Zhao Chen, Jian Li, Qianqian Zhai, Zhiqiang Chang, Jitao Li
Nitrogenous waste is a global concern in aquatic ecosystems. In the shrimp farming system, feeding is the main input of nitrogen, which leads to the accumulation of nitrogenous waste, such as ammonia, nitrite, and nitrate. Nitrogen cycling is crucial for nitrogenous waste removal and for the stability of the aquaculture system. Under the action of different functional microorganisms, a variety of nitrogen cycling pathways can be used for the transformation and removal of nitrogenous waste. Understanding the complexity of the nitrogen cycle is necessary for improving the aquaculture environment. This review examines the many components and mechanisms involved in the nitrogen cycle in shrimp farming system, including nitrification, denitrification, anammox, heterotrophic assimilation, and autotrophic assimilation. Because of the difference in aquaculture characteristics, nitrogen cycling pathways in different shrimp culture modes are diverse. The current application of the nitrogen cycle in shrimp farming system, including the outdoor pond mode and indoor industrialized mode, was presented in combination with the requirements for dissolved oxygen (DO), organic matter, carbon–nitrogen ratio, light, and other environmental factors. Overall, nitrification, heterotrophic assimilation, autotrophic assimilation, and heterotrophic denitrification are the main nitrogen cycle processes in the shrimp culture system. According to the characteristics of aquaculture modes and microorganisms, utilizing different nitrogen cycle processes can enhance the efficiency of the nitrogen cycle, facilitate the elimination of nitrogenous waste, optimize the aquaculture water environment, and improve overall aquaculture benefits.
{"title":"Nitrogen cycling process and application in different prawn culture modes","authors":"Zhao Chen, Jian Li, Qianqian Zhai, Zhiqiang Chang, Jitao Li","doi":"10.1111/raq.12912","DOIUrl":"10.1111/raq.12912","url":null,"abstract":"<p>Nitrogenous waste is a global concern in aquatic ecosystems. In the shrimp farming system, feeding is the main input of nitrogen, which leads to the accumulation of nitrogenous waste, such as ammonia, nitrite, and nitrate. Nitrogen cycling is crucial for nitrogenous waste removal and for the stability of the aquaculture system. Under the action of different functional microorganisms, a variety of nitrogen cycling pathways can be used for the transformation and removal of nitrogenous waste. Understanding the complexity of the nitrogen cycle is necessary for improving the aquaculture environment. This review examines the many components and mechanisms involved in the nitrogen cycle in shrimp farming system, including nitrification, denitrification, anammox, heterotrophic assimilation, and autotrophic assimilation. Because of the difference in aquaculture characteristics, nitrogen cycling pathways in different shrimp culture modes are diverse. The current application of the nitrogen cycle in shrimp farming system, including the outdoor pond mode and indoor industrialized mode, was presented in combination with the requirements for dissolved oxygen (DO), organic matter, carbon–nitrogen ratio, light, and other environmental factors. Overall, nitrification, heterotrophic assimilation, autotrophic assimilation, and heterotrophic denitrification are the main nitrogen cycle processes in the shrimp culture system. According to the characteristics of aquaculture modes and microorganisms, utilizing different nitrogen cycle processes can enhance the efficiency of the nitrogen cycle, facilitate the elimination of nitrogenous waste, optimize the aquaculture water environment, and improve overall aquaculture benefits.</p>","PeriodicalId":227,"journal":{"name":"Reviews in Aquaculture","volume":"16 4","pages":"1580-1602"},"PeriodicalIF":8.8,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140538845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuowen Cao, Johan Dicksved, Torbjörn Lundh, Aleksandar Vidakovic, Parisa Norouzitallab, David Huyben
Salmonids, specifically Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss), are commonly farmed and their gut microbiota plays important roles for optimal growth, health, and physiology. However, differences in experimental design, technical factors and bioinformatics make it challenging to compare the results from different studies and draw general conclusions about their influence on the fish gut microbiota. For a more comprehensive understanding of the gut microbiota, we collected all the publicly accessible 16S rRNA gene sequencing data with clearly stated sample metadata from freshwater Atlantic salmon and rainbow trout intestinal contents and mucosa sequenced on the Illumina MiSeq platform. A total of 783 samples from 19 published studies were included in this meta-analysis to test the impact of the technical, environmental, and host-accociated factors. This meta-analysis revealed that all the tested factors significantly influenced the alpha and beta diversities of the gut microbiota of salmon and trout. Technical factors, especially target region and DNA extraction kit, affected the beta diversity to a larger extent, while host-associated and environmental factors, especially diet and initial fish weight, had a higher impact on the alpha diversity. Salmon had a higher alpha diversity and higher abundance of Enterococcus and Staphylococcus than trout, which had higher abundance of Weissella and Mycoplasma. The results of this meta-analysis fill in a critical knowledge gap that demonstrate technical methodologies must be standardized and factors associated with host and environment need to be accounted for in the future design of salmonid gut microbiota experiments.
{"title":"A meta-analysis revealing the technical, environmental, and host-associated factors that shape the gut microbiota of Atlantic salmon and rainbow trout","authors":"Shuowen Cao, Johan Dicksved, Torbjörn Lundh, Aleksandar Vidakovic, Parisa Norouzitallab, David Huyben","doi":"10.1111/raq.12913","DOIUrl":"10.1111/raq.12913","url":null,"abstract":"<p>Salmonids, specifically Atlantic salmon (<i>Salmo salar</i>) and rainbow trout (<i>Oncorhynchus mykiss</i>), are commonly farmed and their gut microbiota plays important roles for optimal growth, health, and physiology. However, differences in experimental design, technical factors and bioinformatics make it challenging to compare the results from different studies and draw general conclusions about their influence on the fish gut microbiota. For a more comprehensive understanding of the gut microbiota, we collected all the publicly accessible 16S rRNA gene sequencing data with clearly stated sample metadata from freshwater Atlantic salmon and rainbow trout intestinal contents and mucosa sequenced on the Illumina MiSeq platform. A total of 783 samples from 19 published studies were included in this meta-analysis to test the impact of the technical, environmental, and host-accociated factors. This meta-analysis revealed that all the tested factors significantly influenced the alpha and beta diversities of the gut microbiota of salmon and trout. Technical factors, especially target region and DNA extraction kit, affected the beta diversity to a larger extent, while host-associated and environmental factors, especially diet and initial fish weight, had a higher impact on the alpha diversity. Salmon had a higher alpha diversity and higher abundance of <i>Enterococcus</i> and <i>Staphylococcus</i> than trout, which had higher abundance of <i>Weissella</i> and <i>Mycoplasma</i>. The results of this meta-analysis fill in a critical knowledge gap that demonstrate technical methodologies must be standardized and factors associated with host and environment need to be accounted for in the future design of salmonid gut microbiota experiments.</p>","PeriodicalId":227,"journal":{"name":"Reviews in Aquaculture","volume":"16 4","pages":"1603-1620"},"PeriodicalIF":8.8,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/raq.12913","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140345988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dibo Liu, David L. Straus, Lars-Flemming Pedersen, Christopher Good, Carlo C. Lazado, Thomas Meinelt
Peracetic acid (PAA) has a long history as an efficacious and eco-friendly disinfectant. It was first synthesised in 1902, and since then a wide range of applications has been developed in various industries. Aquaculture is a more recent industry wherein the potential of PAA is significant. As the global demand for sustainable development increases, there has likewise been growing interest in using PAA in aquaculture as an alternative to less environmentally friendly practices. PAA has no carcinogenic risk to humans (unlike formalin), has negligible harmful by-products (unlike chlorine-based disinfectants) and with appropriate precautions, the risks of causing severe human health damage is easier to control than ozone. Fish show strong physiological recovery and adaptation to PAA, whereas susceptible life stages of pathogens are highly vulnerable, enabling a safe and efficacious disinfection of the entire culture water and not the flow-restricted disinfection by such processes as ultraviolet radiation or ozone. The effective concentration of PAA against many fish pathogens is usually below 2 mg L−1, which is tolerable for most fish, and it has very low environmental risk due to rapid degradation. However, such degradation and the hydrodynamics in production-scale aquaculture systems complicate the practical use of PAA. In this review, we summarise key results of safe concentrations of PAA and its effectiveness specifically for fish farmers. We also outline major difficulties and possible solutions for practical uses of PAA. We intend to bring global attention to this compound and inspire future possibilities for its sustainable use as a water disinfectant in aquaculture.
{"title":"Towards sustainable water disinfection with peracetic acid in aquaculture: A review","authors":"Dibo Liu, David L. Straus, Lars-Flemming Pedersen, Christopher Good, Carlo C. Lazado, Thomas Meinelt","doi":"10.1111/raq.12915","DOIUrl":"10.1111/raq.12915","url":null,"abstract":"<p>Peracetic acid (PAA) has a long history as an efficacious and eco-friendly disinfectant. It was first synthesised in 1902, and since then a wide range of applications has been developed in various industries. Aquaculture is a more recent industry wherein the potential of PAA is significant. As the global demand for sustainable development increases, there has likewise been growing interest in using PAA in aquaculture as an alternative to less environmentally friendly practices. PAA has no carcinogenic risk to humans (unlike formalin), has negligible harmful by-products (unlike chlorine-based disinfectants) and with appropriate precautions, the risks of causing severe human health damage is easier to control than ozone. Fish show strong physiological recovery and adaptation to PAA, whereas susceptible life stages of pathogens are highly vulnerable, enabling a safe and efficacious disinfection of the entire culture water and not the flow-restricted disinfection by such processes as ultraviolet radiation or ozone. The effective concentration of PAA against many fish pathogens is usually below 2 mg L<sup>−1</sup>, which is tolerable for most fish, and it has very low environmental risk due to rapid degradation. However, such degradation and the hydrodynamics in production-scale aquaculture systems complicate the practical use of PAA. In this review, we summarise key results of safe concentrations of PAA and its effectiveness specifically for fish farmers. We also outline major difficulties and possible solutions for practical uses of PAA. We intend to bring global attention to this compound and inspire future possibilities for its sustainable use as a water disinfectant in aquaculture.</p>","PeriodicalId":227,"journal":{"name":"Reviews in Aquaculture","volume":"16 4","pages":"1621-1646"},"PeriodicalIF":8.8,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/raq.12915","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140345911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yousuf Dar Jaffer, Irfan Ahmad Bhat, Ishfaq Nazir Mir, Raja Aadil Hussain Bhat, M. Junaid Sidiq, Prasanta Jana
In recent years, the production of economically important crustaceans, and decapods in inland saline areas has increased considerably. The osmoregulatory capacity of these decapods renders them culturable in wide salinity ranges, contributing to a global industry valued at billions of dollars. Therefore, gaining insights into the fundamental mechanisms that drive the adaptive capacity of crustaceans to thrive in diverse salinity ranges is essential. This comprehensive review paper unveils the pivotal adaptations of decapods that allow them to flourish in diverse salinities, ranging from freshwater to saline waters. This article discusses the molecular mechanisms of osmoregulation in decapod crustaceans with more emphasis on Litopenaeus vannammei. Moreover, the importance of maintaining an ideal osmotic balance for efficient digestion and nutrient absorption in L. vannamei is discussed. Furthermore, the effect of salinity on disease resistance in these species is explored, highlighting the need for effective disease management in aquaculture. Overall, this review explores the multifaceted factors influencing decapod crustaceans' adaptation to shifting salinities and also emphasizes the ongoing need for continued research in this domain.
{"title":"Adaptation of cultured decapod crustaceans to changing salinities: Physiological responses, molecular mechanisms and disease implications","authors":"Yousuf Dar Jaffer, Irfan Ahmad Bhat, Ishfaq Nazir Mir, Raja Aadil Hussain Bhat, M. Junaid Sidiq, Prasanta Jana","doi":"10.1111/raq.12909","DOIUrl":"10.1111/raq.12909","url":null,"abstract":"<p>In recent years, the production of economically important crustaceans, and decapods in inland saline areas has increased considerably. The osmoregulatory capacity of these decapods renders them culturable in wide salinity ranges, contributing to a global industry valued at billions of dollars. Therefore, gaining insights into the fundamental mechanisms that drive the adaptive capacity of crustaceans to thrive in diverse salinity ranges is essential. This comprehensive review paper unveils the pivotal adaptations of decapods that allow them to flourish in diverse salinities, ranging from freshwater to saline waters. This article discusses the molecular mechanisms of osmoregulation in decapod crustaceans with more emphasis on <i>Litopenaeus vannammei</i>. Moreover, the importance of maintaining an ideal osmotic balance for efficient digestion and nutrient absorption in <i>L</i>. <i>vannamei</i> is discussed. Furthermore, the effect of salinity on disease resistance in these species is explored, highlighting the need for effective disease management in aquaculture. Overall, this review explores the multifaceted factors influencing decapod crustaceans' adaptation to shifting salinities and also emphasizes the ongoing need for continued research in this domain.</p>","PeriodicalId":227,"journal":{"name":"Reviews in Aquaculture","volume":"16 4","pages":"1520-1543"},"PeriodicalIF":8.8,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abalone is a commercially important mariculture mollusc because of its nutrient-rich value and extensive market demand. To date, over 95% of the abalone supply has been contributed by farming. Macroalgae are the natural food of abalones. However, the supply of macroalgae is unstable owing to seasonal restrictions. This limits the success of abalone farming. Therefore, formulated diets are crucial for the ongoing expansion and sustainable development of abalone culture. The most important considerations in formulated diets are the nutrient composition and commercially available feed ingredients. This review presents a comprehensive description of the nutrient requirements of abalones and the role that nutrients play in regulating abalone growth and health. The dietary proteins, lipids, carbohydrates, macroalgae sources and feed additives currently used in abalone feeds were subsequently summarised. Additionally, this review also highlights the importance of prioritizing the development of sustainable alternative sources of proteins, carbohydrates and macroalgae to meet the increasing demand for abalone feed. Based on the information provided, future directions in the knowledge of abalone nutrition and feeds are subsequently discussed, which will guide further research towards the development of well-balanced commercial feeds that enhance feed utilisation and promote abalone growth and health.
{"title":"Nutrition and feeds for abalone: Current knowledge and future directions","authors":"Xinxin Li, Dong Huang, Mingzhu Pan, Javad Sahandi, Zhenhua Wu, Kangsen Mai, Wenbing Zhang","doi":"10.1111/raq.12911","DOIUrl":"10.1111/raq.12911","url":null,"abstract":"<p>Abalone is a commercially important mariculture mollusc because of its nutrient-rich value and extensive market demand. To date, over 95% of the abalone supply has been contributed by farming. Macroalgae are the natural food of abalones. However, the supply of macroalgae is unstable owing to seasonal restrictions. This limits the success of abalone farming. Therefore, formulated diets are crucial for the ongoing expansion and sustainable development of abalone culture. The most important considerations in formulated diets are the nutrient composition and commercially available feed ingredients. This review presents a comprehensive description of the nutrient requirements of abalones and the role that nutrients play in regulating abalone growth and health. The dietary proteins, lipids, carbohydrates, macroalgae sources and feed additives currently used in abalone feeds were subsequently summarised. Additionally, this review also highlights the importance of prioritizing the development of sustainable alternative sources of proteins, carbohydrates and macroalgae to meet the increasing demand for abalone feed. Based on the information provided, future directions in the knowledge of abalone nutrition and feeds are subsequently discussed, which will guide further research towards the development of well-balanced commercial feeds that enhance feed utilisation and promote abalone growth and health.</p>","PeriodicalId":227,"journal":{"name":"Reviews in Aquaculture","volume":"16 4","pages":"1555-1579"},"PeriodicalIF":8.8,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140333505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For over 70 years, aquaculture practices have relied on the same methods for biosecurity, however epidemics remain a primary limitation of global aquaculture yields with billions in revenue being lost every year due to disease. The intense nature of fish and shellfish farming necessitates the regular use of synthetic chemicals as both preventive and treatment measures, covering broodstocks to hatching and continuing through all stages of rearing. This practice, however, results in the contamination of rearing environments with persistent xenobiotics. A specific drawback in this foundational strategy for aquaculture biosecurity is highlighted in the current review: the consistent use of a water-soluble polymer polyvinylpyrrolidone (PVP) across most, if not all, stages of rearing aquacultural livestock. PVP is used intensively within aquaculture practices as it is a ubiquitous additive within commercially available germicidal, prophylactic, and therapeutic products applied to control and prevent disease outbreaks within aquacultural farms. As a polymer, PVP is synthetic and biodegradation-resistant, and has recently been described as an emerging contaminant of freshwater ecosystems. It is well documented that other persistent, synthetic polymer pollutants such as microplastics, reduce the fecundity, growth, and significantly deplete immune function in commercially important aquatic species. Despite this, intentionally added persistent soluble polymers, such as PVP, have not been considered in the context of aquaculture productivity. This review explores the potential impact of PVP on fish and shellfish highlighting the need for aquaculture to adopt sustainable chemical practices, drawing inspiration from advancements in nanotechnology applied within human medicines to address biosecurity protocol deficiencies.
{"title":"Invisible plastics problem in intensive aquaculture: The case of polyvinylpyrrolidone","authors":"Charlotte Robison-Smith, Jo Cable","doi":"10.1111/raq.12910","DOIUrl":"10.1111/raq.12910","url":null,"abstract":"<p>For over 70 years, aquaculture practices have relied on the same methods for biosecurity, however epidemics remain a primary limitation of global aquaculture yields with billions in revenue being lost every year due to disease. The intense nature of fish and shellfish farming necessitates the regular use of synthetic chemicals as both preventive and treatment measures, covering broodstocks to hatching and continuing through all stages of rearing. This practice, however, results in the contamination of rearing environments with persistent xenobiotics. A specific drawback in this foundational strategy for aquaculture biosecurity is highlighted in the current review: the consistent use of a water-soluble polymer polyvinylpyrrolidone (PVP) across most, if not all, stages of rearing aquacultural livestock. PVP is used intensively within aquaculture practices as it is a ubiquitous additive within commercially available germicidal, prophylactic, and therapeutic products applied to control and prevent disease outbreaks within aquacultural farms. As a polymer, PVP is synthetic and biodegradation-resistant, and has recently been described as an emerging contaminant of freshwater ecosystems. It is well documented that other persistent, synthetic polymer pollutants such as microplastics, reduce the fecundity, growth, and significantly deplete immune function in commercially important aquatic species. Despite this, intentionally added persistent soluble polymers, such as PVP, have not been considered in the context of aquaculture productivity. This review explores the potential impact of PVP on fish and shellfish highlighting the need for aquaculture to adopt sustainable chemical practices, drawing inspiration from advancements in nanotechnology applied within human medicines to address biosecurity protocol deficiencies.</p>","PeriodicalId":227,"journal":{"name":"Reviews in Aquaculture","volume":"16 4","pages":"1544-1554"},"PeriodicalIF":8.8,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/raq.12910","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140303571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>The efficiency of aquaculture in producing high-quality fishery or aquatic products can be significantly improved with methodological breakthroughs and conceptual innovations.<span><sup>1</sup></span> The increasing exchanges and cooperations among aquaculture scientists and enterprisers since 2022 should further provoke the idea and technical innovation for the sustainable development of aquaculture. During a visit to Australia in 2023, Dr. Qingchao Wang, a junior editorial board member of this journal and one of the two authors of this editorial, visited functional food exhibitions with aquatic products and discussed about offshore aquaculture and gene editing development with Australian scientists.</p><p>Coincidently, in this issue, it is found that these topics are well reflected, with articles also covering aquatic animal diseases, immunity, genetics and breeding, nutrition utilisation and feed sources, microbiome and homeostasis, fish exercise and deformities, bioflocs, and sustainability.</p><p>It is of interest to note that offshore aquaculture in deep sea has recently been a focus of mariculture development in China, which could overcome multiple limitations in coastal waters. In this issue, Dong et al.<span><sup>2</sup></span> summarised the advancements and hurdles of deeper offshore aquaculture in China. The authors illustrated the existing 40 sets of offshore aquaculture infrastructure and also pointed out that the current development trajectory is struggling to meet its goals in increasing production and reducing greenhouse gas emissions. However, environmental management of offshore aquaculture is recognised as important for its sustainability. In this issue, Simone and Vopel<span><sup>3</sup></span> addressed the importance of proactive environmental management by incorporating solute exchange measurements in offshore aquaculture. They argued the necessity to define the metabolic capacity of the receiving environment and to quantify the organic assimilation capacity of the seafloor. As concluded in the article, a comprehensive understanding of settled farm wastes with broad measurements including geochemical and macrofauna community metrics, diagenetic models and predictive modelling should be important to give farmers confidence to expand their production sustainably.</p><p>The CRISPR-Cas9-based gene editing has been tested in several species of fish in aquaculture, which is considered as potential for creating varieties of species for aquaculture, and in this issue, genetic breeding of oyster and kelp is also analysed. Gene-edited organisms may become ideally suitable for environmental sustainability by improving animal welfare, nutritional attributes and farming efficiency; however, the application of gene editing may be also challenging in terms of public acceptance, sustainability and regulation, and so forth. Robinson et al.<span><sup>4</sup></span> provided a framework for risk–benefit analysis with nine key consideratio
{"title":"Novel and continuous scientific and technical breakthroughs increase value and efficiency in aquaculture","authors":"Qingchao Wang, Pin Nie","doi":"10.1111/raq.12907","DOIUrl":"https://doi.org/10.1111/raq.12907","url":null,"abstract":"<p>The efficiency of aquaculture in producing high-quality fishery or aquatic products can be significantly improved with methodological breakthroughs and conceptual innovations.<span><sup>1</sup></span> The increasing exchanges and cooperations among aquaculture scientists and enterprisers since 2022 should further provoke the idea and technical innovation for the sustainable development of aquaculture. During a visit to Australia in 2023, Dr. Qingchao Wang, a junior editorial board member of this journal and one of the two authors of this editorial, visited functional food exhibitions with aquatic products and discussed about offshore aquaculture and gene editing development with Australian scientists.</p><p>Coincidently, in this issue, it is found that these topics are well reflected, with articles also covering aquatic animal diseases, immunity, genetics and breeding, nutrition utilisation and feed sources, microbiome and homeostasis, fish exercise and deformities, bioflocs, and sustainability.</p><p>It is of interest to note that offshore aquaculture in deep sea has recently been a focus of mariculture development in China, which could overcome multiple limitations in coastal waters. In this issue, Dong et al.<span><sup>2</sup></span> summarised the advancements and hurdles of deeper offshore aquaculture in China. The authors illustrated the existing 40 sets of offshore aquaculture infrastructure and also pointed out that the current development trajectory is struggling to meet its goals in increasing production and reducing greenhouse gas emissions. However, environmental management of offshore aquaculture is recognised as important for its sustainability. In this issue, Simone and Vopel<span><sup>3</sup></span> addressed the importance of proactive environmental management by incorporating solute exchange measurements in offshore aquaculture. They argued the necessity to define the metabolic capacity of the receiving environment and to quantify the organic assimilation capacity of the seafloor. As concluded in the article, a comprehensive understanding of settled farm wastes with broad measurements including geochemical and macrofauna community metrics, diagenetic models and predictive modelling should be important to give farmers confidence to expand their production sustainably.</p><p>The CRISPR-Cas9-based gene editing has been tested in several species of fish in aquaculture, which is considered as potential for creating varieties of species for aquaculture, and in this issue, genetic breeding of oyster and kelp is also analysed. Gene-edited organisms may become ideally suitable for environmental sustainability by improving animal welfare, nutritional attributes and farming efficiency; however, the application of gene editing may be also challenging in terms of public acceptance, sustainability and regulation, and so forth. Robinson et al.<span><sup>4</sup></span> provided a framework for risk–benefit analysis with nine key consideratio","PeriodicalId":227,"journal":{"name":"Reviews in Aquaculture","volume":"16 2","pages":"601-602"},"PeriodicalIF":10.4,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/raq.12907","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140164450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}