首页 > 最新文献

Surface & Coatings Technology最新文献

英文 中文
Composite electroforming of precision Ni-P-PTFE mold inserts with low internal stress and self-lubricating properties 复合电铸具有低内应力和自润滑特性的精密 Ni-P-PTFE 模具镶件
IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131488
Zhigao Ma , Bingyan Jiang , Dietmar Drummer , Lu Zhang
An electrolyte solution incorporating sodium saccharin and an alkynyl compound was provided to electroform Ni-P-PTFE mold inserts with both low internal stress and good self-lubricating properties. The results showed that with 5 g·L−1 sodium saccharin and 1 mL·L−1 alkynyl compound, the internal stress reached a minimum of −114 MPa, an 82 % reduction from the −646 MPa observed without additives. The presence of sodium saccharin and alkynyl compound in the electrolyte solution reduced the hydrogen evolution reaction current from 15.2 to 12.9 mA at the operating cathode potential of −1 V and decreased the RTC(111) from 100 % to 90 %. The reduction of internal stress in the electrodeposited Ni-P-PTFE composites was attributed to the decreased hydrogenation strain, diminished Ni (111) texture intensity, and the partial incorporation of alkynyl compound reaction products into the deposits, which weakened the connections between crystallites. Finally, 5 g·L−1 sodium saccharin and 1 mL·L−1 alkynyl compound was applied to electroform Ni-P-PTFE mold insert with micro features. Only slightly pile-up defects at the corner of grooves were observed on the polymer chips demolded from Ni-P-PTFE mold insert, demonstrating its good self-lubricating property.
提供了一种含有糖精钠和炔基化合物的电解质溶液,用于电铸具有低内应力和良好自润滑性能的 Ni-P-PTFE 模具镶件。结果表明,在使用 5 g-L-1 糖精钠和 1 mL-L-1 烷基化合物的情况下,内应力最低达到 -114 MPa,比不使用添加剂时的 -646 MPa 降低了 82%。电解质溶液中糖精钠和炔基化合物的存在使工作阴极电位为 -1 V 时的氢演化反应电流从 15.2 mA 降至 12.9 mA,RTC(111)从 100 % 降至 90 %。电沉积 Ni-P-PTFE 复合材料内应力的降低归因于氢化应变的降低、Ni(111)纹理强度的减弱以及沉积物中部分炔基化合物反应产物的掺入,这削弱了晶粒之间的连接。最后,将 5 g-L-1 糖精钠和 1 mL-L-1 烷基化合物用于电铸具有微特征的 Ni-P-PTFE 模具镶件。从 Ni-P-PTFE 模芯脱模的聚合物芯片上仅在凹槽角落处观察到轻微的堆积缺陷,表明其具有良好的自润滑性能。
{"title":"Composite electroforming of precision Ni-P-PTFE mold inserts with low internal stress and self-lubricating properties","authors":"Zhigao Ma ,&nbsp;Bingyan Jiang ,&nbsp;Dietmar Drummer ,&nbsp;Lu Zhang","doi":"10.1016/j.surfcoat.2024.131488","DOIUrl":"10.1016/j.surfcoat.2024.131488","url":null,"abstract":"<div><div>An electrolyte solution incorporating sodium saccharin and an alkynyl compound was provided to electroform Ni-P-PTFE mold inserts with both low internal stress and good self-lubricating properties. The results showed that with 5 g·L<sup>−1</sup> sodium saccharin and 1 mL·L<sup>−1</sup> alkynyl compound, the internal stress reached a minimum of −114 MPa, an 82 % reduction from the −646 MPa observed without additives. The presence of sodium saccharin and alkynyl compound in the electrolyte solution reduced the hydrogen evolution reaction current from 15.2 to 12.9 mA at the operating cathode potential of −1 V and decreased the RTC<sub>(111)</sub> from 100 % to 90 %. The reduction of internal stress in the electrodeposited Ni-P-PTFE composites was attributed to the decreased hydrogenation strain, diminished Ni (111) texture intensity, and the partial incorporation of alkynyl compound reaction products into the deposits, which weakened the connections between crystallites. Finally, 5 g·L<sup>−1</sup> sodium saccharin and 1 mL·L<sup>−1</sup> alkynyl compound was applied to electroform Ni-P-PTFE mold insert with micro features. Only slightly pile-up defects at the corner of grooves were observed on the polymer chips demolded from Ni-P-PTFE mold insert, demonstrating its good self-lubricating property.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131488"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A coating with hydrogel@nanostructure on Ti surfaces via controllable Nano-mechanical interlocking 通过可控纳米机械互锁在钛表面形成水凝胶@纳米结构涂层
IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131508
Qixiang Zhan , Shuhua Deng , Jiayi He , Jinhua Xu , Anfu Chen , Jiajun Luo , Wenjie Zhang , Caihong Lei
The elasticity mismatch between Ti and tissue limits the performance of Ti medical devices. How to create a coating with mimicking natural soft tissue stiffness and possessing strong mechanical bond is a challenge in implant manufacturing. Here, we developed a combined coating, that is, an anodized Ti surface (ATS) with nanostructures coated with a layer of PAAm hydrogel with tunable elasticity. Due to the nano-mechanical interlocking and hydrogen bonding synergy, the PAAm hydrogel layer was tightly anchored in nanostructures on the ATS. By regulating the oxidation voltage, nanostructures including nanopores, nanotubes, and punch-through nanotubes were fabricated on the ATS, and these three kinds of anodized nanostructures increase the porosity of the ATS sequentially. The lap shear test has shown that the shear strength increases linearly with increasing the porosity, and the shear strength of the punch-through nanotube structures with the PAAm hydrogel coating reaches 59.28 kPa. The adhesion mechanism between the anodized Ti nanostructures and the PAAm hydrogel coating is mainly due to the nano-mechanical interlocking and hydrogen bonding synergy, which was proven by morphology analysis, XRD, and ATR-FTIR characterization of the samples subjected to lap shear load. The hydrogel-nanostructures coating has demonstrated the potential to be applied in Ti medical devices.
钛和组织之间的弹性不匹配限制了钛医疗器械的性能。如何制造一种既能模拟天然软组织硬度又能具有强大机械粘合力的涂层是植入物制造中的一项挑战。在这里,我们开发了一种组合涂层,即在阳极氧化钛表面(ATS)的纳米结构上涂覆一层具有可调弹性的 PAAm 水凝胶。由于纳米机械互锁和氢键协同作用,PAAm 水凝胶层被紧密地固定在阳极氧化钛表面的纳米结构上。通过调节氧化电压,在 ATS 上形成了包括纳米孔、纳米管和穿孔纳米管在内的纳米结构,这三种阳极氧化纳米结构依次增加了 ATS 的孔隙率。搭接剪切试验表明,剪切强度随孔隙率的增加而线性增加,涂覆 PAAm 水凝胶的穿孔纳米管结构的剪切强度达到 59.28 kPa。阳极氧化 Ti 纳米结构与 PAAm 水凝胶涂层之间的粘附机理主要是由于纳米机械互锁和氢键协同作用,这一点已通过对承受搭接剪切载荷的样品进行形貌分析、XRD 和 ATR-FTIR 表征得到证实。水凝胶纳米结构涂层已证明具有应用于钛医疗器械的潜力。
{"title":"A coating with hydrogel@nanostructure on Ti surfaces via controllable Nano-mechanical interlocking","authors":"Qixiang Zhan ,&nbsp;Shuhua Deng ,&nbsp;Jiayi He ,&nbsp;Jinhua Xu ,&nbsp;Anfu Chen ,&nbsp;Jiajun Luo ,&nbsp;Wenjie Zhang ,&nbsp;Caihong Lei","doi":"10.1016/j.surfcoat.2024.131508","DOIUrl":"10.1016/j.surfcoat.2024.131508","url":null,"abstract":"<div><div>The elasticity mismatch between Ti and tissue limits the performance of Ti medical devices. How to create a coating with mimicking natural soft tissue stiffness and possessing strong mechanical bond is a challenge in implant manufacturing. Here, we developed a combined coating, that is, an anodized Ti surface (ATS) with nanostructures coated with a layer of PAAm hydrogel with tunable elasticity. Due to the nano-mechanical interlocking and hydrogen bonding synergy, the PAAm hydrogel layer was tightly anchored in nanostructures on the ATS. By regulating the oxidation voltage, nanostructures including nanopores, nanotubes, and punch-through nanotubes were fabricated on the ATS, and these three kinds of anodized nanostructures increase the porosity of the ATS sequentially. The lap shear test has shown that the shear strength increases linearly with increasing the porosity, and the shear strength of the punch-through nanotube structures with the PAAm hydrogel coating reaches 59.28 kPa. The adhesion mechanism between the anodized Ti nanostructures and the PAAm hydrogel coating is mainly due to the nano-mechanical interlocking and hydrogen bonding synergy, which was proven by morphology analysis, XRD, and ATR-FTIR characterization of the samples subjected to lap shear load. The hydrogel-nanostructures coating has demonstrated the potential to be applied in Ti medical devices.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131508"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced wear resistance, corrosion behavior, and thermal management in magnesium alloys with PEO coatings 使用 PEO 涂层提高镁合金的耐磨性、腐蚀性和热管理性能
IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131438
Ruonan Ji , Shuqi Wang , Xinrui Zhao , Yongchun Zou , Tianyi Zhang , Xin Qian , Guoliang Chen , Yaming Wang , Jiahu Ouyang , Dechang Jia , Yu Zhou
The harsh conditions encountered in aerospace applications, such as high operational temperatures, abrasive wear, and corrosive substances, present significant challenges to the performance and longevity of magnesium alloy components. To create a coating with superior wear resistance, corrosion resistance, and high emissivity, this study employs plasma electrolytic oxidation (PEO) technology to develop a nanocomposite coating doped with carbon nanotubes (CNTs) and hexagonal boron nitride (h-BN). The results demonstrate that the MgO-BN/CNTs coating with an emissivity of 0.82 reduces the equilibrium temperature of the 5 W LED junction by nearly 10 °C compared to the magnesium alloy substrate, showing improved radiative heat dissipation performance. Due to the ability of the porous structure to accommodate abrasive particles, coupled with the lubricating effect of h-BN and CNTs, the friction coefficient of the MgO-BN/CNTs coating is 0.57, which is 21 % lower than that of the MgO coating. Additionally, the coating exhibits excellent corrosion protection, attributed to the dense microstructure and chemical inertness of h-BN. The findings demonstrate that the strategic incorporation of h-BN and CNTs into PEO coatings effectively improves the wear resistance, corrosion resistance, and thermal management performance of magnesium alloys.
航空航天应用中遇到的苛刻条件,如高工作温度、磨料磨损和腐蚀性物质,对镁合金部件的性能和使用寿命提出了重大挑战。为了制造具有优异耐磨性、耐腐蚀性和高发射率的涂层,本研究采用等离子电解氧化(PEO)技术开发了一种掺杂碳纳米管(CNT)和六方氮化硼(h-BN)的纳米复合涂层。结果表明,与镁合金基底相比,发射率为 0.82 的 MgO-BN/CNTs 涂层可将 5 W LED 结的平衡温度降低近 10 °C,显示出辐射散热性能的改善。由于多孔结构能够容纳研磨颗粒,再加上 h-BN 和 CNTs 的润滑作用,MgO-BN/CNTs 涂层的摩擦系数为 0.57,比 MgO 涂层低 21%。此外,由于 h-BN 的致密微观结构和化学惰性,涂层还具有优异的防腐蚀性能。研究结果表明,在 PEO 涂层中策略性地加入 h-BN 和 CNT 可有效改善镁合金的耐磨性、耐腐蚀性和热管理性能。
{"title":"Enhanced wear resistance, corrosion behavior, and thermal management in magnesium alloys with PEO coatings","authors":"Ruonan Ji ,&nbsp;Shuqi Wang ,&nbsp;Xinrui Zhao ,&nbsp;Yongchun Zou ,&nbsp;Tianyi Zhang ,&nbsp;Xin Qian ,&nbsp;Guoliang Chen ,&nbsp;Yaming Wang ,&nbsp;Jiahu Ouyang ,&nbsp;Dechang Jia ,&nbsp;Yu Zhou","doi":"10.1016/j.surfcoat.2024.131438","DOIUrl":"10.1016/j.surfcoat.2024.131438","url":null,"abstract":"<div><div>The harsh conditions encountered in aerospace applications, such as high operational temperatures, abrasive wear, and corrosive substances, present significant challenges to the performance and longevity of magnesium alloy components. To create a coating with superior wear resistance, corrosion resistance, and high emissivity, this study employs plasma electrolytic oxidation (PEO) technology to develop a nanocomposite coating doped with carbon nanotubes (CNTs) and hexagonal boron nitride (h-BN). The results demonstrate that the MgO-BN/CNTs coating with an emissivity of 0.82 reduces the equilibrium temperature of the 5 W LED junction by nearly 10 °C compared to the magnesium alloy substrate, showing improved radiative heat dissipation performance. Due to the ability of the porous structure to accommodate abrasive particles, coupled with the lubricating effect of h-BN and CNTs, the friction coefficient of the MgO-BN/CNTs coating is 0.57, which is 21 % lower than that of the MgO coating. Additionally, the coating exhibits excellent corrosion protection, attributed to the dense microstructure and chemical inertness of h-BN. The findings demonstrate that the strategic incorporation of h-BN and CNTs into PEO coatings effectively improves the wear resistance, corrosion resistance, and thermal management performance of magnesium alloys.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131438"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement in bioactivity, hardness and friction resistance of 3 % manganese-doped hydroxyapatite coated on alumina using radio frequency magnetron sputtering 利用射频磁控溅射技术提高氧化铝上 3%掺锰羟基磷灰石涂层的生物活性、硬度和耐摩擦性
IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131481
Ranbir Kumar , Deep Shikha , Sanjay Kumar Sinha
Hydroxyapatite (HAP) is a common hard tissue implant material known for its superior biocompatibility and osteoconductivity. However, its poor mechanical strength, brittleness and slow degradation limit the applications. This study explores the enhancement of HAP mechanical properties and bioactivity by coating 3 wt% manganese-doped HAP (Mn-HAP) on another inert biomaterial alumina (Mn-HAP/Al2O3) substrates using the RF magnetron sputtering technique. Characterization of these samples was performed using Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Grazing Incidence X-ray Diffraction (GIXRD), Fourier Transform Infrared Spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET) techniques. Mechanical property was assessed through Vicker's hardness and adhesion of the film was studied by scratch testing. Corrosion resistance was evaluated using Tafel plots in Ringer's solution by Electrochemical analyser (ECA), and dielectric properties were measured using Impedance analyser. Biocompatibility was examined by wettability tests, thrombogenicity, antioxidant test, antimicrobial investigation and MTT [3-(4, 5-dimethythiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. The results show that Mn-HAP/Al2O3 coatings exhibit superior properties as compared to pure HAP, alumina, and HAP/Al2O3. Mn-HAP showed enhanced crystallinity and grain refinement, leading to improved hardness of 1198 HV for Mn-HAP/Al2O3 as compared to 39.84 HV for pure HAP and 1028 HV for HAP/Al2O3. The friction coefficient was found to be best in the Mn-HAP/Al2O3 sample. Corrosion rate significantly decreases in Mn-HAP/Al2O3 (1.63 ± 0.28) mmpy after coating on alumina. In vitro studies demonstrated enhanced cell attachment, proliferation, and differentiation after Mn-HAP coating on alumina. Antimicrobial tests revealed improved resistance against E. coli and S. aureus, with Mn-HAP/Al2O3 showing a larger zone of inhibition. The study concludes that 3 wt% Mn-HAP coatings deposited by RF magnetron sputtering hold great promise for enhancing the performance and longevity of hard tissue implants, paving the way for advanced biomedical applications.
羟基磷灰石(HAP)是一种常见的硬组织植入材料,以其优异的生物相容性和骨传导性而闻名。然而,其机械强度差、脆性大、降解慢等特点限制了其应用。本研究采用射频磁控溅射技术,在另一种惰性生物材料氧化铝(Mn-HAP/Al2O3)基底上涂覆 3 wt%的锰掺杂 HAP(Mn-HAP),探索如何提高 HAP 的机械性能和生物活性。使用场发射扫描电子显微镜 (FESEM)、能量色散 X 射线光谱仪 (EDS)、掠入射 X 射线衍射 (GIXRD)、傅立叶变换红外光谱仪 (FTIR) 和 Brunauer-Emmett-Teller (BET) 技术对这些样品进行了表征。机械性能通过维氏硬度进行评估,薄膜的附着力则通过划痕测试进行研究。电化学分析仪(ECA)利用林格氏溶液中的塔菲尔图评估了抗腐蚀性,并利用阻抗分析仪测量了介电性能。通过湿润性测试、血栓形成性、抗氧化测试、抗菌调查和 MTT[3-(4, 5-二甲基噻唑-2-基)-2, 5-二苯基溴化四氮唑]试验检验了生物相容性。结果表明,与纯 HAP、氧化铝和 HAP/Al2O3 相比,Mn-HAP/Al2O3 涂层具有更优越的性能。Mn-HAP 显示出更高的结晶度和晶粒细化度,从而使 Mn-HAP/Al2O3 的硬度提高到 1198 HV,而纯 HAP 为 39.84 HV,HAP/Al2O3 为 1028 HV。Mn-HAP/Al2O3 样品的摩擦系数最佳。在氧化铝上镀膜后,Mn-HAP/Al2O3 的腐蚀速率明显降低(1.63 ± 0.28)mmpy。体外研究表明,在氧化铝上涂覆 Mn-HAP 后,细胞的附着、增殖和分化能力得到增强。抗菌测试表明,Mn-HAP/Al2O3 对大肠杆菌和金黄色葡萄球菌的抗性有所提高,抑制区更大。研究得出结论,通过射频磁控溅射沉积的 3 wt% Mn-HAP 涂层有望提高硬组织植入物的性能和寿命,为先进的生物医学应用铺平道路。
{"title":"Improvement in bioactivity, hardness and friction resistance of 3 % manganese-doped hydroxyapatite coated on alumina using radio frequency magnetron sputtering","authors":"Ranbir Kumar ,&nbsp;Deep Shikha ,&nbsp;Sanjay Kumar Sinha","doi":"10.1016/j.surfcoat.2024.131481","DOIUrl":"10.1016/j.surfcoat.2024.131481","url":null,"abstract":"<div><div>Hydroxyapatite (HAP) is a common hard tissue implant material known for its superior biocompatibility and osteoconductivity. However, its poor mechanical strength, brittleness and slow degradation limit the applications. This study explores the enhancement of HAP mechanical properties and bioactivity by coating 3 wt% manganese-doped HAP (Mn-HAP) on another inert biomaterial alumina (Mn-HAP/Al<sub>2</sub>O<sub>3</sub>) substrates using the RF magnetron sputtering technique. Characterization of these samples was performed using Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Grazing Incidence X-ray Diffraction (GIXRD), Fourier Transform Infrared Spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET) techniques. Mechanical property was assessed through Vicker's hardness and adhesion of the film was studied by scratch testing. Corrosion resistance was evaluated using Tafel plots in Ringer's solution by Electrochemical analyser (ECA), and dielectric properties were measured using Impedance analyser. Biocompatibility was examined by wettability tests, thrombogenicity, antioxidant test, antimicrobial investigation and MTT [3-(4, 5-dimethythiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. The results show that Mn-HAP/Al<sub>2</sub>O<sub>3</sub> coatings exhibit superior properties as compared to pure HAP, alumina, and HAP/Al<sub>2</sub>O<sub>3</sub>. Mn-HAP showed enhanced crystallinity and grain refinement, leading to improved hardness of 1198 HV for Mn-HAP/Al<sub>2</sub>O<sub>3</sub> as compared to 39.84 HV for pure HAP and 1028 HV for HAP/Al<sub>2</sub>O<sub>3</sub>. The friction coefficient was found to be best in the Mn-HAP/Al<sub>2</sub>O<sub>3</sub> sample. Corrosion rate significantly decreases in Mn-HAP/Al<sub>2</sub>O<sub>3</sub> (1.63 <span><math><mo>±</mo></math></span> 0.28) mmpy after coating on alumina. In vitro studies demonstrated enhanced cell attachment, proliferation, and differentiation after Mn-HAP coating on alumina. Antimicrobial tests revealed improved resistance against <em>E. coli</em> and <em>S. aureus</em>, with Mn-HAP/Al<sub>2</sub>O<sub>3</sub> showing a larger zone of inhibition. The study concludes that 3 wt% Mn-HAP coatings deposited by RF magnetron sputtering hold great promise for enhancing the performance and longevity of hard tissue implants, paving the way for advanced biomedical applications.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131481"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative analysis of deformation characteristics and corrosion properties of high energy laser shock peened Ni-based superalloy 高能激光冲击强化镍基超合金变形特性和腐蚀性能的定量分析
IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131470
Yarramilli Vamsi Apuroop , Sanjay Raj , Malar Vadani , Sabeur Msolli , Pooja Gupta , Sanjay Rai , Niroj Maharjan , Ayan Bhowmik
This study examines the influence of high-energy laser shock peening (LSP) using 7 J and 10 J pulse energies on the sub-surface deformation characteristics of Inconel 718 superalloy. High-magnitude compressive residual stresses were induced into the samples after LSP with large residual stress depths of the order of 2 mm – the experimental observations were in good agreement with finite element analyses of the LSP process. The propagation of intense shock waves led to increased strain hardening and dislocation densities that were experimentally quantified by synchrotron diffraction and transmission electron microscopy. Microscopic analyses revealed highly refined grain structure only at the surface without much refinement observed in the residual depth region. Alongside a high degree of strain hardening, profuse amount of adiabatic shear bands was observed in the hardened depth, indicative of simultaneous strain localisation under such high laser pulse energy. These bands occurred along common slip planes in the Ni γ-matrix and could be potential areas of instability leading to failure. The LSP-treated samples exhibited improved corrosion resistance, with higher laser pulse energy peened samples performing better.
本研究探讨了使用 7 J 和 10 J 脉冲能量的高能激光冲击强化(LSP)对 Inconel 718 超合金表层下变形特性的影响。在 LSP 之后,样品中产生了高强度的压缩残余应力,残余应力深度达到 2 mm 左右--实验观察结果与 LSP 过程的有限元分析结果非常吻合。强烈冲击波的传播导致应变硬化和位错密度增加,同步辐射衍射和透射电子显微镜对其进行了实验量化。显微分析表明,晶粒结构仅在表面高度细化,在残余深度区域没有观察到明显的细化。除了高度应变硬化外,在硬化深度还观察到大量绝热剪切带,表明在如此高的激光脉冲能量下应变同时定位。这些剪切带沿着 Ni γ 基质中的共同滑移面出现,可能是导致失效的潜在不稳定区域。经过 LSP 处理的样品具有更好的耐腐蚀性,激光脉冲能量更高的强化样品性能更好。
{"title":"Quantitative analysis of deformation characteristics and corrosion properties of high energy laser shock peened Ni-based superalloy","authors":"Yarramilli Vamsi Apuroop ,&nbsp;Sanjay Raj ,&nbsp;Malar Vadani ,&nbsp;Sabeur Msolli ,&nbsp;Pooja Gupta ,&nbsp;Sanjay Rai ,&nbsp;Niroj Maharjan ,&nbsp;Ayan Bhowmik","doi":"10.1016/j.surfcoat.2024.131470","DOIUrl":"10.1016/j.surfcoat.2024.131470","url":null,"abstract":"<div><div>This study examines the influence of high-energy laser shock peening (LSP) using 7 J and 10 J pulse energies on the sub-surface deformation characteristics of Inconel 718 superalloy. High-magnitude compressive residual stresses were induced into the samples after LSP with large residual stress depths of the order of 2 mm – the experimental observations were in good agreement with finite element analyses of the LSP process. The propagation of intense shock waves led to increased strain hardening and dislocation densities that were experimentally quantified by synchrotron diffraction and transmission electron microscopy. Microscopic analyses revealed highly refined grain structure only at the surface without much refinement observed in the residual depth region. Alongside a high degree of strain hardening, profuse amount of adiabatic shear bands was observed in the hardened depth, indicative of simultaneous strain localisation under such high laser pulse energy. These bands occurred along common slip planes in the Ni γ-matrix and could be potential areas of instability leading to failure. The LSP-treated samples exhibited improved corrosion resistance, with higher laser pulse energy peened samples performing better.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131470"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-temperature oxidation resistances of coatings on Inconel 718 alloy by boriding, aluminizing, and boroaluminizing 通过硼化、铝化和硼铝化处理 Inconel 718 合金涂层的高温抗氧化性
IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131506
Xiong Lei , Chen Yang , Yonghua Duan , Lishi Ma , Huarong Qi , Shanju Zheng , Ancang Yang , Yuanhuai He , Yunping Li
Inconel 718 alloy is used at high temperatures and is prone to react with oxygen, leading to a decrease in its high-temperature performance. To improve the high-temperature oxidation resistance of Inconel 718 alloy, in this work, three coatings on Inconel 718 alloy were manufactured by boriding, aluminizing, and boroaluminizing, and the high-temperature oxidation resistances at 800 °C, 900 °C and 1000 °C were investigated. The results showed that the maximum thickness of coatings can be achieved >200 μm. Moreover, these three coatings can improve the high-temperature oxidation resistance of Inconel 718 alloy, and the boroaluminized coating has the best high-temperature oxidation resistance. Besides, the reason for the improvement of high-temperature oxidation resistance is due to the formation of dense oxide layers during the oxidation process, which can prevent further oxidation.
Inconel 718 合金用于高温环境,容易与氧气发生反应,导致高温性能下降。为了提高 Inconel 718 合金的高温抗氧化性,本研究通过渗硼、渗铝和渗硼渗铝在 Inconel 718 合金上制造了三种涂层,并研究了其在 800 ℃、900 ℃ 和 1000 ℃ 下的高温抗氧化性。结果表明,涂层的最大厚度可达 200 μm。此外,这三种涂层都能提高 Inconel 718 合金的高温抗氧化性,其中硼铝涂层的高温抗氧化性最好。此外,耐高温氧化性提高的原因是在氧化过程中形成了致密的氧化层,这可以防止进一步氧化。
{"title":"High-temperature oxidation resistances of coatings on Inconel 718 alloy by boriding, aluminizing, and boroaluminizing","authors":"Xiong Lei ,&nbsp;Chen Yang ,&nbsp;Yonghua Duan ,&nbsp;Lishi Ma ,&nbsp;Huarong Qi ,&nbsp;Shanju Zheng ,&nbsp;Ancang Yang ,&nbsp;Yuanhuai He ,&nbsp;Yunping Li","doi":"10.1016/j.surfcoat.2024.131506","DOIUrl":"10.1016/j.surfcoat.2024.131506","url":null,"abstract":"<div><div>Inconel 718 alloy is used at high temperatures and is prone to react with oxygen, leading to a decrease in its high-temperature performance. To improve the high-temperature oxidation resistance of Inconel 718 alloy, in this work, three coatings on Inconel 718 alloy were manufactured by boriding, aluminizing, and boroaluminizing, and the high-temperature oxidation resistances at 800 °C, 900 °C and 1000 °C were investigated. The results showed that the maximum thickness of coatings can be achieved &gt;200 μm. Moreover, these three coatings can improve the high-temperature oxidation resistance of Inconel 718 alloy, and the boroaluminized coating has the best high-temperature oxidation resistance. Besides, the reason for the improvement of high-temperature oxidation resistance is due to the formation of dense oxide layers during the oxidation process, which can prevent further oxidation.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131506"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the tribological and corrosion behavior of NiB coating with low boron content from optimized lead-free bath on aluminum alloys 通过优化无铅浴改善铝合金上低硼含量镍铍涂层的摩擦学和腐蚀行为
IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131464
Melisa Köse , Sezer Tan , Buse Yavuz , Ayşe Betül Demir , Hasan Algül , Abdullah Hulusi Kökçam , Enes Furkan Erkan , Mehmet Fatih Taşkin , Harun Gül , Özer Uygun , Mehmet Uysal , Ahmet Alp
This study focuses on producing environmentally friendly, lead-free nickel‑boron (NiB) coatings as an alternative to hard chromium coatings. Using the electroless method, the NiB coatings were fabricated from a lead-free bath, and the effects of varying B and Ni concentrations on the coatings' chemical composition, surface morphology, hardness, corrosion resistance, and wear performance were investigated. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to analyze surface morphology and phase composition. Corrosion performance was evaluated using potentiodynamic polarization (PP) and electrochemical impedance spectroscopy (EIS), while wear behavior was tested at sliding speeds of 20, 30, and 40 cm/s. The study highlights the critical role of sliding speed on wear mechanisms, friction coefficient, wear rate, and surface morphology. The analyses revealed that the optimal NiB coating, containing 34 g/L Ni and 3 g/L B, exhibited the highest hardness, the lowest corrosion rate, and the highest wear rate performance. The values obtained from these analyses were 891 HV for hardness, 8.87 × 10−6 mpy for corrosion rate, and 2.21 × 10−4 mm3/N·m for wear rate. The use of analysis of variance (ANOVA) identified key factors influencing these properties. The findings suggest that optimizing boron and nickel concentrations significantly enhances NiB coatings' corrosion resistance and wear performance, making them suitable for industrial applications.
本研究的重点是生产环保型无铅镍硼(NiB)镀层,以替代硬铬镀层。研究采用无铅镀液,通过无电解法制备了镍硼镀层,并研究了不同浓度的硼和镍对镀层的化学成分、表面形貌、硬度、耐腐蚀性和磨损性能的影响。扫描电子显微镜(SEM)和 X 射线衍射(XRD)用于分析表面形貌和相组成。使用电位极化(PP)和电化学阻抗谱(EIS)评估了腐蚀性能,并在 20、30 和 40 厘米/秒的滑动速度下测试了磨损行为。研究强调了滑动速度对磨损机制、摩擦系数、磨损率和表面形态的关键作用。分析表明,含 34 克/升 Ni 和 3 克/升 B 的最佳 NiB 涂层具有最高的硬度、最低的腐蚀率和最高的磨损率性能。分析得出的硬度值为 891 HV,腐蚀率为 8.87 × 10-6 mpy,磨损率为 2.21 × 10-4 mm3/N-m。利用方差分析(ANOVA)确定了影响这些性能的关键因素。研究结果表明,优化硼和镍的浓度可显著提高镍硼涂层的耐腐蚀性和磨损性能,使其适用于工业应用。
{"title":"Improving the tribological and corrosion behavior of NiB coating with low boron content from optimized lead-free bath on aluminum alloys","authors":"Melisa Köse ,&nbsp;Sezer Tan ,&nbsp;Buse Yavuz ,&nbsp;Ayşe Betül Demir ,&nbsp;Hasan Algül ,&nbsp;Abdullah Hulusi Kökçam ,&nbsp;Enes Furkan Erkan ,&nbsp;Mehmet Fatih Taşkin ,&nbsp;Harun Gül ,&nbsp;Özer Uygun ,&nbsp;Mehmet Uysal ,&nbsp;Ahmet Alp","doi":"10.1016/j.surfcoat.2024.131464","DOIUrl":"10.1016/j.surfcoat.2024.131464","url":null,"abstract":"<div><div>This study focuses on producing environmentally friendly, lead-free nickel‑boron (Ni<img>B) coatings as an alternative to hard chromium coatings. Using the electroless method, the Ni<img>B coatings were fabricated from a lead-free bath, and the effects of varying B and Ni concentrations on the coatings' chemical composition, surface morphology, hardness, corrosion resistance, and wear performance were investigated. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to analyze surface morphology and phase composition. Corrosion performance was evaluated using potentiodynamic polarization (PP) and electrochemical impedance spectroscopy (EIS), while wear behavior was tested at sliding speeds of 20, 30, and 40 cm/s. The study highlights the critical role of sliding speed on wear mechanisms, friction coefficient, wear rate, and surface morphology. The analyses revealed that the optimal Ni<img>B coating, containing 34 g/L Ni and 3 g/L B, exhibited the highest hardness, the lowest corrosion rate, and the highest wear rate performance. The values obtained from these analyses were 891 HV for hardness, 8.87 × 10<sup>−6</sup> mpy for corrosion rate, and 2.21 × 10<sup>−4</sup> mm<sup>3</sup>/N·m for wear rate. The use of analysis of variance (ANOVA) identified key factors influencing these properties. The findings suggest that optimizing boron and nickel concentrations significantly enhances Ni<img>B coatings' corrosion resistance and wear performance, making them suitable for industrial applications.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131464"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface modification of WE43 Mg alloy via combination of cold spray and micro-arc oxidation for wear related applications at high temperatures 通过冷喷涂和微弧氧化相结合的方法对 WE43 Mg 合金进行表面改性,用于高温下的磨损相关应用
IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131530
Mertcan Kaba , Faiz Muhaffel , Ugur Malayoglu , Huseyin Cimenoglu
This study investigates the high temperature wear behaviour of a WE43 Mg alloy after covering it with single and dual layer coatings. For this purpose, cold spray and micro-arc oxidation processes were employed individually and sequentially. Single-layer coatings fabricated by cold spray and micro-arc oxidation processes were Al/Al2O3 composite and MgO-based ceramic, respectively. Sequential application of cold spray and micro arc oxidation processes induced dual layer coating upon synthesizing an external Al2O3–based layer over the Al/Al2O3 composite layer. Results of the wear tests conducted under the load of 2 N revealed the superior resistance of the dual layer coated sample against the rubbing action of the counterface compared to single layer coatings. Thus, the presence of a relatively hard and tough external Al2O3-based layer over the Al/Al2O3 composite layer sustained protection up to the temperature of 320 °C, where the dominant wear mechanism was fatigue wear. However, the increase in the test temperature to 350 °C caused detachment of the external Al2O3-based layer. Reduction of the wear test load from 2 to 1 N resulted in the remaining of external Al2O3-based layer intact with the underlying Al/Al2O3 composite layer even at a test temperature of 350 °C. It is therefore concluded that the combination of cold spray and micro-arc oxidation processes is promising to broaden the reliable use of WE43 and other Mg alloys in wear related applications at high service temperatures.
本研究探讨了 WE43 镁合金在覆盖单层和双层涂层后的高温磨损特性。为此,分别采用了冷喷和微弧氧化工艺。通过冷喷涂和微弧氧化工艺制作的单层涂层分别是 Al/Al2O3 复合材料和氧化镁基陶瓷。在 Al/Al2O3 复合材料层上合成外部 Al2O3 基层后,冷喷涂和微弧氧化工艺的连续应用产生了双层涂层。在 2 N 负荷下进行的磨损测试结果表明,与单层涂层相比,双层涂层样品具有更强的抗摩擦力。因此,在 Al/Al2O3 复合材料层上有一层相对坚硬和韧性较强的 Al2O3 基外层,可以在 320 °C 的温度下持续提供保护,在这种温度下,主要的磨损机制是疲劳磨损。然而,当试验温度升高到 350 ℃ 时,外部 Al2O3 基复合层会脱落。将磨损测试载荷从 2 牛顿降低到 1 牛顿后,即使在 350 ℃ 的测试温度下,外部的 Al2O3 基层仍与底层的 Al/Al2O3 复合材料层保持完整。因此,冷喷和微弧氧化工艺的结合有望扩大 WE43 和其他镁合金在高使用温度下磨损相关应用中的可靠使用范围。
{"title":"Surface modification of WE43 Mg alloy via combination of cold spray and micro-arc oxidation for wear related applications at high temperatures","authors":"Mertcan Kaba ,&nbsp;Faiz Muhaffel ,&nbsp;Ugur Malayoglu ,&nbsp;Huseyin Cimenoglu","doi":"10.1016/j.surfcoat.2024.131530","DOIUrl":"10.1016/j.surfcoat.2024.131530","url":null,"abstract":"<div><div>This study investigates the high temperature wear behaviour of a WE43 Mg alloy after covering it with single and dual layer coatings. For this purpose, cold spray and micro-arc oxidation processes were employed individually and sequentially. Single-layer coatings fabricated by cold spray and micro-arc oxidation processes were Al/Al<sub>2</sub>O<sub>3</sub> composite and MgO-based ceramic, respectively. Sequential application of cold spray and micro arc oxidation processes induced dual layer coating upon synthesizing an external Al<sub>2</sub>O<sub>3</sub>–based layer over the Al/Al<sub>2</sub>O<sub>3</sub> composite layer. Results of the wear tests conducted under the load of 2 N revealed the superior resistance of the dual layer coated sample against the rubbing action of the counterface compared to single layer coatings. Thus, the presence of a relatively hard and tough external Al<sub>2</sub>O<sub>3</sub>-based layer over the Al/Al<sub>2</sub>O<sub>3</sub> composite layer sustained protection up to the temperature of 320 °C, where the dominant wear mechanism was fatigue wear. However, the increase in the test temperature to 350 °C caused detachment of the external Al<sub>2</sub>O<sub>3</sub>-based layer. Reduction of the wear test load from 2 to 1 N resulted in the remaining of external Al<sub>2</sub>O<sub>3</sub>-based layer intact with the underlying Al/Al<sub>2</sub>O<sub>3</sub> composite layer even at a test temperature of 350 °C. It is therefore concluded that the combination of cold spray and micro-arc oxidation processes is promising to broaden the reliable use of WE43 and other Mg alloys in wear related applications at high service temperatures.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131530"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hardness and Young's modulus evolution of low-power plasma sprayed Inconel 625 coatings exposed to high temperatures 暴露于高温下的低功率等离子喷涂因科镍合金 625 涂层的硬度和杨氏模量演变
IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131527
David Merino-Millan , Miguel Ángel Garrido-Maneiro , Claudio J. Múnez , Pedro Poza
The use of renewable energy sources has been increasing in recent years as it aims to balance the production of fossil fuels by 2050. Among the various alternatives, concentrated solar power plants are considered the most feasible due to their capability of storing energy. Ongoing research is conducted to enhance the performance of third-generation plants by achieving higher temperatures. It makes necessary to explore new materials. This research is focused on concentrated solar power plants with central tower receivers, for which coatings used nowadays do not withstand the new requirements. For this reason, an alternative plasma sprayed Inconel 625 coating has been proposed. This study confidently presents an analysis of the high temperature exposure effects on the coating's mechanical properties at two temperatures, 520 and 800 °C. The study focuses on the Young's modulus and hardness, and the results demonstrate a significant improvement in these properties due to the formation of secondary phases. Coating hardness increased gradually from 4.12 GPa to 5.3 GPa during exposition at 520 °C. In contrast, the increment was attained quickly during the first 24 h exposure at 800 °C, reaching 4.5 GPa, and then maintained for all times studied. The microstructure was characterized using transmission electron microscopy, which identified the presence of carbides and intermetallic phases. The application of these coatings will significantly enhance the performance of solar receivers due to their superior properties compared to the currently available Pyromark coatings.
为了在 2050 年前平衡化石燃料的生产,近年来可再生能源的使用日益增多。在各种替代能源中,聚光太阳能发电厂因其储能能力而被认为是最可行的。目前正在进行的研究旨在通过实现更高的温度来提高第三代发电站的性能。因此有必要探索新材料。这项研究的重点是带有中央塔式接收器的聚光太阳能发电站,目前使用的涂层无法满足新的要求。为此,我们提出了一种等离子喷涂因科镍合金 625 涂层的替代方案。本研究分析了高温暴露在 520 和 800 °C 两种温度下对涂层机械性能的影响。研究重点是杨氏模量和硬度,结果表明由于形成了次生相,这些性能得到了显著改善。涂层硬度在 520 ℃ 暴晒期间从 4.12 GPa 逐渐增加到 5.3 GPa。与此相反,在 800 °C 下暴露 24 小时后,硬度迅速增加,达到 4.5 GPa,并在所有研究时间内保持不变。透射电子显微镜对微观结构进行了表征,确定了碳化物和金属间相的存在。与现有的 Pyromark 涂层相比,这些涂层具有更优越的性能,其应用将大大提高太阳能接收器的性能。
{"title":"Hardness and Young's modulus evolution of low-power plasma sprayed Inconel 625 coatings exposed to high temperatures","authors":"David Merino-Millan ,&nbsp;Miguel Ángel Garrido-Maneiro ,&nbsp;Claudio J. Múnez ,&nbsp;Pedro Poza","doi":"10.1016/j.surfcoat.2024.131527","DOIUrl":"10.1016/j.surfcoat.2024.131527","url":null,"abstract":"<div><div>The use of renewable energy sources has been increasing in recent years as it aims to balance the production of fossil fuels by 2050. Among the various alternatives, concentrated solar power plants are considered the most feasible due to their capability of storing energy. Ongoing research is conducted to enhance the performance of third-generation plants by achieving higher temperatures. It makes necessary to explore new materials. This research is focused on concentrated solar power plants with central tower receivers, for which coatings used nowadays do not withstand the new requirements. For this reason, an alternative plasma sprayed Inconel 625 coating has been proposed. This study confidently presents an analysis of the high temperature exposure effects on the coating's mechanical properties at two temperatures, 520 and 800 °C. The study focuses on the Young's modulus and hardness, and the results demonstrate a significant improvement in these properties due to the formation of secondary phases. Coating hardness increased gradually from 4.12 GPa to 5.3 GPa during exposition at 520 °C. In contrast, the increment was attained quickly during the first 24 h exposure at 800 °C, reaching 4.5 GPa, and then maintained for all times studied. The microstructure was characterized using transmission electron microscopy, which identified the presence of carbides and intermetallic phases. The application of these coatings will significantly enhance the performance of solar receivers due to their superior properties compared to the currently available Pyromark coatings.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131527"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of wear and corrosion resistance in acidic and chloride solutions of Cathodic Arc PVD chromium nitride coatings on untreated and plasma nitrided AISI 4140 steel 未处理和等离子氮化 AISI 4140 钢上的阴极电弧 PVD 氮化铬涂层在酸性和氯化物溶液中的耐磨性和耐腐蚀性评估
IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS Pub Date : 2024-10-30 DOI: 10.1016/j.surfcoat.2024.131476
A. Justina Maskavizan , Juan Pablo Quintana , Eugenia L. Dalibón , Adriana B. Márquez , Sonia P. Brühl , Silvia B. Farina
Chromium nitride ceramic like coatings are well known for their hardness and wear resistance, especially under severe conditions. When deposited on mild steel, nitriding is required for such applications to create a gradient hardness profile and improve the coating adhesion and the system's mechanical properties. Corrosion resistance is also necessary since these chromium coatings are recommended for applications in the plastic mould and injection industry. Therefore, in this work, the combination of a nitriding without white layer pretreatment and CrN coating was studied in a chloride and an acidic electrolyte, to asses if the diffusion layer also plays an important role as a corrosion protection treatment. Coating microstructure, adhesion to both nitrided and non-nitrided steel, wear resistance, and corrosion resistance in chloride and acidic media were evaluated. For comparison, bare and nitrided steel were also examined. Results indicated an improvement in the adhesion for the duplex treatment (nitriding + CrN). The CrN coating demonstrated a considerably lower coefficient of friction and wear rate compared to both non-nitrided and nitrided steel. Regarding corrosion, the iron nitride layer provides some protection in chloride environments; however, in acidic media, only the CrN coating plays a protective role. In both media, localized attack occurred at sites where the coating had defects, such as pores or pinholes through which the electrolyte comes into contact with the substrate. The duplex treatment proved to be the most effective surface treatment for AISI 4140, achieving excellent tribological properties, good adhesion, and high corrosion resistance in both neutral chloride and acidic solutions.
氮化铬陶瓷涂层以其硬度和耐磨性而闻名,尤其是在严酷的条件下。在低碳钢上沉积时,需要进行氮化处理,以形成梯度硬度曲线,提高涂层的附着力和系统的机械性能。由于这些铬涂层被推荐用于塑料模具和注塑行业,因此耐腐蚀性也是必要的。因此,在这项工作中,我们研究了在氯化物和酸性电解液中将无白层预处理的氮化与 CrN 涂层相结合的方法,以确定扩散层是否也能发挥重要的防腐蚀处理作用。对涂层的微观结构、与氮化钢和非氮化钢的附着力、耐磨性以及在氯化物和酸性介质中的耐腐蚀性进行了评估。为了进行比较,还对裸钢和氮化钢进行了检测。结果表明,双相处理(氮化 + CrN)的附着力有所提高。与未氮化钢和氮化钢相比,CrN 涂层的摩擦系数和磨损率都大大降低。在腐蚀方面,氮化铁层在氯化物环境中提供了一定的保护;但在酸性介质中,只有铬N涂层起到了保护作用。在这两种介质中,局部腐蚀都发生在涂层有缺陷的地方,如电解液与基体接触的孔隙或针孔。事实证明,双相处理是 AISI 4140 最有效的表面处理方法,在中性氯化物和酸性溶液中都能获得优异的摩擦学性能、良好的附着力和高耐腐蚀性。
{"title":"Evaluation of wear and corrosion resistance in acidic and chloride solutions of Cathodic Arc PVD chromium nitride coatings on untreated and plasma nitrided AISI 4140 steel","authors":"A. Justina Maskavizan ,&nbsp;Juan Pablo Quintana ,&nbsp;Eugenia L. Dalibón ,&nbsp;Adriana B. Márquez ,&nbsp;Sonia P. Brühl ,&nbsp;Silvia B. Farina","doi":"10.1016/j.surfcoat.2024.131476","DOIUrl":"10.1016/j.surfcoat.2024.131476","url":null,"abstract":"<div><div>Chromium nitride ceramic like coatings are well known for their hardness and wear resistance, especially under severe conditions. When deposited on mild steel, nitriding is required for such applications to create a gradient hardness profile and improve the coating adhesion and the system's mechanical properties. Corrosion resistance is also necessary since these chromium coatings are recommended for applications in the plastic mould and injection industry. Therefore, in this work, the combination of a nitriding without white layer pretreatment and CrN coating was studied in a chloride and an acidic electrolyte, to asses if the diffusion layer also plays an important role as a corrosion protection treatment. Coating microstructure, adhesion to both nitrided and non-nitrided steel, wear resistance, and corrosion resistance in chloride and acidic media were evaluated. For comparison, bare and nitrided steel were also examined. Results indicated an improvement in the adhesion for the duplex treatment (nitriding + CrN). The CrN coating demonstrated a considerably lower coefficient of friction and wear rate compared to both non-nitrided and nitrided steel. Regarding corrosion, the iron nitride layer provides some protection in chloride environments; however, in acidic media, only the CrN coating plays a protective role. In both media, localized attack occurred at sites where the coating had defects, such as pores or pinholes through which the electrolyte comes into contact with the substrate. The duplex treatment proved to be the most effective surface treatment for AISI 4140, achieving excellent tribological properties, good adhesion, and high corrosion resistance in both neutral chloride and acidic solutions.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131476"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Surface & Coatings Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1