Pub Date : 2024-10-30DOI: 10.1016/j.surfcoat.2024.131438
Ruonan Ji , Shuqi Wang , Xinrui Zhao , Yongchun Zou , Tianyi Zhang , Xin Qian , Guoliang Chen , Yaming Wang , Jiahu Ouyang , Dechang Jia , Yu Zhou
The harsh conditions encountered in aerospace applications, such as high operational temperatures, abrasive wear, and corrosive substances, present significant challenges to the performance and longevity of magnesium alloy components. To create a coating with superior wear resistance, corrosion resistance, and high emissivity, this study employs plasma electrolytic oxidation (PEO) technology to develop a nanocomposite coating doped with carbon nanotubes (CNTs) and hexagonal boron nitride (h-BN). The results demonstrate that the MgO-BN/CNTs coating with an emissivity of 0.82 reduces the equilibrium temperature of the 5 W LED junction by nearly 10 °C compared to the magnesium alloy substrate, showing improved radiative heat dissipation performance. Due to the ability of the porous structure to accommodate abrasive particles, coupled with the lubricating effect of h-BN and CNTs, the friction coefficient of the MgO-BN/CNTs coating is 0.57, which is 21 % lower than that of the MgO coating. Additionally, the coating exhibits excellent corrosion protection, attributed to the dense microstructure and chemical inertness of h-BN. The findings demonstrate that the strategic incorporation of h-BN and CNTs into PEO coatings effectively improves the wear resistance, corrosion resistance, and thermal management performance of magnesium alloys.
{"title":"Enhanced wear resistance, corrosion behavior, and thermal management in magnesium alloys with PEO coatings","authors":"Ruonan Ji , Shuqi Wang , Xinrui Zhao , Yongchun Zou , Tianyi Zhang , Xin Qian , Guoliang Chen , Yaming Wang , Jiahu Ouyang , Dechang Jia , Yu Zhou","doi":"10.1016/j.surfcoat.2024.131438","DOIUrl":"10.1016/j.surfcoat.2024.131438","url":null,"abstract":"<div><div>The harsh conditions encountered in aerospace applications, such as high operational temperatures, abrasive wear, and corrosive substances, present significant challenges to the performance and longevity of magnesium alloy components. To create a coating with superior wear resistance, corrosion resistance, and high emissivity, this study employs plasma electrolytic oxidation (PEO) technology to develop a nanocomposite coating doped with carbon nanotubes (CNTs) and hexagonal boron nitride (h-BN). The results demonstrate that the MgO-BN/CNTs coating with an emissivity of 0.82 reduces the equilibrium temperature of the 5 W LED junction by nearly 10 °C compared to the magnesium alloy substrate, showing improved radiative heat dissipation performance. Due to the ability of the porous structure to accommodate abrasive particles, coupled with the lubricating effect of h-BN and CNTs, the friction coefficient of the MgO-BN/CNTs coating is 0.57, which is 21 % lower than that of the MgO coating. Additionally, the coating exhibits excellent corrosion protection, attributed to the dense microstructure and chemical inertness of h-BN. The findings demonstrate that the strategic incorporation of h-BN and CNTs into PEO coatings effectively improves the wear resistance, corrosion resistance, and thermal management performance of magnesium alloys.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131438"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.surfcoat.2024.131481
Ranbir Kumar , Deep Shikha , Sanjay Kumar Sinha
Hydroxyapatite (HAP) is a common hard tissue implant material known for its superior biocompatibility and osteoconductivity. However, its poor mechanical strength, brittleness and slow degradation limit the applications. This study explores the enhancement of HAP mechanical properties and bioactivity by coating 3 wt% manganese-doped HAP (Mn-HAP) on another inert biomaterial alumina (Mn-HAP/Al2O3) substrates using the RF magnetron sputtering technique. Characterization of these samples was performed using Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Grazing Incidence X-ray Diffraction (GIXRD), Fourier Transform Infrared Spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET) techniques. Mechanical property was assessed through Vicker's hardness and adhesion of the film was studied by scratch testing. Corrosion resistance was evaluated using Tafel plots in Ringer's solution by Electrochemical analyser (ECA), and dielectric properties were measured using Impedance analyser. Biocompatibility was examined by wettability tests, thrombogenicity, antioxidant test, antimicrobial investigation and MTT [3-(4, 5-dimethythiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. The results show that Mn-HAP/Al2O3 coatings exhibit superior properties as compared to pure HAP, alumina, and HAP/Al2O3. Mn-HAP showed enhanced crystallinity and grain refinement, leading to improved hardness of 1198 HV for Mn-HAP/Al2O3 as compared to 39.84 HV for pure HAP and 1028 HV for HAP/Al2O3. The friction coefficient was found to be best in the Mn-HAP/Al2O3 sample. Corrosion rate significantly decreases in Mn-HAP/Al2O3 (1.63 0.28) mmpy after coating on alumina. In vitro studies demonstrated enhanced cell attachment, proliferation, and differentiation after Mn-HAP coating on alumina. Antimicrobial tests revealed improved resistance against E. coli and S. aureus, with Mn-HAP/Al2O3 showing a larger zone of inhibition. The study concludes that 3 wt% Mn-HAP coatings deposited by RF magnetron sputtering hold great promise for enhancing the performance and longevity of hard tissue implants, paving the way for advanced biomedical applications.
{"title":"Improvement in bioactivity, hardness and friction resistance of 3 % manganese-doped hydroxyapatite coated on alumina using radio frequency magnetron sputtering","authors":"Ranbir Kumar , Deep Shikha , Sanjay Kumar Sinha","doi":"10.1016/j.surfcoat.2024.131481","DOIUrl":"10.1016/j.surfcoat.2024.131481","url":null,"abstract":"<div><div>Hydroxyapatite (HAP) is a common hard tissue implant material known for its superior biocompatibility and osteoconductivity. However, its poor mechanical strength, brittleness and slow degradation limit the applications. This study explores the enhancement of HAP mechanical properties and bioactivity by coating 3 wt% manganese-doped HAP (Mn-HAP) on another inert biomaterial alumina (Mn-HAP/Al<sub>2</sub>O<sub>3</sub>) substrates using the RF magnetron sputtering technique. Characterization of these samples was performed using Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Grazing Incidence X-ray Diffraction (GIXRD), Fourier Transform Infrared Spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET) techniques. Mechanical property was assessed through Vicker's hardness and adhesion of the film was studied by scratch testing. Corrosion resistance was evaluated using Tafel plots in Ringer's solution by Electrochemical analyser (ECA), and dielectric properties were measured using Impedance analyser. Biocompatibility was examined by wettability tests, thrombogenicity, antioxidant test, antimicrobial investigation and MTT [3-(4, 5-dimethythiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. The results show that Mn-HAP/Al<sub>2</sub>O<sub>3</sub> coatings exhibit superior properties as compared to pure HAP, alumina, and HAP/Al<sub>2</sub>O<sub>3</sub>. Mn-HAP showed enhanced crystallinity and grain refinement, leading to improved hardness of 1198 HV for Mn-HAP/Al<sub>2</sub>O<sub>3</sub> as compared to 39.84 HV for pure HAP and 1028 HV for HAP/Al<sub>2</sub>O<sub>3</sub>. The friction coefficient was found to be best in the Mn-HAP/Al<sub>2</sub>O<sub>3</sub> sample. Corrosion rate significantly decreases in Mn-HAP/Al<sub>2</sub>O<sub>3</sub> (1.63 <span><math><mo>±</mo></math></span> 0.28) mmpy after coating on alumina. In vitro studies demonstrated enhanced cell attachment, proliferation, and differentiation after Mn-HAP coating on alumina. Antimicrobial tests revealed improved resistance against <em>E. coli</em> and <em>S. aureus</em>, with Mn-HAP/Al<sub>2</sub>O<sub>3</sub> showing a larger zone of inhibition. The study concludes that 3 wt% Mn-HAP coatings deposited by RF magnetron sputtering hold great promise for enhancing the performance and longevity of hard tissue implants, paving the way for advanced biomedical applications.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131481"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study examines the influence of high-energy laser shock peening (LSP) using 7 J and 10 J pulse energies on the sub-surface deformation characteristics of Inconel 718 superalloy. High-magnitude compressive residual stresses were induced into the samples after LSP with large residual stress depths of the order of 2 mm – the experimental observations were in good agreement with finite element analyses of the LSP process. The propagation of intense shock waves led to increased strain hardening and dislocation densities that were experimentally quantified by synchrotron diffraction and transmission electron microscopy. Microscopic analyses revealed highly refined grain structure only at the surface without much refinement observed in the residual depth region. Alongside a high degree of strain hardening, profuse amount of adiabatic shear bands was observed in the hardened depth, indicative of simultaneous strain localisation under such high laser pulse energy. These bands occurred along common slip planes in the Ni γ-matrix and could be potential areas of instability leading to failure. The LSP-treated samples exhibited improved corrosion resistance, with higher laser pulse energy peened samples performing better.
{"title":"Quantitative analysis of deformation characteristics and corrosion properties of high energy laser shock peened Ni-based superalloy","authors":"Yarramilli Vamsi Apuroop , Sanjay Raj , Malar Vadani , Sabeur Msolli , Pooja Gupta , Sanjay Rai , Niroj Maharjan , Ayan Bhowmik","doi":"10.1016/j.surfcoat.2024.131470","DOIUrl":"10.1016/j.surfcoat.2024.131470","url":null,"abstract":"<div><div>This study examines the influence of high-energy laser shock peening (LSP) using 7 J and 10 J pulse energies on the sub-surface deformation characteristics of Inconel 718 superalloy. High-magnitude compressive residual stresses were induced into the samples after LSP with large residual stress depths of the order of 2 mm – the experimental observations were in good agreement with finite element analyses of the LSP process. The propagation of intense shock waves led to increased strain hardening and dislocation densities that were experimentally quantified by synchrotron diffraction and transmission electron microscopy. Microscopic analyses revealed highly refined grain structure only at the surface without much refinement observed in the residual depth region. Alongside a high degree of strain hardening, profuse amount of adiabatic shear bands was observed in the hardened depth, indicative of simultaneous strain localisation under such high laser pulse energy. These bands occurred along common slip planes in the Ni γ-matrix and could be potential areas of instability leading to failure. The LSP-treated samples exhibited improved corrosion resistance, with higher laser pulse energy peened samples performing better.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131470"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.surfcoat.2024.131506
Xiong Lei , Chen Yang , Yonghua Duan , Lishi Ma , Huarong Qi , Shanju Zheng , Ancang Yang , Yuanhuai He , Yunping Li
Inconel 718 alloy is used at high temperatures and is prone to react with oxygen, leading to a decrease in its high-temperature performance. To improve the high-temperature oxidation resistance of Inconel 718 alloy, in this work, three coatings on Inconel 718 alloy were manufactured by boriding, aluminizing, and boroaluminizing, and the high-temperature oxidation resistances at 800 °C, 900 °C and 1000 °C were investigated. The results showed that the maximum thickness of coatings can be achieved >200 μm. Moreover, these three coatings can improve the high-temperature oxidation resistance of Inconel 718 alloy, and the boroaluminized coating has the best high-temperature oxidation resistance. Besides, the reason for the improvement of high-temperature oxidation resistance is due to the formation of dense oxide layers during the oxidation process, which can prevent further oxidation.
{"title":"High-temperature oxidation resistances of coatings on Inconel 718 alloy by boriding, aluminizing, and boroaluminizing","authors":"Xiong Lei , Chen Yang , Yonghua Duan , Lishi Ma , Huarong Qi , Shanju Zheng , Ancang Yang , Yuanhuai He , Yunping Li","doi":"10.1016/j.surfcoat.2024.131506","DOIUrl":"10.1016/j.surfcoat.2024.131506","url":null,"abstract":"<div><div>Inconel 718 alloy is used at high temperatures and is prone to react with oxygen, leading to a decrease in its high-temperature performance. To improve the high-temperature oxidation resistance of Inconel 718 alloy, in this work, three coatings on Inconel 718 alloy were manufactured by boriding, aluminizing, and boroaluminizing, and the high-temperature oxidation resistances at 800 °C, 900 °C and 1000 °C were investigated. The results showed that the maximum thickness of coatings can be achieved >200 μm. Moreover, these three coatings can improve the high-temperature oxidation resistance of Inconel 718 alloy, and the boroaluminized coating has the best high-temperature oxidation resistance. Besides, the reason for the improvement of high-temperature oxidation resistance is due to the formation of dense oxide layers during the oxidation process, which can prevent further oxidation.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131506"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.surfcoat.2024.131464
Melisa Köse , Sezer Tan , Buse Yavuz , Ayşe Betül Demir , Hasan Algül , Abdullah Hulusi Kökçam , Enes Furkan Erkan , Mehmet Fatih Taşkin , Harun Gül , Özer Uygun , Mehmet Uysal , Ahmet Alp
This study focuses on producing environmentally friendly, lead-free nickel‑boron (NiB) coatings as an alternative to hard chromium coatings. Using the electroless method, the NiB coatings were fabricated from a lead-free bath, and the effects of varying B and Ni concentrations on the coatings' chemical composition, surface morphology, hardness, corrosion resistance, and wear performance were investigated. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to analyze surface morphology and phase composition. Corrosion performance was evaluated using potentiodynamic polarization (PP) and electrochemical impedance spectroscopy (EIS), while wear behavior was tested at sliding speeds of 20, 30, and 40 cm/s. The study highlights the critical role of sliding speed on wear mechanisms, friction coefficient, wear rate, and surface morphology. The analyses revealed that the optimal NiB coating, containing 34 g/L Ni and 3 g/L B, exhibited the highest hardness, the lowest corrosion rate, and the highest wear rate performance. The values obtained from these analyses were 891 HV for hardness, 8.87 × 10−6 mpy for corrosion rate, and 2.21 × 10−4 mm3/N·m for wear rate. The use of analysis of variance (ANOVA) identified key factors influencing these properties. The findings suggest that optimizing boron and nickel concentrations significantly enhances NiB coatings' corrosion resistance and wear performance, making them suitable for industrial applications.
本研究的重点是生产环保型无铅镍硼(NiB)镀层,以替代硬铬镀层。研究采用无铅镀液,通过无电解法制备了镍硼镀层,并研究了不同浓度的硼和镍对镀层的化学成分、表面形貌、硬度、耐腐蚀性和磨损性能的影响。扫描电子显微镜(SEM)和 X 射线衍射(XRD)用于分析表面形貌和相组成。使用电位极化(PP)和电化学阻抗谱(EIS)评估了腐蚀性能,并在 20、30 和 40 厘米/秒的滑动速度下测试了磨损行为。研究强调了滑动速度对磨损机制、摩擦系数、磨损率和表面形态的关键作用。分析表明,含 34 克/升 Ni 和 3 克/升 B 的最佳 NiB 涂层具有最高的硬度、最低的腐蚀率和最高的磨损率性能。分析得出的硬度值为 891 HV,腐蚀率为 8.87 × 10-6 mpy,磨损率为 2.21 × 10-4 mm3/N-m。利用方差分析(ANOVA)确定了影响这些性能的关键因素。研究结果表明,优化硼和镍的浓度可显著提高镍硼涂层的耐腐蚀性和磨损性能,使其适用于工业应用。
{"title":"Improving the tribological and corrosion behavior of NiB coating with low boron content from optimized lead-free bath on aluminum alloys","authors":"Melisa Köse , Sezer Tan , Buse Yavuz , Ayşe Betül Demir , Hasan Algül , Abdullah Hulusi Kökçam , Enes Furkan Erkan , Mehmet Fatih Taşkin , Harun Gül , Özer Uygun , Mehmet Uysal , Ahmet Alp","doi":"10.1016/j.surfcoat.2024.131464","DOIUrl":"10.1016/j.surfcoat.2024.131464","url":null,"abstract":"<div><div>This study focuses on producing environmentally friendly, lead-free nickel‑boron (Ni<img>B) coatings as an alternative to hard chromium coatings. Using the electroless method, the Ni<img>B coatings were fabricated from a lead-free bath, and the effects of varying B and Ni concentrations on the coatings' chemical composition, surface morphology, hardness, corrosion resistance, and wear performance were investigated. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to analyze surface morphology and phase composition. Corrosion performance was evaluated using potentiodynamic polarization (PP) and electrochemical impedance spectroscopy (EIS), while wear behavior was tested at sliding speeds of 20, 30, and 40 cm/s. The study highlights the critical role of sliding speed on wear mechanisms, friction coefficient, wear rate, and surface morphology. The analyses revealed that the optimal Ni<img>B coating, containing 34 g/L Ni and 3 g/L B, exhibited the highest hardness, the lowest corrosion rate, and the highest wear rate performance. The values obtained from these analyses were 891 HV for hardness, 8.87 × 10<sup>−6</sup> mpy for corrosion rate, and 2.21 × 10<sup>−4</sup> mm<sup>3</sup>/N·m for wear rate. The use of analysis of variance (ANOVA) identified key factors influencing these properties. The findings suggest that optimizing boron and nickel concentrations significantly enhances Ni<img>B coatings' corrosion resistance and wear performance, making them suitable for industrial applications.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131464"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigates the high temperature wear behaviour of a WE43 Mg alloy after covering it with single and dual layer coatings. For this purpose, cold spray and micro-arc oxidation processes were employed individually and sequentially. Single-layer coatings fabricated by cold spray and micro-arc oxidation processes were Al/Al2O3 composite and MgO-based ceramic, respectively. Sequential application of cold spray and micro arc oxidation processes induced dual layer coating upon synthesizing an external Al2O3–based layer over the Al/Al2O3 composite layer. Results of the wear tests conducted under the load of 2 N revealed the superior resistance of the dual layer coated sample against the rubbing action of the counterface compared to single layer coatings. Thus, the presence of a relatively hard and tough external Al2O3-based layer over the Al/Al2O3 composite layer sustained protection up to the temperature of 320 °C, where the dominant wear mechanism was fatigue wear. However, the increase in the test temperature to 350 °C caused detachment of the external Al2O3-based layer. Reduction of the wear test load from 2 to 1 N resulted in the remaining of external Al2O3-based layer intact with the underlying Al/Al2O3 composite layer even at a test temperature of 350 °C. It is therefore concluded that the combination of cold spray and micro-arc oxidation processes is promising to broaden the reliable use of WE43 and other Mg alloys in wear related applications at high service temperatures.
{"title":"Surface modification of WE43 Mg alloy via combination of cold spray and micro-arc oxidation for wear related applications at high temperatures","authors":"Mertcan Kaba , Faiz Muhaffel , Ugur Malayoglu , Huseyin Cimenoglu","doi":"10.1016/j.surfcoat.2024.131530","DOIUrl":"10.1016/j.surfcoat.2024.131530","url":null,"abstract":"<div><div>This study investigates the high temperature wear behaviour of a WE43 Mg alloy after covering it with single and dual layer coatings. For this purpose, cold spray and micro-arc oxidation processes were employed individually and sequentially. Single-layer coatings fabricated by cold spray and micro-arc oxidation processes were Al/Al<sub>2</sub>O<sub>3</sub> composite and MgO-based ceramic, respectively. Sequential application of cold spray and micro arc oxidation processes induced dual layer coating upon synthesizing an external Al<sub>2</sub>O<sub>3</sub>–based layer over the Al/Al<sub>2</sub>O<sub>3</sub> composite layer. Results of the wear tests conducted under the load of 2 N revealed the superior resistance of the dual layer coated sample against the rubbing action of the counterface compared to single layer coatings. Thus, the presence of a relatively hard and tough external Al<sub>2</sub>O<sub>3</sub>-based layer over the Al/Al<sub>2</sub>O<sub>3</sub> composite layer sustained protection up to the temperature of 320 °C, where the dominant wear mechanism was fatigue wear. However, the increase in the test temperature to 350 °C caused detachment of the external Al<sub>2</sub>O<sub>3</sub>-based layer. Reduction of the wear test load from 2 to 1 N resulted in the remaining of external Al<sub>2</sub>O<sub>3</sub>-based layer intact with the underlying Al/Al<sub>2</sub>O<sub>3</sub> composite layer even at a test temperature of 350 °C. It is therefore concluded that the combination of cold spray and micro-arc oxidation processes is promising to broaden the reliable use of WE43 and other Mg alloys in wear related applications at high service temperatures.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131530"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.surfcoat.2024.131527
David Merino-Millan , Miguel Ángel Garrido-Maneiro , Claudio J. Múnez , Pedro Poza
The use of renewable energy sources has been increasing in recent years as it aims to balance the production of fossil fuels by 2050. Among the various alternatives, concentrated solar power plants are considered the most feasible due to their capability of storing energy. Ongoing research is conducted to enhance the performance of third-generation plants by achieving higher temperatures. It makes necessary to explore new materials. This research is focused on concentrated solar power plants with central tower receivers, for which coatings used nowadays do not withstand the new requirements. For this reason, an alternative plasma sprayed Inconel 625 coating has been proposed. This study confidently presents an analysis of the high temperature exposure effects on the coating's mechanical properties at two temperatures, 520 and 800 °C. The study focuses on the Young's modulus and hardness, and the results demonstrate a significant improvement in these properties due to the formation of secondary phases. Coating hardness increased gradually from 4.12 GPa to 5.3 GPa during exposition at 520 °C. In contrast, the increment was attained quickly during the first 24 h exposure at 800 °C, reaching 4.5 GPa, and then maintained for all times studied. The microstructure was characterized using transmission electron microscopy, which identified the presence of carbides and intermetallic phases. The application of these coatings will significantly enhance the performance of solar receivers due to their superior properties compared to the currently available Pyromark coatings.
{"title":"Hardness and Young's modulus evolution of low-power plasma sprayed Inconel 625 coatings exposed to high temperatures","authors":"David Merino-Millan , Miguel Ángel Garrido-Maneiro , Claudio J. Múnez , Pedro Poza","doi":"10.1016/j.surfcoat.2024.131527","DOIUrl":"10.1016/j.surfcoat.2024.131527","url":null,"abstract":"<div><div>The use of renewable energy sources has been increasing in recent years as it aims to balance the production of fossil fuels by 2050. Among the various alternatives, concentrated solar power plants are considered the most feasible due to their capability of storing energy. Ongoing research is conducted to enhance the performance of third-generation plants by achieving higher temperatures. It makes necessary to explore new materials. This research is focused on concentrated solar power plants with central tower receivers, for which coatings used nowadays do not withstand the new requirements. For this reason, an alternative plasma sprayed Inconel 625 coating has been proposed. This study confidently presents an analysis of the high temperature exposure effects on the coating's mechanical properties at two temperatures, 520 and 800 °C. The study focuses on the Young's modulus and hardness, and the results demonstrate a significant improvement in these properties due to the formation of secondary phases. Coating hardness increased gradually from 4.12 GPa to 5.3 GPa during exposition at 520 °C. In contrast, the increment was attained quickly during the first 24 h exposure at 800 °C, reaching 4.5 GPa, and then maintained for all times studied. The microstructure was characterized using transmission electron microscopy, which identified the presence of carbides and intermetallic phases. The application of these coatings will significantly enhance the performance of solar receivers due to their superior properties compared to the currently available Pyromark coatings.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131527"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.surfcoat.2024.131476
A. Justina Maskavizan , Juan Pablo Quintana , Eugenia L. Dalibón , Adriana B. Márquez , Sonia P. Brühl , Silvia B. Farina
Chromium nitride ceramic like coatings are well known for their hardness and wear resistance, especially under severe conditions. When deposited on mild steel, nitriding is required for such applications to create a gradient hardness profile and improve the coating adhesion and the system's mechanical properties. Corrosion resistance is also necessary since these chromium coatings are recommended for applications in the plastic mould and injection industry. Therefore, in this work, the combination of a nitriding without white layer pretreatment and CrN coating was studied in a chloride and an acidic electrolyte, to asses if the diffusion layer also plays an important role as a corrosion protection treatment. Coating microstructure, adhesion to both nitrided and non-nitrided steel, wear resistance, and corrosion resistance in chloride and acidic media were evaluated. For comparison, bare and nitrided steel were also examined. Results indicated an improvement in the adhesion for the duplex treatment (nitriding + CrN). The CrN coating demonstrated a considerably lower coefficient of friction and wear rate compared to both non-nitrided and nitrided steel. Regarding corrosion, the iron nitride layer provides some protection in chloride environments; however, in acidic media, only the CrN coating plays a protective role. In both media, localized attack occurred at sites where the coating had defects, such as pores or pinholes through which the electrolyte comes into contact with the substrate. The duplex treatment proved to be the most effective surface treatment for AISI 4140, achieving excellent tribological properties, good adhesion, and high corrosion resistance in both neutral chloride and acidic solutions.
{"title":"Evaluation of wear and corrosion resistance in acidic and chloride solutions of Cathodic Arc PVD chromium nitride coatings on untreated and plasma nitrided AISI 4140 steel","authors":"A. Justina Maskavizan , Juan Pablo Quintana , Eugenia L. Dalibón , Adriana B. Márquez , Sonia P. Brühl , Silvia B. Farina","doi":"10.1016/j.surfcoat.2024.131476","DOIUrl":"10.1016/j.surfcoat.2024.131476","url":null,"abstract":"<div><div>Chromium nitride ceramic like coatings are well known for their hardness and wear resistance, especially under severe conditions. When deposited on mild steel, nitriding is required for such applications to create a gradient hardness profile and improve the coating adhesion and the system's mechanical properties. Corrosion resistance is also necessary since these chromium coatings are recommended for applications in the plastic mould and injection industry. Therefore, in this work, the combination of a nitriding without white layer pretreatment and CrN coating was studied in a chloride and an acidic electrolyte, to asses if the diffusion layer also plays an important role as a corrosion protection treatment. Coating microstructure, adhesion to both nitrided and non-nitrided steel, wear resistance, and corrosion resistance in chloride and acidic media were evaluated. For comparison, bare and nitrided steel were also examined. Results indicated an improvement in the adhesion for the duplex treatment (nitriding + CrN). The CrN coating demonstrated a considerably lower coefficient of friction and wear rate compared to both non-nitrided and nitrided steel. Regarding corrosion, the iron nitride layer provides some protection in chloride environments; however, in acidic media, only the CrN coating plays a protective role. In both media, localized attack occurred at sites where the coating had defects, such as pores or pinholes through which the electrolyte comes into contact with the substrate. The duplex treatment proved to be the most effective surface treatment for AISI 4140, achieving excellent tribological properties, good adhesion, and high corrosion resistance in both neutral chloride and acidic solutions.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131476"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plasma spray-physical vapor deposition (PS-PVD) allows the preparation of quasi-columnar coatings with columnar crystalline branching and dendritic structures, resulting in long life and high-thermal insulation properties. However, the microstructural feature of the coating is also responsible for the significant difference in hardness and elastic modulus in the coating's growth direction, which has an impact on its resistance to thermal shock and high-temperature erosion. This study summarizes the influence of motion parameters on the coating microstructure by adjusting the relative motion parameters between the spray gun and the sample, and proposes a deposition modulation strategy for a quasi-columnar structure coating that can be continuously and uniformly grown by increasing the powder feeding gradient. The increase of relative motion velocity reduces the growth interruption caused by the re-nucleation on the surface of columnar crystals, and the liquid phase and nanoclusters increase after the gas phase concentration is gradually increased to saturation with the increase of powder delivered. The gas-phase diffusion growth mode can be maintained continuously because the jet has sufficient energy to maintain the substrate temperature at low powder feed rates. The preparation of coatings with uniform columnar crystal microstructure and mechanical properties was realized, while the thermal cycle life of NiCrAlYSi/8YSZ thermal barrier coatings at 1100 °C was significantly improved, up to 1350 h–1650 h, and the high-temperature erosion rate was significantly reduced relative to the atmospheric plasma spraying (APS) coatings, which was improved to a certain extent.
{"title":"Microstructure modulation strategy for the continuous uniform growth of quasi-columnar crystalline structure coatings based on high deposition rate powder","authors":"Qing He, Jia-jun Wang, Yu-sheng Zhang, Xin-hui Li, Xiao-ming You, Shi-xing Wang, Li-kang Liang","doi":"10.1016/j.surfcoat.2024.131535","DOIUrl":"10.1016/j.surfcoat.2024.131535","url":null,"abstract":"<div><div>Plasma spray-physical vapor deposition (PS-PVD) allows the preparation of quasi-columnar coatings with columnar crystalline branching and dendritic structures, resulting in long life and high-thermal insulation properties. However, the microstructural feature of the coating is also responsible for the significant difference in hardness and elastic modulus in the coating's growth direction, which has an impact on its resistance to thermal shock and high-temperature erosion. This study summarizes the influence of motion parameters on the coating microstructure by adjusting the relative motion parameters between the spray gun and the sample, and proposes a deposition modulation strategy for a quasi-columnar structure coating that can be continuously and uniformly grown by increasing the powder feeding gradient. The increase of relative motion velocity reduces the growth interruption caused by the re-nucleation on the surface of columnar crystals, and the liquid phase and nanoclusters increase after the gas phase concentration is gradually increased to saturation with the increase of powder delivered. The gas-phase diffusion growth mode can be maintained continuously because the jet has sufficient energy to maintain the substrate temperature at low powder feed rates. The preparation of coatings with uniform columnar crystal microstructure and mechanical properties was realized, while the thermal cycle life of NiCrAlYSi/8YSZ thermal barrier coatings at 1100 °C was significantly improved, up to 1350 h–1650 h, and the high-temperature erosion rate was significantly reduced relative to the atmospheric plasma spraying (APS) coatings, which was improved to a certain extent.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131535"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aluminum-Nickel (AlNi) alloys are of great interest due to their exceptional high-temperature wear and corrosion resistance, making them valuable in transport, energy, and materials processing applications. However, challenges in the production and shaping of these alloys, particularly as thick coatings, remain significant. This study introduces an innovative method for the high-throughput synthesis of AlNi coatings, utilizing a two-step process: low-pressure cold spray deposition followed by laser surface alloying. The combination of these two techniques not only improves the synthesis process but also opens avenues for exploring new material compositions with specific application requirements. This approach holds significant potential for accelerating the development and optimization of advanced coatings and multiphase compounds in applications such as repair and additive manufacturing.
Aluminum and nickel powders were co-sprayed to create coatings with controlled compositions ranging from 50Al50Ni to 10Al90Ni (wt%). Subsequent laser treatment induced in-situ alloying and homogenization, resulting in dense, uniform AlNi coatings. The microstructure and chemical composition were characterized using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS), while X-ray Diffraction (XRD) identified the formation of various phases, including Al3Ni and AlNi3 phases. The process demonstrated effective alloying and microstructural homogeneity, with residual alumina present at the surface. Despite the presence of some microstructural defects, such as cracking, this method provides a robust foundation for further refinement and opens new possibilities for tailoring alloy properties through combinatorial cold spray and laser alloying techniques.
铝镍(AlNi)合金因其优异的高温耐磨性和耐腐蚀性而备受关注,在运输、能源和材料加工等应用领域具有重要价值。然而,这些合金的生产和成型,尤其是厚涂层的生产和成型,仍然面临着巨大的挑战。本研究介绍了一种高通量合成铝镍涂层的创新方法,该方法采用两步工艺:低压冷喷沉积,然后进行激光表面合金化。这两种技术的结合不仅改进了合成工艺,还为探索具有特定应用要求的新材料成分开辟了途径。铝粉和镍粉被共同喷涂成涂层,可控成分从 50Al50Ni 到 10Al90Ni(重量百分比)不等。随后的激光处理诱导了原位合金化和均匀化,产生了致密、均匀的铝镍涂层。使用扫描电子显微镜(SEM)和能量色散 X 射线光谱(EDS)对微观结构和化学成分进行了表征,而 X 射线衍射(XRD)则确定了各种相的形成,包括 Al3Ni 和 AlNi3 相。该工艺显示了有效的合金化和微观结构的均匀性,表面存在残余氧化铝。尽管存在裂纹等微观结构缺陷,但这种方法为进一步完善提供了坚实的基础,并为通过组合冷喷和激光合金化技术定制合金特性提供了新的可能性。
{"title":"Combinatorial synthesis of AlNi alloys by low-pressure cold spray deposition and post-laser alloying process","authors":"Tanguy Lacondemine , Beatriz Puga , Rémy Kalmar , Manuel Fendler , Fanny Balbaud","doi":"10.1016/j.surfcoat.2024.131542","DOIUrl":"10.1016/j.surfcoat.2024.131542","url":null,"abstract":"<div><div>Aluminum-Nickel (Al<img>Ni) alloys are of great interest due to their exceptional high-temperature wear and corrosion resistance, making them valuable in transport, energy, and materials processing applications. However, challenges in the production and shaping of these alloys, particularly as thick coatings, remain significant. This study introduces an innovative method for the high-throughput synthesis of Al<img>Ni coatings, utilizing a two-step process: low-pressure cold spray deposition followed by laser surface alloying. The combination of these two techniques not only improves the synthesis process but also opens avenues for exploring new material compositions with specific application requirements. This approach holds significant potential for accelerating the development and optimization of advanced coatings and multiphase compounds in applications such as repair and additive manufacturing.</div><div>Aluminum and nickel powders were co-sprayed to create coatings with controlled compositions ranging from 50Al<img>50Ni to 10Al<img>90Ni (wt%). Subsequent laser treatment induced in-situ alloying and homogenization, resulting in dense, uniform Al<img>Ni coatings. The microstructure and chemical composition were characterized using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS), while X-ray Diffraction (XRD) identified the formation of various phases, including Al<sub>3</sub>Ni and AlNi<sub>3</sub> phases. The process demonstrated effective alloying and microstructural homogeneity, with residual alumina present at the surface. Despite the presence of some microstructural defects, such as cracking, this method provides a robust foundation for further refinement and opens new possibilities for tailoring alloy properties through combinatorial cold spray and laser alloying techniques.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131542"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}