Pub Date : 2022-02-28DOI: 10.1084/jem.2021004202072022c
L. Dyck, Hannah Prendeville, Mathilde Raverdeau, Mieszko M. Wilk, Roisín M Loftus, A. Douglas, J. McCormack, Bruce Moran, M. Wilkinson, E. Mills, Michael Doughty, A. Fabre, Helen Heneghan, C. LeRoux, A. Hogan, Edward T. Chouchani, Donal O'Shea, Donal J Brennan, L. Lynch
{"title":"Correction: Suppressive effects of the obese tumor microenvironment on CD8 T cell infiltration and effector function","authors":"L. Dyck, Hannah Prendeville, Mathilde Raverdeau, Mieszko M. Wilk, Roisín M Loftus, A. Douglas, J. McCormack, Bruce Moran, M. Wilkinson, E. Mills, Michael Doughty, A. Fabre, Helen Heneghan, C. LeRoux, A. Hogan, Edward T. Chouchani, Donal O'Shea, Donal J Brennan, L. Lynch","doi":"10.1084/jem.2021004202072022c","DOIUrl":"https://doi.org/10.1084/jem.2021004202072022c","url":null,"abstract":"","PeriodicalId":23015,"journal":{"name":"The Tokushima journal of experimental medicine","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83592192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Bigley, Liping Yang, L. Kang, J. Saenz, F. Victorino, W. Yokoyama
Bigley et al. show that neonatal murine roseolovirus infection disrupts central tolerance. Autoimmunity arises later, in the absence of ongoing infection. This study provides evidence for a new mechanism by which viruses induce autoimmunity at a time remote from initial infection.
{"title":"Disruption of thymic central tolerance by infection with murine roseolovirus induces autoimmune gastritis","authors":"T. Bigley, Liping Yang, L. Kang, J. Saenz, F. Victorino, W. Yokoyama","doi":"10.1084/jem.20211403","DOIUrl":"https://doi.org/10.1084/jem.20211403","url":null,"abstract":"Bigley et al. show that neonatal murine roseolovirus infection disrupts central tolerance. Autoimmunity arises later, in the absence of ongoing infection. This study provides evidence for a new mechanism by which viruses induce autoimmunity at a time remote from initial infection.","PeriodicalId":23015,"journal":{"name":"The Tokushima journal of experimental medicine","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90615412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-25DOI: 10.1101/2022.01.24.477423
Lea-Marie Jenster, Karl-Elmar Lange, S. Normann, Anja vom Hemdt, J. D. Wuerth, L. Schiffelers, Y. Tesfamariam, F. N. Gohr, Laura B. C. Klein, I. H. Kaltheuner, Dorothee Johanna Lapp, Jacob Mayer, Jonas Moecking, H. Ploegh, E. Latz, M. Geyer, B. Kümmerer, F. Schmidt
Inflammasomes integrate cytosolic evidence of infection or damage to mount inflammatory responses. The inflammasome sensor NLRP1 is expressed in human keratinocytes and coordinates inflammation in the skin. We found that diverse stress signals converge on the activation of p38 kinases to initiate human NLRP1 inflammasome assembly: UV irradiation and microbial molecules that initiate the ribotoxic stress response critically relied on the MAP3 kinase ZAKα to activate p38 and ultimately human NLRP1. Infection with insect-transmitted alphaviruses, including Semliki Forest, Ross River, and Chikungunya virus, also activated NLRP1 in a p38-dependent manner. In the absence on ZAKα, inflammasome assembly was maintained, although at reduced levels, indicating contribution of other upstream kinases. NLRP1 activation by direct nanobody-mediated ubiquitination was independent of p38 activity. Stimulation of p38 by overexpression of MAP2 kinases MKK3 or MKK6 is sufficient for NLRP1 activation, and NLRP1 is directly phosphorylated by p38. Taken together, we define p38 activation as a unifying signaling hub that controls NLRP1 inflammasome activation by integrating a variety of cellular stress signals relevant to the skin.
{"title":"P38 kinases mediate NLRP1 inflammasome activation after ribotoxic stress response and virus infection","authors":"Lea-Marie Jenster, Karl-Elmar Lange, S. Normann, Anja vom Hemdt, J. D. Wuerth, L. Schiffelers, Y. Tesfamariam, F. N. Gohr, Laura B. C. Klein, I. H. Kaltheuner, Dorothee Johanna Lapp, Jacob Mayer, Jonas Moecking, H. Ploegh, E. Latz, M. Geyer, B. Kümmerer, F. Schmidt","doi":"10.1101/2022.01.24.477423","DOIUrl":"https://doi.org/10.1101/2022.01.24.477423","url":null,"abstract":"Inflammasomes integrate cytosolic evidence of infection or damage to mount inflammatory responses. The inflammasome sensor NLRP1 is expressed in human keratinocytes and coordinates inflammation in the skin. We found that diverse stress signals converge on the activation of p38 kinases to initiate human NLRP1 inflammasome assembly: UV irradiation and microbial molecules that initiate the ribotoxic stress response critically relied on the MAP3 kinase ZAKα to activate p38 and ultimately human NLRP1. Infection with insect-transmitted alphaviruses, including Semliki Forest, Ross River, and Chikungunya virus, also activated NLRP1 in a p38-dependent manner. In the absence on ZAKα, inflammasome assembly was maintained, although at reduced levels, indicating contribution of other upstream kinases. NLRP1 activation by direct nanobody-mediated ubiquitination was independent of p38 activity. Stimulation of p38 by overexpression of MAP2 kinases MKK3 or MKK6 is sufficient for NLRP1 activation, and NLRP1 is directly phosphorylated by p38. Taken together, we define p38 activation as a unifying signaling hub that controls NLRP1 inflammasome activation by integrating a variety of cellular stress signals relevant to the skin.","PeriodicalId":23015,"journal":{"name":"The Tokushima journal of experimental medicine","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80098460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-24DOI: 10.1101/2021.09.24.461584
Ho-Sup Lee, Hao Sun, F. Lagarrigue, J. Fox, N. Sherman, A. Gingras, M. Ginsberg
Rap1 GTPase drives assembly of the Mig-10/RIAM/lamellipodin–Integrin–Talin (MIT) complex that enables integrin-dependent lymphocyte functions. Here we used tandem affinity tag-based proteomics to isolate and analyze the MIT complex and reveal that Phostensin (PTSN), a regulatory subunit of protein phosphatase 1, is a component of the complex. PTSN mediates de-phosphorylation of Rap1 thereby preserving the activity and membrane localization of Rap1 to stabilize the MIT complex. CRISPR/Cas9-induced deletion of PPP1R18, which encodes PTSN, markedly suppresses integrin activation in Jurkat human T cells. We generated apparently healthy Ppp1r18-/- mice that manifest lymphocytosis and reduced population of peripheral lymphoid tissues ascribable to defective activation of integrins αLβ2 and α4β7. Ppp1r18-/- T cells exhibit reduced capacity to induce colitis in a murine adoptive transfer model. Thus, PTSN enables lymphocyte integrin-mediated functions by dephosphorylating Rap1 to stabilize the MIT complex. As a consequence, loss of PTSN ameliorates T cell-mediated colitis. SUMMARY Phostensin, a protein phosphatase 1 regulatory subunit, supports lymphocyte integrin-dependent functions by mediating dephosphorylation of Rap1 to stabilize the MIT complex thereby enabling the population of peripheral lymphoid organs and T cell-mediated colitis.
Rap1 GTPase驱动Mig-10/RIAM/ lamellipotin - integrin- talin (MIT)复合体的组装,从而实现整合素依赖的淋巴细胞功能。在这里,我们使用串联亲和标签为基础的蛋白质组学分离和分析MIT复合体,并发现Phostensin (PTSN),蛋白磷酸酶1的调控亚基,是复合体的一个组成部分。PTSN介导Rap1的去磷酸化,从而保持Rap1的活性和膜定位,以稳定MIT复合物。CRISPR/ cas9诱导PPP1R18(编码PTSN)的缺失,显著抑制Jurkat人T细胞中整合素的激活。我们产生了明显健康的Ppp1r18-/-小鼠,由于整合素α l - β2和α4 - β7的激活缺陷,这些小鼠表现出淋巴细胞增多和外周血淋巴组织数量减少。Ppp1r18-/- T细胞在小鼠过继转移模型中诱导结肠炎的能力降低。因此,PTSN通过去磷酸化Rap1来稳定MIT复合体,从而使淋巴细胞整合素介导的功能得以实现。因此,PTSN的缺失可改善T细胞介导的结肠炎。Phostensin是一种蛋白磷酸酶1调节亚基,通过介导Rap1的去磷酸化来稳定MIT复合体,从而支持淋巴细胞整合素依赖的功能,从而使外周血淋巴器官和T细胞介导的结肠炎发生。
{"title":"Phostensin enables lymphocyte integrin activation and population of peripheral lymphoid organs","authors":"Ho-Sup Lee, Hao Sun, F. Lagarrigue, J. Fox, N. Sherman, A. Gingras, M. Ginsberg","doi":"10.1101/2021.09.24.461584","DOIUrl":"https://doi.org/10.1101/2021.09.24.461584","url":null,"abstract":"Rap1 GTPase drives assembly of the Mig-10/RIAM/lamellipodin–Integrin–Talin (MIT) complex that enables integrin-dependent lymphocyte functions. Here we used tandem affinity tag-based proteomics to isolate and analyze the MIT complex and reveal that Phostensin (PTSN), a regulatory subunit of protein phosphatase 1, is a component of the complex. PTSN mediates de-phosphorylation of Rap1 thereby preserving the activity and membrane localization of Rap1 to stabilize the MIT complex. CRISPR/Cas9-induced deletion of PPP1R18, which encodes PTSN, markedly suppresses integrin activation in Jurkat human T cells. We generated apparently healthy Ppp1r18-/- mice that manifest lymphocytosis and reduced population of peripheral lymphoid tissues ascribable to defective activation of integrins αLβ2 and α4β7. Ppp1r18-/- T cells exhibit reduced capacity to induce colitis in a murine adoptive transfer model. Thus, PTSN enables lymphocyte integrin-mediated functions by dephosphorylating Rap1 to stabilize the MIT complex. As a consequence, loss of PTSN ameliorates T cell-mediated colitis. SUMMARY Phostensin, a protein phosphatase 1 regulatory subunit, supports lymphocyte integrin-dependent functions by mediating dephosphorylation of Rap1 to stabilize the MIT complex thereby enabling the population of peripheral lymphoid organs and T cell-mediated colitis.","PeriodicalId":23015,"journal":{"name":"The Tokushima journal of experimental medicine","volume":"72 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73599655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-13DOI: 10.1101/2021.07.13.452142
Shangda Yang, Guohuan Sun, Peng Wu, Cong Chen, Yijin Kuang, Ling Liu, Zhaofeng Zheng, Yi-Di He, Quan Gu, Ting Lu, Caiying Zhu, Fengjiao Wang, Fanglin Gou, Zining Yang, Xiangnan Zhao, Shiru Yuan, Liu Yang, Shihong Lu, Yapu Li, Xue Lv, F. Dong, Yanni Ma, Jia Yu, L. Ng, Lihong Shi, Jing Liu, Lei Shi, T. Cheng, Hui Cheng
Hematopoietic differentiation is controlled by both genetic and epigenetic regulators. Long non-coding RNAs (lncRNAs) have been demonstrated to be important for normal hematopoiesis, but their function in erythropoiesis needs to be further explored. We profiled the transcriptomes of 16 murine hematopoietic cell populations by deep RNA-sequencing and identified a novel lncRNA, Gm15915, that was highly expressed in erythroid-related progenitors and erythrocytes. For this reason, we named it lncEry. We also identified a novel lncEry isoform, which was also the principal transcript that has not been reported before. LncEry depletion impaired erythropoiesis, indicating the important role of the lncRNA in regulating erythroid differentiation and maturation. Mechanistically, we found that lncEry interacted with WD repeat-containing protein 82 (WDR82) to promote the transcription of Klf1 and globin genes and thus control the early and late stages of erythropoiesis, respectively. These findings identified lncEry as an important player in the transcriptional regulation of erythropoiesis.
{"title":"WDR82-binding long noncoding RNA lncEry controls mouse erythroid differentiation and maturation","authors":"Shangda Yang, Guohuan Sun, Peng Wu, Cong Chen, Yijin Kuang, Ling Liu, Zhaofeng Zheng, Yi-Di He, Quan Gu, Ting Lu, Caiying Zhu, Fengjiao Wang, Fanglin Gou, Zining Yang, Xiangnan Zhao, Shiru Yuan, Liu Yang, Shihong Lu, Yapu Li, Xue Lv, F. Dong, Yanni Ma, Jia Yu, L. Ng, Lihong Shi, Jing Liu, Lei Shi, T. Cheng, Hui Cheng","doi":"10.1101/2021.07.13.452142","DOIUrl":"https://doi.org/10.1101/2021.07.13.452142","url":null,"abstract":"Hematopoietic differentiation is controlled by both genetic and epigenetic regulators. Long non-coding RNAs (lncRNAs) have been demonstrated to be important for normal hematopoiesis, but their function in erythropoiesis needs to be further explored. We profiled the transcriptomes of 16 murine hematopoietic cell populations by deep RNA-sequencing and identified a novel lncRNA, Gm15915, that was highly expressed in erythroid-related progenitors and erythrocytes. For this reason, we named it lncEry. We also identified a novel lncEry isoform, which was also the principal transcript that has not been reported before. LncEry depletion impaired erythropoiesis, indicating the important role of the lncRNA in regulating erythroid differentiation and maturation. Mechanistically, we found that lncEry interacted with WD repeat-containing protein 82 (WDR82) to promote the transcription of Klf1 and globin genes and thus control the early and late stages of erythropoiesis, respectively. These findings identified lncEry as an important player in the transcriptional regulation of erythropoiesis.","PeriodicalId":23015,"journal":{"name":"The Tokushima journal of experimental medicine","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76378910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Arguello, Cathal S. Mahon, M. E. Calvert, D. Chan, J. Dugas, Michelle E Pizzo, Elliot R. Thomsen, Roni Chau, Lorna A Damo, Joseph Duque, Meng Fang, T. Giese, Do Jin Kim, Nicholas Liang, Hoang N. Nguyen, Hilda Solanoy, Buyankhishig Tsogtbaatar, J. Ullman, Junhua Wang, M. Dennis, D. Diaz, K. Gunasekaran, K. Henne, Joseph W. Lewcock, P. Sanchez, M. Troyer, Jeffrey M Harris, K. Scearce-Levie, L. Shan, R. Watts, R. Thorne, Anastasia G. Henry, Mihalis S. Kariolis
Delivery of biotherapeutics across the blood-brain barrier (BBB) is a challenge. Many approaches fuse biotherapeutics to platforms that bind the transferrin receptor (TfR), a brain endothelial cell target, to facilitate receptor-mediated transcytosis across the BBB. Here, we characterized the pharmacological behavior of two distinct TfR-targeted platforms fused to iduronate 2-sulfatase (IDS), a lysosomal enzyme deficient in mucopolysaccharidosis type II (MPS II), and compared the relative brain exposures and functional activities of both approaches in mouse models. IDS fused to a moderate-affinity, monovalent TfR binding enzyme transport vehicle (ETV:IDS) resulted in widespread brain exposure, internalization by parenchymal cells, and significant substrate reduction in the CNS of an MPS II mouse model. In contrast, IDS fused to a standard high-affinity bivalent antibody (IgG:IDS) resulted in lower brain uptake, limited biodistribution beyond brain endothelial cells, and reduced brain substrate reduction. These results highlight important features likely to impact the clinical development of TfR-targeting platforms in MPS II and potentially other CNS diseases. Summary Brain delivery, biodistribution and pharmacodynamics of a lysosomal enzyme fused to a moderate-affinity transferrin receptor-directed blood-brain barrier enzyme transport vehicle are superior to a traditional high-affinity anti-TfR monoclonal antibody fusion.
{"title":"Molecular architecture determines brain delivery of a transferrin receptor–targeted lysosomal enzyme","authors":"A. Arguello, Cathal S. Mahon, M. E. Calvert, D. Chan, J. Dugas, Michelle E Pizzo, Elliot R. Thomsen, Roni Chau, Lorna A Damo, Joseph Duque, Meng Fang, T. Giese, Do Jin Kim, Nicholas Liang, Hoang N. Nguyen, Hilda Solanoy, Buyankhishig Tsogtbaatar, J. Ullman, Junhua Wang, M. Dennis, D. Diaz, K. Gunasekaran, K. Henne, Joseph W. Lewcock, P. Sanchez, M. Troyer, Jeffrey M Harris, K. Scearce-Levie, L. Shan, R. Watts, R. Thorne, Anastasia G. Henry, Mihalis S. Kariolis","doi":"10.1084/jem.20211057","DOIUrl":"https://doi.org/10.1084/jem.20211057","url":null,"abstract":"Delivery of biotherapeutics across the blood-brain barrier (BBB) is a challenge. Many approaches fuse biotherapeutics to platforms that bind the transferrin receptor (TfR), a brain endothelial cell target, to facilitate receptor-mediated transcytosis across the BBB. Here, we characterized the pharmacological behavior of two distinct TfR-targeted platforms fused to iduronate 2-sulfatase (IDS), a lysosomal enzyme deficient in mucopolysaccharidosis type II (MPS II), and compared the relative brain exposures and functional activities of both approaches in mouse models. IDS fused to a moderate-affinity, monovalent TfR binding enzyme transport vehicle (ETV:IDS) resulted in widespread brain exposure, internalization by parenchymal cells, and significant substrate reduction in the CNS of an MPS II mouse model. In contrast, IDS fused to a standard high-affinity bivalent antibody (IgG:IDS) resulted in lower brain uptake, limited biodistribution beyond brain endothelial cells, and reduced brain substrate reduction. These results highlight important features likely to impact the clinical development of TfR-targeting platforms in MPS II and potentially other CNS diseases. Summary Brain delivery, biodistribution and pharmacodynamics of a lysosomal enzyme fused to a moderate-affinity transferrin receptor-directed blood-brain barrier enzyme transport vehicle are superior to a traditional high-affinity anti-TfR monoclonal antibody fusion.","PeriodicalId":23015,"journal":{"name":"The Tokushima journal of experimental medicine","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82308808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hector Huerga Encabo, Laia Traveset, J. Argilaguet, A. Angulo, Estanislao Nistal-Villán, R. Jaiswal, C. Escalante, C. Gekas, A. Meyerhans, J. Aramburu, C. López-Rodríguez
Huerga Encabo et al. show that NFAT5, previously characterized as a pro-inflammatory transcription factor, limits the IFN-I response to control antiviral defenses and preserve HSC quiescence. NFAT5 represses IFN-I and ISG expression through an evolutionarily conserved DNA element that prevents IRF3 recruitment to the IFNB1 enhanceosome.
{"title":"The transcription factor NFAT5 limits infection-induced type I interferon responses","authors":"Hector Huerga Encabo, Laia Traveset, J. Argilaguet, A. Angulo, Estanislao Nistal-Villán, R. Jaiswal, C. Escalante, C. Gekas, A. Meyerhans, J. Aramburu, C. López-Rodríguez","doi":"10.1084/jem.20190449","DOIUrl":"https://doi.org/10.1084/jem.20190449","url":null,"abstract":"Huerga Encabo et al. show that NFAT5, previously characterized as a pro-inflammatory transcription factor, limits the IFN-I response to control antiviral defenses and preserve HSC quiescence. NFAT5 represses IFN-I and ISG expression through an evolutionarily conserved DNA element that prevents IRF3 recruitment to the IFNB1 enhanceosome.","PeriodicalId":23015,"journal":{"name":"The Tokushima journal of experimental medicine","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75244893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paola Tieppo, M. Papadopoulou, Deborah Gatti, N. McGovern, J. Chan, F. Gosselin, Glenn Goetgeluk, K. Weening, Ling Ma, N. Dauby, Alexandra Cogan, C. Donner, F. Ginhoux, B. Vandekerckhove, D. Vermijlen
Tieppo et al. show that the human fetal thymus generates invariant γδ T cells with programmed effector functions. This is due to an intrinsic property of fetal HSPCs caused by high expression of the RNA-binding protein Lin28b.
{"title":"The human fetal thymus generates invariant effector γδ T cells","authors":"Paola Tieppo, M. Papadopoulou, Deborah Gatti, N. McGovern, J. Chan, F. Gosselin, Glenn Goetgeluk, K. Weening, Ling Ma, N. Dauby, Alexandra Cogan, C. Donner, F. Ginhoux, B. Vandekerckhove, D. Vermijlen","doi":"10.1084/jem.20190580","DOIUrl":"https://doi.org/10.1084/jem.20190580","url":null,"abstract":"Tieppo et al. show that the human fetal thymus generates invariant γδ T cells with programmed effector functions. This is due to an intrinsic property of fetal HSPCs caused by high expression of the RNA-binding protein Lin28b.","PeriodicalId":23015,"journal":{"name":"The Tokushima journal of experimental medicine","volume":"308 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79911390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Mukhopadhyay, E. Heinz, I. Porreca, K. Alasoo, Amy T. Y. Yeung, Huei-Ting Yang, T. Schwerd, J. Forbester, C. Hale, Chukwuma A. Agu, Yoon Ha Choi, Julia Rodrigues, M. Capitani, L. Jostins-Dean, D. Thomas, S. Travis, Daniel J. Gaffney, W. Skarnes, N. Thomson, H. Uhlig, G. Dougan, F. Powrie
Cytokines and lipid mediators are key regulators of inflammation; but how they are mechanistically linked is poorly understood. Here, Mukhopadhyay et al. show a novel regulation between cytokine IL-10 and lipid mediator PGE2 that functionally connects them to intestinal inflammation.
{"title":"Loss of IL-10 signaling in macrophages limits bacterial killing driven by prostaglandin E2","authors":"S. Mukhopadhyay, E. Heinz, I. Porreca, K. Alasoo, Amy T. Y. Yeung, Huei-Ting Yang, T. Schwerd, J. Forbester, C. Hale, Chukwuma A. Agu, Yoon Ha Choi, Julia Rodrigues, M. Capitani, L. Jostins-Dean, D. Thomas, S. Travis, Daniel J. Gaffney, W. Skarnes, N. Thomson, H. Uhlig, G. Dougan, F. Powrie","doi":"10.1084/jem.20180649","DOIUrl":"https://doi.org/10.1084/jem.20180649","url":null,"abstract":"Cytokines and lipid mediators are key regulators of inflammation; but how they are mechanistically linked is poorly understood. Here, Mukhopadhyay et al. show a novel regulation between cytokine IL-10 and lipid mediator PGE2 that functionally connects them to intestinal inflammation.","PeriodicalId":23015,"journal":{"name":"The Tokushima journal of experimental medicine","volume":"93 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75864918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}