>4</sub>-based materials, as well as their respective instances, have been reported. The reduction of CO<sub>2</sub> and H<sub>2</sub> generation is summarized. Lastly, a short overview of the present issues and potential alternatives for g-C<sub>3</sub>N<sub>4</sub>-based materials is provided.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"6 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138691425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving vertical GaN p–n diode performance with room temperature defect mitigation 利用室温缺陷缓解技术提高垂直 GaN p-n 二极管的性能
IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-07 DOI: 10.1088/1361-6641/ad10c3
Nahid Sultan Al-Mamun, James Gallagher, Alan G Jacobs, Karl D Hobart, Travis J Anderson, Brendan P Gunning, Robert J Kaplar, Douglas E Wolfe, Aman Haque
Defect mitigation of electronic devices is conventionally achieved using thermal annealing. To mobilize the defects, very high temperatures are necessary. Since thermal diffusion is random in nature, the process may take a prolonged period of time. In contrast, we demonstrate a room temperature annealing technique that takes only a few seconds. The fundamental mechanism is defect mobilization by atomic scale mechanical force originating from very high current density but low duty cycle electrical pulses. The high-energy electrons lose their momentum upon collision with the defects, yet the low duty cycle suppresses any heat accumulation to keep the temperature ambient. For a 7 × 105 A cm−2 pulsed current, we report an approximately 26% reduction in specific on-resistance, a 50% increase of the rectification ratio with a lower ideality factor, and reverse leakage current for as-fabricated vertical geometry GaN p–n diodes. We characterize the microscopic defect density of the devices before and after the room temperature processing to explain the improvement in the electrical characteristics. Raman analysis reveals an improvement in the crystallinity of the GaN layer and an approximately 40% relaxation of any post-fabrication residual strain compared to the as-received sample. Cross-sectional transmission electron microscopy (TEM) images and geometric phase analysis results of high-resolution TEM images further confirm the effectiveness of the proposed room temperature annealing technique to mitigate defects in the device. No detrimental effect, such as diffusion and/or segregation of elements, is observed as a result of applying a high-density pulsed current, as confirmed by energy dispersive x-ray spectroscopy mapping.
电子器件的缺陷缓解通常是通过热退火来实现的。要使缺陷移动,需要非常高的温度。由于热扩散具有随机性,因此这一过程可能需要很长时间。相比之下,我们展示的室温退火技术只需几秒钟。其基本机制是由高电流密度但低占空比的电脉冲产生的原子级机械力导致的缺陷移动。高能电子在与缺陷碰撞时会失去动量,而低占空比会抑制热量积累,从而保持室温。对于 7 × 105 A cm-2 的脉冲电流,我们的报告显示,比导通电阻降低了约 26%,整流比提高了 50%,ideality 因子和反向漏电流也降低了。我们对室温处理前后器件的微观缺陷密度进行了表征,以解释电气特性的改善。拉曼分析表明,GaN 层的结晶度有所提高,与接收样品相比,制造后的残余应变松弛了约 40%。横截面透射电子显微镜(TEM)图像和高分辨率 TEM 图像的几何相位分析结果进一步证实了室温退火技术在减少器件缺陷方面的有效性。能量色散 X 射线光谱图证实,应用高密度脉冲电流不会产生有害影响,如元素扩散和/或偏析。
{"title":"Improving vertical GaN p–n diode performance with room temperature defect mitigation","authors":"Nahid Sultan Al-Mamun, James Gallagher, Alan G Jacobs, Karl D Hobart, Travis J Anderson, Brendan P Gunning, Robert J Kaplar, Douglas E Wolfe, Aman Haque","doi":"10.1088/1361-6641/ad10c3","DOIUrl":"https://doi.org/10.1088/1361-6641/ad10c3","url":null,"abstract":"Defect mitigation of electronic devices is conventionally achieved using thermal annealing. To mobilize the defects, very high temperatures are necessary. Since thermal diffusion is random in nature, the process may take a prolonged period of time. In contrast, we demonstrate a room temperature annealing technique that takes only a few seconds. The fundamental mechanism is defect mobilization by atomic scale mechanical force originating from very high current density but low duty cycle electrical pulses. The high-energy electrons lose their momentum upon collision with the defects, yet the low duty cycle suppresses any heat accumulation to keep the temperature ambient. For a 7 × 10<sup>5</sup> A cm<sup>−2</sup> pulsed current, we report an approximately 26% reduction in specific on-resistance, a 50% increase of the rectification ratio with a lower ideality factor, and reverse leakage current for as-fabricated vertical geometry GaN p–n diodes. We characterize the microscopic defect density of the devices before and after the room temperature processing to explain the improvement in the electrical characteristics. Raman analysis reveals an improvement in the crystallinity of the GaN layer and an approximately 40% relaxation of any post-fabrication residual strain compared to the as-received sample. Cross-sectional transmission electron microscopy (TEM) images and geometric phase analysis results of high-resolution TEM images further confirm the effectiveness of the proposed room temperature annealing technique to mitigate defects in the device. No detrimental effect, such as diffusion and/or segregation of elements, is observed as a result of applying a high-density pulsed current, as confirmed by energy dispersive x-ray spectroscopy mapping.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138691572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficiency improvement of Cu(In(1−x)Ga x )Se2 solar cell using copper barium tin sulfide as back surface field layer and bandgap grading technique 利用铜钡锡硫化物作为背表面场层和带隙分级技术提高 Cu(In(1-x)Ga x )Se2 太阳能电池的效率
IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-07 DOI: 10.1088/1361-6641/ad0e7f
Alok Kumar Patel, Rajan Mishra, Sanjay Kumar Soni
This work proposes the simulation of graded <inline-formula><tex-math><?CDATA ${boldsymbol{Cu}}left( {{boldsymbol{I}}{{boldsymbol{n}}_{1 - {boldsymbol{x}}}}{boldsymbol{G}}{{boldsymbol{a}}_{boldsymbol{x}}}} right){boldsymbol{S}}{{boldsymbol{e}}_2}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mi mathvariant="bold-italic">C</mml:mi><mml:mi mathvariant="bold-italic">u</mml:mi></mml:mrow><mml:mfenced close=")" open="("><mml:mrow><mml:mrow><mml:mi mathvariant="bold-italic">I</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="bold-italic">n</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mrow><mml:mi mathvariant="bold-italic">x</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:mi mathvariant="bold-italic">G</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="bold-italic">a</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="bold-italic">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:mfenced><mml:mrow><mml:mi mathvariant="bold-italic">S</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="bold-italic">e</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="sstad0e7fieqn1.gif" xlink:type="simple"></inline-graphic></inline-formula>–based solar cell with copper barium tin sulfide (CBTS) compounds as a back surface field (BSF) layer using the SCAPS-1D software. The CBTS BSF layer reduces the charge carrier losses on the back contact side and creates an extra BSF that helps in extracting holes toward the back contact. To utilize the maximum spectrum absorption range, three different grading configurations were analyzed by varying the stoichiometry of <inline-formula><tex-math><?CDATA ${boldsymbol{Cu}}left( {{boldsymbol{I}}{{boldsymbol{n}}_{1 - {boldsymbol{x}}}}{boldsymbol{G}}{{boldsymbol{a}}_{boldsymbol{x}}}} right){boldsymbol{S}}{{boldsymbol{e}}_2}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mi mathvariant="bold-italic">C</mml:mi><mml:mi mathvariant="bold-italic">u</mml:mi></mml:mrow><mml:mfenced close=")" open="("><mml:mrow><mml:mrow><mml:mi mathvariant="bold-italic">I</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="bold-italic">n</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mrow><mml:mi mathvariant="bold-italic">x</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:mi mathvariant="bold-italic">G</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="bold-italic">a</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="bold-italic">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:mfenced><mml:mrow><mml:mi mathvariant="bold-italic">S</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="bold-italic">e</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="sstad0e7fieqn2.gif" xlink:type="simple"></inline-graphic></inline-formula>. This grading
本研究利用 SCAPS-1D 软件模拟了以铜钡锡硫化物(CBTS)化合物为背表面场(BSF)层的分级 CuIn1-xGaxSe2 太阳能电池。CBTS BSF 层可减少背接触面上的电荷载流子损耗,并产生额外的 BSF,有助于向背接触面提取空穴。为了利用最大光谱吸收范围,通过改变 CuIn1-xGaxSe2 的化学计量,分析了三种不同的分级配置。这种分级技术通过改变 CIGS 材料中的镓含量,大大提高了器件性能,如开路电压(Voc)、短路电流密度(Jsc)、填充因子(FF)和功率转换效率。此外,还分析了 WSSe/分级 CIGS 界面缺陷重组速度、受体密度和 CIGS 层中的块状缺陷对器件性能的影响。插入 CBTS 作为 BSF 层和带隙分级技术使拟议太阳能电池的最高效率达到 31.08%。这些结果将有助于制造高效带隙分级 CIGS 太阳能电池。
{"title":"Efficiency improvement of Cu(In(1−x)Ga x )Se2 solar cell using copper barium tin sulfide as back surface field layer and bandgap grading technique","authors":"Alok Kumar Patel, Rajan Mishra, Sanjay Kumar Soni","doi":"10.1088/1361-6641/ad0e7f","DOIUrl":"https://doi.org/10.1088/1361-6641/ad0e7f","url":null,"abstract":"This work proposes the simulation of graded &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA ${boldsymbol{Cu}}left( {{boldsymbol{I}}{{boldsymbol{n}}_{1 - {boldsymbol{x}}}}{boldsymbol{G}}{{boldsymbol{a}}_{boldsymbol{x}}}} right){boldsymbol{S}}{{boldsymbol{e}}_2}$?&gt;&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;C&lt;/mml:mi&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;u&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mfenced close=\")\" open=\"(\"&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;I&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;n&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;x&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;G&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;a&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;x&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:mfenced&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;S&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;e&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mn&gt;2&lt;/mml:mn&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"sstad0e7fieqn1.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt;–based solar cell with copper barium tin sulfide (CBTS) compounds as a back surface field (BSF) layer using the SCAPS-1D software. The CBTS BSF layer reduces the charge carrier losses on the back contact side and creates an extra BSF that helps in extracting holes toward the back contact. To utilize the maximum spectrum absorption range, three different grading configurations were analyzed by varying the stoichiometry of &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA ${boldsymbol{Cu}}left( {{boldsymbol{I}}{{boldsymbol{n}}_{1 - {boldsymbol{x}}}}{boldsymbol{G}}{{boldsymbol{a}}_{boldsymbol{x}}}} right){boldsymbol{S}}{{boldsymbol{e}}_2}$?&gt;&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;C&lt;/mml:mi&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;u&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mfenced close=\")\" open=\"(\"&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;I&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;n&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;x&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;G&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;a&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;x&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:mfenced&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;S&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"bold-italic\"&gt;e&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mn&gt;2&lt;/mml:mn&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"sstad0e7fieqn2.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt;. This grading ","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"17 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138691325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights to the production of SnS-cubic thin films by vacuum thermal evaporation for photovoltaics 通过真空热蒸发法生产光伏用 SnS 立方薄膜的启示
IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-06 DOI: 10.1088/1361-6641/ad0f4c
Fabiola De Bray Sánchez, M T S Nair, P K Nair
Thin films of SnS-CUB with a lattice constant of 11.6 Å, 32 units of SnS per cell and an optical bandgap (Eg) of 1.7 eV (direct), are mostly produced by chemical techniques. This cubic polymorph is distinct from its orthorhombic polymorph (SnS-ORT) with an Eg of 1.1 eV. This work is on the deposition of SnS-CUB thin films of 100–300 nm in thickness by thermal evaporation at substrate temperatures of 400 °C–475 °C on glass or on a chemically deposited SnS-CUB thin film (100 nm). Under a slow deposition rate (3 nm min−1) from a SnS powder source at 900 °C, the thin film formed on a SnS-CUB film or glass substrate at 450 °C is SnS-CUB. At a substrate temperatures of 200 °C–350 °C, the thin film is of SnS-ORT. A low atomic flux and a higher substrate temperature favor the growth of SnS-CUB thin film. The Eg of the SnS-CUB film is nearly 1.7 eV (direct gap), and that of the SnS-CUB film is 1.2 eV (indirect gap). The electrical conductivity (σ) of SnS-CUB and SnS-ORT films are 10–7 and 0.01 Ω–1 cm−1, respectively. A proof-of-concept solar cell of the SnS-CUB thin film showed an open circuit voltage of 0.478 V, compared with 0.283 V for the SnS-ORT solar cell. The insights to the deposition of SnS-CUB and SnS0.45Se0.55-CUB (Eg, 1.57 eV; σ, 0.02 Ω−1 cm−1) thin films by vacuum thermal evaporation offer new outlook for their applications.
SnS-CUB 的晶格常数为 11.6 Å,每个晶胞有 32 个 SnS 单位,光带隙(Eg)为 1.7 eV(直接),这种薄膜主要是通过化学技术生产的。这种立方多晶体与其 Eg 为 1.1 eV 的正方多晶体(SnS-OT)截然不同。这项工作是在玻璃上或化学沉积的 SnS-CUB 薄膜(100 nm)上,在 400 °C-475 °C 的基底温度下,通过热蒸发沉积厚度为 100-300 nm 的 SnS-CUB 薄膜。在 900 °C、从 SnS 粉末源以较慢的沉积速率(3 nm min-1)沉积时,450 °C、在 SnS-CUB 薄膜或玻璃基底上形成的薄膜为 SnS-CUB。在 200 ℃-350 ℃ 的基底温度下,薄膜为 SnS-OT。低原子通量和较高的基底温度有利于 SnS-CUB 薄膜的生长。SnS-CUB 薄膜的 Eg 值接近 1.7 eV(直接间隙),SnS-CUB 薄膜的 Eg 值为 1.2 eV(间接间隙)。SnS-CUB 和 SnS-ORT 薄膜的导电率(σ)分别为 10-7 和 0.01 Ω-1 cm-1。SnS-CUB 薄膜的概念验证太阳能电池的开路电压为 0.478 V,而 SnS-ORT 太阳能电池的开路电压为 0.283 V。通过真空热蒸发沉积 SnS-CUB 和 SnS0.45Se0.55-CUB(Eg,1.57 eV;σ,0.02 Ω-1 cm-1)薄膜的深入研究为其应用提供了新的前景。
{"title":"Insights to the production of SnS-cubic thin films by vacuum thermal evaporation for photovoltaics","authors":"Fabiola De Bray Sánchez, M T S Nair, P K Nair","doi":"10.1088/1361-6641/ad0f4c","DOIUrl":"https://doi.org/10.1088/1361-6641/ad0f4c","url":null,"abstract":"Thin films of SnS-CUB with a lattice constant of 11.6 Å, 32 units of SnS per cell and an optical bandgap (<italic toggle=\"yes\">E</italic>\u0000<sub>g</sub>) of 1.7 eV (direct), are mostly produced by chemical techniques. This cubic polymorph is distinct from its orthorhombic polymorph (SnS-ORT) with an <italic toggle=\"yes\">E</italic>\u0000<sub>g</sub> of 1.1 eV. This work is on the deposition of SnS-CUB thin films of 100–300 nm in thickness by thermal evaporation at substrate temperatures of 400 °C–475 °C on glass or on a chemically deposited SnS-CUB thin film (100 nm). Under a slow deposition rate (3 nm min<sup>−1</sup>) from a SnS powder source at 900 °C, the thin film formed on a SnS-CUB film or glass substrate at 450 °C is SnS-CUB. At a substrate temperatures of 200 °C–350 °C, the thin film is of SnS-ORT. A low atomic flux and a higher substrate temperature favor the growth of SnS-CUB thin film. The <italic toggle=\"yes\">E</italic>\u0000<sub>g</sub> of the SnS-CUB film is nearly 1.7 eV (direct gap), and that of the SnS-CUB film is 1.2 eV (indirect gap). The electrical conductivity (<italic toggle=\"yes\">σ</italic>) of SnS-CUB and SnS-ORT films are 10<sup>–7</sup> and 0.01 Ω<sup>–1</sup> cm<sup>−1</sup>, respectively. A proof-of-concept solar cell of the SnS-CUB thin film showed an open circuit voltage of 0.478 V, compared with 0.283 V for the SnS-ORT solar cell. The insights to the deposition of SnS-CUB and SnS<sub>0.45</sub>Se<sub>0.55</sub>-CUB (<italic toggle=\"yes\">E</italic>\u0000<sub>g</sub>, 1.57 eV; <italic toggle=\"yes\">σ</italic>, 0.02 Ω<sup>−1</sup> cm<sup>−1</sup>) thin films by vacuum thermal evaporation offer new outlook for their applications.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"6 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138691324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of three-dimensional structure-controlled InGaN quantum wells for efficient visible polychromatic light emitters 用于高效可见多色光发射器的三维结构控制 InGaN 量子阱综述
IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-06 DOI: 10.1088/1361-6641/ad12de
M. Funato, Y. Matsuda, Y. Kawakami
This paper reviews the development of three-dimensional (3D) structure-controlled InGaN quantum wells (QWs) for highly efficient multiwavelength emitters without using phosphors. Specifically, two representative structures are reviewed: 3D structures composed of stable planes with low surface energies and 3D structures composed of unstable planes. In the early stage of the research, 3D structures were grown on the (0001) polar plane through the selective area growth (SAG) technique based on metalorganic vapor phase epitaxy. Because GaN cannot grow on dielectric masks, different mask patterns were used to create various 3D facetted structures composed of stable facet planes. The InGaN QW parameters depend on the facet planes, which led to polychromatic emission, including white-light emission. After polychromatic LEDs on the (0001) polar plane were demonstrated, 3D QWs and LEDs were also demonstrated on the (=1=12=2) semipolar plane through SAG. There, the (0001) facet plane was excluded; consequently, all the facet QWs showed short radiative recombination lifetimes, which are beneficial for future applications in visible-light communication. To further enhance the controllability of the emission spectra from 3D QWs or LEDs, convex-lens-shaped 3D structures have been proposed. The smooth surface of such structures is composed of unstable planes and has continuously varying crystal tilts. Because QW parameters are dependent on the crystal tilt, polychromatic emission is achieved. This method demonstrates greater flexibility of the structure design, which is expected to result in greater controllability of emission spectra.
本文综述了不使用荧光粉的高效多波长发射体的三维(3D)结构控制InGaN量子阱(QWs)的发展。具体来说,综述了两种具有代表性的结构:低表面能稳定面组成的三维结构和不稳定面组成的三维结构。在研究的早期阶段,通过基于金属有机气相外延的选择性区域生长(SAG)技术在(0001)极平面上生长三维结构。由于氮化镓不能在介质掩模上生长,因此使用不同的掩模模式来创建由稳定的面平面组成的各种三维面状结构。InGaN QW参数依赖于facet平面,这导致多色发射,包括白光发射。在(0001)极平面上展示了多色led之后,通过SAG在(=1=12=2)半极平面上展示了3D量子波和led。在那里,(0001)面被排除;因此,所有的面量子波都表现出较短的辐射复合寿命,这有利于未来在可见光通信中的应用。为了进一步提高三维量子阱或led发射光谱的可控性,提出了凸透镜形状的三维结构。这种结构的光滑表面是由不稳定的平面组成的,并且具有连续变化的晶体倾斜度。由于QW参数依赖于晶体倾斜,因此可以实现多色发射。该方法显示了更大的结构设计灵活性,从而有望提高发射光谱的可控性。
{"title":"A review of three-dimensional structure-controlled InGaN quantum wells for efficient visible polychromatic light emitters","authors":"M. Funato, Y. Matsuda, Y. Kawakami","doi":"10.1088/1361-6641/ad12de","DOIUrl":"https://doi.org/10.1088/1361-6641/ad12de","url":null,"abstract":"\u0000 This paper reviews the development of three-dimensional (3D) structure-controlled InGaN quantum wells (QWs) for highly efficient multiwavelength emitters without using phosphors. Specifically, two representative structures are reviewed: 3D structures composed of stable planes with low surface energies and 3D structures composed of unstable planes. In the early stage of the research, 3D structures were grown on the (0001) polar plane through the selective area growth (SAG) technique based on metalorganic vapor phase epitaxy. Because GaN cannot grow on dielectric masks, different mask patterns were used to create various 3D facetted structures composed of stable facet planes. The InGaN QW parameters depend on the facet planes, which led to polychromatic emission, including white-light emission. After polychromatic LEDs on the (0001) polar plane were demonstrated, 3D QWs and LEDs were also demonstrated on the (=1=12=2) semipolar plane through SAG. There, the (0001) facet plane was excluded; consequently, all the facet QWs showed short radiative recombination lifetimes, which are beneficial for future applications in visible-light communication. To further enhance the controllability of the emission spectra from 3D QWs or LEDs, convex-lens-shaped 3D structures have been proposed. The smooth surface of such structures is composed of unstable planes and has continuously varying crystal tilts. Because QW parameters are dependent on the crystal tilt, polychromatic emission is achieved. This method demonstrates greater flexibility of the structure design, which is expected to result in greater controllability of emission spectra.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"14 9","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138597192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of a freestanding AlN substrate via HVPE homoepitaxy on a PVT-AlN substrate 在 PVT-AlN 衬底上通过 HVPE 均相外延制作独立的 AlN 衬底
IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-06 DOI: 10.1088/1361-6641/ad12df
Liu Ting, Qian Zhang, Xu Li, Minghao Chen, Chunhua Du, Maosong Sun, Jia Wang, Shuxin Tan, Jicai Zhang
Hydride vapor phase epitaxy (HVPE) is employed for the homoepitaxial development of AlN thick films on AlN substrates grown via physical vapor transport (PVT). A freestanding AlN substrate with a 200 μm thickness is then obtained by mechanically grinding away the PVT-AlN substrate. The as-grown HVPE AlN layer has a smooth surface with long parallel atomic steps. The freestanding HVPE-AlN substrate is crack-free and stress-free. In comparison to PVT-AlN substrate, HVPE-AlN substrate not only has better crystal quality but also substantially lower C, O, and Si impurity concentrations. The deep ultraviolet transmittance of the 200 μm thick freestanding AlN substrate is as high as 66% at 265 nm. This performance aligns perfectly with the demands of AlGaN-based deep ultraviolet optoelectronic devices.
采用氢化物气相外延(HVPE)技术在物理气相输运(PVT)生长的AlN衬底上实现了AlN厚膜的同外延生长。然后通过机械磨削PVT-AlN衬底得到厚度为200 μm的独立AlN衬底。生长后的HVPE AlN层表面光滑,原子台阶长且平行。独立式hpe - aln衬底无裂纹,无应力。与PVT-AlN衬底相比,hpe - aln衬底不仅具有更好的晶体质量,而且C、O和Si杂质浓度也大大降低。在265 nm处,200 μm厚的独立AlN衬底的深紫外透过率高达66%。这种性能完全符合基于algan的深紫外光电器件的要求。
{"title":"Fabrication of a freestanding AlN substrate via HVPE homoepitaxy on a PVT-AlN substrate","authors":"Liu Ting, Qian Zhang, Xu Li, Minghao Chen, Chunhua Du, Maosong Sun, Jia Wang, Shuxin Tan, Jicai Zhang","doi":"10.1088/1361-6641/ad12df","DOIUrl":"https://doi.org/10.1088/1361-6641/ad12df","url":null,"abstract":"\u0000 Hydride vapor phase epitaxy (HVPE) is employed for the homoepitaxial development of AlN thick films on AlN substrates grown via physical vapor transport (PVT). A freestanding AlN substrate with a 200 μm thickness is then obtained by mechanically grinding away the PVT-AlN substrate. The as-grown HVPE AlN layer has a smooth surface with long parallel atomic steps. The freestanding HVPE-AlN substrate is crack-free and stress-free. In comparison to PVT-AlN substrate, HVPE-AlN substrate not only has better crystal quality but also substantially lower C, O, and Si impurity concentrations. The deep ultraviolet transmittance of the 200 μm thick freestanding AlN substrate is as high as 66% at 265 nm. This performance aligns perfectly with the demands of AlGaN-based deep ultraviolet optoelectronic devices.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"76 3","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138596159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-reflective MX (M = Sc and Y; X = N, P, As, Sb and Bi) monolayers: structural, electronic and optical study 抗反射 MX(M = Sc 和 Y;X = N、P、As、Sb 和 Bi)单层:结构、电子和光学研究
IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-04 DOI: 10.1088/1361-6641/ad0f4d
Shoeib Babaee Touski, Manouchehr Hosseini, Alireza Kokabi
In this paper, the structural, electronic and optical properties of tetragonal binary monolayers of MX (M = Sc, Y; X = As, Bi, N, P, Sb) are investigated using the density functional theory. The optical study demonstrates that ScN and YN compounds are promising anti-reflective materials. All compounds are found to be semiconductors with a bandgap in the range of 0.45–1.8 eV. Among these compounds, ScN and YN have a direct bandgap at Γ-point while the remainings demonstrate an indirect bandgap. It is found that the structural anisotropy controls the anisotropy of the electronic properties. The biaxial strain analysis shows that YBi monolayer has the maximum linear strain bandgap dependency, making it a suitable candidate for pressure sensing applications. The ScN and YN monolayers demonstrate a phase transition from semiconductive to Dirac semi-metallic characteristics at large compressive strains.
本文利用密度泛函理论研究了 MX(M = Sc、Y;X = As、Bi、N、P、Sb)四方二元单层的结构、电子和光学特性。光学研究表明,ScN 和 YN 复合物是很有前途的抗反射材料。所有化合物都是半导体,带隙范围在 0.45-1.8 eV 之间。在这些化合物中,ScN 和 YN 在 Γ 点具有直接带隙,而其余化合物则具有间接带隙。研究发现,结构各向异性控制着电子特性的各向异性。双轴应变分析表明,YBi 单层具有最大的线性应变带隙依赖性,使其成为压力传感应用的合适候选材料。在大的压缩应变下,ScN 和 YN 单层显示出从半导体特性到狄拉克半金属特性的相变。
{"title":"Anti-reflective MX (M = Sc and Y; X = N, P, As, Sb and Bi) monolayers: structural, electronic and optical study","authors":"Shoeib Babaee Touski, Manouchehr Hosseini, Alireza Kokabi","doi":"10.1088/1361-6641/ad0f4d","DOIUrl":"https://doi.org/10.1088/1361-6641/ad0f4d","url":null,"abstract":"In this paper, the structural, electronic and optical properties of tetragonal binary monolayers of MX (M = Sc, Y; X = As, Bi, N, P, Sb) are investigated using the density functional theory. The optical study demonstrates that ScN and YN compounds are promising anti-reflective materials. All compounds are found to be semiconductors with a bandgap in the range of 0.45–1.8 eV. Among these compounds, ScN and YN have a direct bandgap at Γ-point while the remainings demonstrate an indirect bandgap. It is found that the structural anisotropy controls the anisotropy of the electronic properties. The biaxial strain analysis shows that YBi monolayer has the maximum linear strain bandgap dependency, making it a suitable candidate for pressure sensing applications. The ScN and YN monolayers demonstrate a phase transition from semiconductive to Dirac semi-metallic characteristics at large compressive strains.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"5 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138691566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Semiconductor Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1