首页 > 最新文献

Turkish Journal of Chemistry最新文献

英文 中文
Synthesis of 3-methyl-3-buten-1-ol by supercritical CO2 in coordination with HZSM-5-catalyzed formaldehyde-isobutene Prins reaction. 利用超临界二氧化碳与 HZSM-5 催化的甲醛-异丁烯 Prins 反应合成 3-甲基-3-丁烯-1-醇。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-26 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3682
Hang Yuan, Gui-Ping Cao, Hui Lv

The reaction solvent and catalyst play essential roles in the Prins reaction for the synthesis of 3-methyl-3-buten-1-ol (MBO) from formaldehyde and isobutene. The reactivity of the solid base-catalyzed Prins condensation reaction by formaldehyde and isobutene in supercritical CO2 was investigated using CsH2PO4-modified HZSM-5. We found that the alkaline sites of the alkali-loaded catalyst could extract the α-H on isobutene to generate olefin carbon-negative ions, while the supercritical CO2 with weak Lewis acidity could activate formaldehyde to carbon-positive ions, which can combine more easily with carbon-negative isobutene to react, thus improving the reactivity of the reaction system.

在以甲醛和异丁烯为原料合成 3-甲基-3-丁烯-1-醇(MBO)的普林斯反应中,反应溶剂和催化剂起着至关重要的作用。我们使用 CsH2PO4 改性 HZSM-5 研究了甲醛和异丁烯在超临界 CO2 中固体碱催化 Prins 缩合反应的反应活性。我们发现,碱负载催化剂的碱性位点可以萃取异丁烯上的α-H,生成烯烃碳负离子,而具有弱路易斯酸性的超临界二氧化碳可以将甲醛活化为碳正离子,碳正离子更容易与碳负离子异丁烯结合反应,从而提高反应体系的反应活性。
{"title":"Synthesis of 3-methyl-3-buten-1-ol by supercritical CO<sub>2</sub> in coordination with HZSM-5-catalyzed formaldehyde-isobutene Prins reaction.","authors":"Hang Yuan, Gui-Ping Cao, Hui Lv","doi":"10.55730/1300-0527.3682","DOIUrl":"https://doi.org/10.55730/1300-0527.3682","url":null,"abstract":"<p><p>The reaction solvent and catalyst play essential roles in the Prins reaction for the synthesis of 3-methyl-3-buten-1-ol (MBO) from formaldehyde and isobutene. The reactivity of the solid base-catalyzed Prins condensation reaction by formaldehyde and isobutene in supercritical CO<sub>2</sub> was investigated using CsH<sub>2</sub>PO<sub>4</sub>-modified HZSM-5. We found that the alkaline sites of the alkali-loaded catalyst could extract the α-H on isobutene to generate olefin carbon-negative ions, while the supercritical CO<sub>2</sub> with weak Lewis acidity could activate formaldehyde to carbon-positive ions, which can combine more easily with carbon-negative isobutene to react, thus improving the reactivity of the reaction system.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 4","pages":"597-619"},"PeriodicalIF":1.3,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407352/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
β-Ketoenamine-linked covalent organic framework for efficient iodine capture. 用于高效捕获碘的β-酮胺连接共价有机框架。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-15 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3684
Onur Büyükçakir

Exploring the materials that effectively capture radioactive iodine is crucial in managing nuclear waste produced from nuclear power plants. In this study, a β-ketoenamine-linked covalent organic framework (bCOF) is reported as an effective adsorbent to capture iodine from both vapor and solution. The bCOF's high porosity and heteroatom-rich skeleton offer notable iodine vapor uptake capacity of up to 2.51 g g-1 at 75 °C under ambient pressure. Furthermore, after five consecutive adsorption-desorption cycles, the bCOF demonstrates high reusability performance with significant iodine vapor capacity retention. The adsorption mechanism was also investigated using various ex situ structural characterization techniques, and these mechanistic studies revealed the existence of a strong chemical interaction between the bCOF and iodine. The bCOF also showed good iodine uptake performance of up to 512 mg g-1 in cyclohexane with high removal efficiencies. The bCOF's performance in adsorbing iodine from both vapor and solution makes it a promising material to be used as an effective adsorbent in capturing radioactive iodine emissions from nuclear power plants.

探索能有效捕获放射性碘的材料对于管理核电站产生的核废料至关重要。本研究报告称,β-酮烯胺连接共价有机框架(bCOF)是一种有效的吸附剂,可从蒸汽和溶液中捕获碘。bCOF 的高孔隙率和富含杂原子的骨架使其在 75 °C 环境压力下的碘蒸气吸收能力高达 2.51 g-1。此外,经过五个连续的吸附-解吸循环后,bCOF 表现出较高的可重复使用性能,碘蒸气容量保持率显著提高。我们还利用各种原位结构表征技术对吸附机理进行了研究,这些机理研究表明,bCOF 与碘之间存在很强的化学作用。bCOF 还表现出良好的碘吸收性能,在环己烷中的吸收率高达 512 mg g-1,并且具有很高的去除率。bCOF 在吸附蒸汽和溶液中的碘方面的性能使其有望成为一种有效的吸附剂,用于捕捉核电站排放的放射性碘。
{"title":"<i>β</i>-Ketoenamine-linked covalent organic framework for efficient iodine capture.","authors":"Onur Büyükçakir","doi":"10.55730/1300-0527.3684","DOIUrl":"https://doi.org/10.55730/1300-0527.3684","url":null,"abstract":"<p><p>Exploring the materials that effectively capture radioactive iodine is crucial in managing nuclear waste produced from nuclear power plants. In this study, a <i>β</i>-ketoenamine-linked covalent organic framework (bCOF) is reported as an effective adsorbent to capture iodine from both vapor and solution. The bCOF's high porosity and heteroatom-rich skeleton offer notable iodine vapor uptake capacity of up to 2.51 g g<sup>-1</sup> at 75 °C under ambient pressure. Furthermore, after five consecutive adsorption-desorption cycles, the bCOF demonstrates high reusability performance with significant iodine vapor capacity retention. The adsorption mechanism was also investigated using various ex situ structural characterization techniques, and these mechanistic studies revealed the existence of a strong chemical interaction between the bCOF and iodine. The bCOF also showed good iodine uptake performance of up to 512 mg g<sup>-1</sup> in cyclohexane with high removal efficiencies. The bCOF's performance in adsorbing iodine from both vapor and solution makes it a promising material to be used as an effective adsorbent in capturing radioactive iodine emissions from nuclear power plants.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 4","pages":"631-642"},"PeriodicalIF":1.3,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407363/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LaCoO3 is a promising catalyst for the dry reforming of benzene used as a surrogate of biomass tar. LaCoO3 是一种很有前途的催化剂,可用于作为生物质焦油替代物的苯的干转化。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-15 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3685
Başar Çağlar, Deniz Üner

Tar build-up is one of the bottlenecks of biomass gasification processes. Dry reforming of tar is an alternative solution if the oxygen chemical potential on the catalyst surface is at a sufficient level. For this purpose, an oxygen-donor perovskite, LaCoO3, was used as a catalyst for the dry reforming of tar. To circumvent the complexity of the tar and its constituents, the benzene molecule was chosen as a model compound. Dry reforming of benzene vapor on the LaCoO3 catalyst was investigated at temperatures of 600, 700, and 800 °C; at CO2/C6H6 ratios of 3, 6, and 12; and at space velocities of 14,000 and 28,000 h-1. The conventional Ni(15 wt.%)/Al2O3 catalyst was also used as a reference material to determine the relative activity of the LaCoO3 catalyst. Different characterization techniques such as X-ray diffraction, N2 adsorption-desorption, temperature-programmed reduction, and oxidation were used to determine the physicochemical characteristics of the catalysts. The findings demonstrated that the LaCoO3 catalyst has higher CO2 conversion, higher H2 and CO yields, and better stability than the Ni(15 wt.%)/γ-Al2O3 catalyst. The improvement in activity was attributed to the strong capacity of LaCoO3 for oxygen exchange. The transfer of lattice oxygen from the surface of the LaCoO3 catalyst facilitates the oxidation of carbon and other surface species and leads to higher conversion and yields.

焦油堆积是生物质气化工艺的瓶颈之一。如果催化剂表面的氧化学势达到足够的水平,焦油干重整是一种替代解决方案。为此,我们使用了一种供氧型过氧化物 LaCoO3 作为焦油干重整的催化剂。为避免焦油及其成分的复杂性,选择苯分子作为模型化合物。研究了苯蒸气在 LaCoO3 催化剂上的干重整过程,温度分别为 600、700 和 800 °C,二氧化碳/C6H6 比率分别为 3、6 和 12,空间速度分别为 14,000 和 28,000 h-1。传统的 Ni(15 wt.%)/Al2O3 催化剂也被用作参考材料,以确定 LaCoO3 催化剂的相对活性。为了确定催化剂的物理化学特性,研究人员采用了不同的表征技术,如 X 射线衍射、N2 吸附-解吸、温度编程还原和氧化。研究结果表明,与 Ni(15 wt.%)/γ-Al2O3 催化剂相比,LaCoO3 催化剂具有更高的 CO2 转化率、更高的 H2 和 CO 产率以及更好的稳定性。活性的提高归功于 LaCoO3 强大的氧交换能力。LaCoO3 催化剂表面晶格氧的转移促进了碳和其他表面物质的氧化,从而提高了转化率和产率。
{"title":"LaCoO<sub>3</sub> is a promising catalyst for the dry reforming of benzene used as a surrogate of biomass tar.","authors":"Başar Çağlar, Deniz Üner","doi":"10.55730/1300-0527.3685","DOIUrl":"https://doi.org/10.55730/1300-0527.3685","url":null,"abstract":"<p><p>Tar build-up is one of the bottlenecks of biomass gasification processes. Dry reforming of tar is an alternative solution if the oxygen chemical potential on the catalyst surface is at a sufficient level. For this purpose, an oxygen-donor perovskite, LaCoO<sub>3</sub>, was used as a catalyst for the dry reforming of tar. To circumvent the complexity of the tar and its constituents, the benzene molecule was chosen as a model compound. Dry reforming of benzene vapor on the LaCoO<sub>3</sub> catalyst was investigated at temperatures of 600, 700, and 800 °C; at CO<sub>2</sub>/C<sub>6</sub>H<sub>6</sub> ratios of 3, 6, and 12; and at space velocities of 14,000 and 28,000 h<sup>-1</sup>. The conventional Ni(15 wt.%)/Al<sub>2</sub>O<sub>3</sub> catalyst was also used as a reference material to determine the relative activity of the LaCoO<sub>3</sub> catalyst. Different characterization techniques such as X-ray diffraction, N<sub>2</sub> adsorption-desorption, temperature-programmed reduction, and oxidation were used to determine the physicochemical characteristics of the catalysts. The findings demonstrated that the LaCoO<sub>3</sub> catalyst has higher CO<sub>2</sub> conversion, higher H<sub>2</sub> and CO yields, and better stability than the Ni(15 wt.%)/γ-Al<sub>2</sub>O<sub>3</sub> catalyst. The improvement in activity was attributed to the strong capacity of LaCoO<sub>3</sub> for oxygen exchange. The transfer of lattice oxygen from the surface of the LaCoO<sub>3</sub> catalyst facilitates the oxidation of carbon and other surface species and leads to higher conversion and yields.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 4","pages":"643-658"},"PeriodicalIF":1.3,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407365/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring sustainable synthesis paths: a comprehensive review of environmentally friendly methods for fabricating nanomaterials through green chemistry approaches. 探索可持续合成之路:通过绿色化学方法制造纳米材料的环境友好型方法综述。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-29 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3691
Vishu Girotra, Pritam Kaushik, Dipti Vaya

This comprehensive review delves into the burgeoning field of nanotechnology, where the synthesis of nanoparticles (NPs) is strategically tailored to specific applications. Embracing the principles of green chemistry, nanotechnology increasingly utilizes environmentally friendly materials, such as plant extracts or microorganisms, as capping or reducing agents and solvents in the synthesis process. Notably, plant-based synthesis demonstrates enhanced stability and faster rates compared to microorganisms. The synthesized materials exhibit unique properties ranging from antimicrobial and catalytic effects to antioxidant activities and they are finding applications across diverse fields. Green synthesis processes, characterized by mild conditions in terms of temperature and reagents, stand in stark contrast to traditional chemical synthesis methods. This review focuses on the synthesis of various metal and metal oxide NPs, including Ag, Au, Zn, Fe, Mg, Ti, Sn, Cu, Cd, Ni, Co, and Ag NPs and their oxides, using plant extracts and microorganisms. We provide a comprehensive analysis of the advantages, disadvantages, and applications associated with each synthesis method. Additionally, we explore the future prospects of green synthesis and its limitations and challenges, offering insights into its evolving role in nanotechnology.

本综述深入探讨了蓬勃发展的纳米技术领域,在这一领域中,纳米粒子(NPs)的合成是根据特定应用进行战略定制的。纳米技术秉承绿色化学的原则,在合成过程中越来越多地利用植物提取物或微生物等环保材料作为封端剂、还原剂和溶剂。值得注意的是,与微生物相比,以植物为基础的合成具有更高的稳定性和更快的速度。合成的材料表现出独特的性能,从抗菌、催化效应到抗氧化活性,它们正被广泛应用于各个领域。绿色合成工艺的特点是温度和试剂条件温和,与传统的化学合成方法形成鲜明对比。本综述重点介绍利用植物提取物和微生物合成各种金属和金属氧化物 NPs 的方法,包括 Ag、Au、Zn、Fe、Mg、Ti、Sn、Cu、Cd、Ni、Co 和 Ag NPs 及其氧化物。我们全面分析了每种合成方法的优缺点和相关应用。此外,我们还探讨了绿色合成的未来前景及其局限性和挑战,为其在纳米技术中不断发展的作用提供了见解。
{"title":"Exploring sustainable synthesis paths: a comprehensive review of environmentally friendly methods for fabricating nanomaterials through green chemistry approaches.","authors":"Vishu Girotra, Pritam Kaushik, Dipti Vaya","doi":"10.55730/1300-0527.3691","DOIUrl":"https://doi.org/10.55730/1300-0527.3691","url":null,"abstract":"<p><p>This comprehensive review delves into the burgeoning field of nanotechnology, where the synthesis of nanoparticles (NPs) is strategically tailored to specific applications. Embracing the principles of green chemistry, nanotechnology increasingly utilizes environmentally friendly materials, such as plant extracts or microorganisms, as capping or reducing agents and solvents in the synthesis process. Notably, plant-based synthesis demonstrates enhanced stability and faster rates compared to microorganisms. The synthesized materials exhibit unique properties ranging from antimicrobial and catalytic effects to antioxidant activities and they are finding applications across diverse fields. Green synthesis processes, characterized by mild conditions in terms of temperature and reagents, stand in stark contrast to traditional chemical synthesis methods. This review focuses on the synthesis of various metal and metal oxide NPs, including Ag, Au, Zn, Fe, Mg, Ti, Sn, Cu, Cd, Ni, Co, and Ag NPs and their oxides, using plant extracts and microorganisms. We provide a comprehensive analysis of the advantages, disadvantages, and applications associated with each synthesis method. Additionally, we explore the future prospects of green synthesis and its limitations and challenges, offering insights into its evolving role in nanotechnology.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 5","pages":"703-725"},"PeriodicalIF":1.3,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of quince seed gum (QSG) on the performance of injectable hyaluronic acid hydrogels in terms of the rheological, morphological, and mechanical aspect. 榅桲籽胶(QSG)对可注射透明质酸水凝胶流变学、形态学和力学性能的影响。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-29 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3669
Serdar Kolay, Nilhan Kayaman Apohan, Erdinç Babuç, Gökay Gün

Injectable hydrogels play an important role in tissue engineering as a filling and repairing material. This study aimed to develop a new injectable hydrogel based on hyaluronic acid (HA) and quince seed gum (QSG) and investigate the effect of QSG on hydrogel performance. The amount of unreacted 1,4-Butanediol diglycidyl ether is maintained at an undetectable level for HA-QSG hydrogels. Amino acid analysis showed that the HA-QSG hydrogel had rich amino acid concentrations of leucine, arginine, and valine. After thermal sterilization, the elastic modulus of HA-QSG gels for dermal and intraarticular filler applications is 63 Pa and 92 Pa, respectively. Pore size was found below 200 μm and the dense homogeneous pore structure was observed.

可注射水凝胶作为填充和修复材料在组织工程中发挥着重要作用。本研究旨在开发一种基于透明质酸(HA)和榅桲籽胶(QSG)的新型可注射水凝胶,并研究 QSG 对水凝胶性能的影响。HA-QSG 水凝胶中未反应的 1,4-丁二醇二缩水甘油醚的含量保持在检测不到的水平。氨基酸分析表明,HA-QSG 水凝胶富含亮氨酸、精氨酸和缬氨酸。经过热消毒后,用于皮肤和关节内填充物的 HA-QSG 水凝胶的弹性模量分别为 63 Pa 和 92 Pa。孔径小于 200 μm,并观察到致密均匀的孔隙结构。
{"title":"Effect of quince seed gum (QSG) on the performance of injectable hyaluronic acid hydrogels in terms of the rheological, morphological, and mechanical aspect.","authors":"Serdar Kolay, Nilhan Kayaman Apohan, Erdinç Babuç, Gökay Gün","doi":"10.55730/1300-0527.3669","DOIUrl":"https://doi.org/10.55730/1300-0527.3669","url":null,"abstract":"<p><p>Injectable hydrogels play an important role in tissue engineering as a filling and repairing material. This study aimed to develop a new injectable hydrogel based on hyaluronic acid (HA) and quince seed gum (QSG) and investigate the effect of QSG on hydrogel performance. The amount of unreacted 1,4-Butanediol diglycidyl ether is maintained at an undetectable level for HA-QSG hydrogels. Amino acid analysis showed that the HA-QSG hydrogel had rich amino acid concentrations of leucine, arginine, and valine. After thermal sterilization, the elastic modulus of HA-QSG gels for dermal and intraarticular filler applications is 63 Pa and 92 Pa, respectively. Pore size was found below 200 μm and the dense homogeneous pore structure was observed.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 3","pages":"422-435"},"PeriodicalIF":1.3,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265888/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and photooxygenation of 3-(p-substituted phenyl)-3a,8a-dihydro-4H-cyclohepta[d]isoxazoles: facial selectivity. 3-(对取代苯基)-3a,8a-二氢-4H-环庚烷并[d]异恶唑的合成与光氧合:面部选择性。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-28 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3688
Mahire Emel Olgun, Abdullah Menzek, Ertan Şahin, Yasin Çetinkaya

Two 3-(p-substituted phenyl)-3a,8a-dihydro-4H-cyclohepta[d]isoxazoles were synthesized by 1,3-dipolar cycloaddition of the corresponding nitrile oxides with cycloheptatriene. Two endoperoxides were synthesized as facially selective and single products in high yields (93%-95%) from the reactions of isoxazole derivatives with singlet oxygen. The exact configurations of the endoperoxide with a methyl group in the phenyl ring and the diol synthesized from it were confirmed by X-ray analysis. To elucidate the mechanism, the formation energy of the endoperoxide was investigated by simulations using the software package Gaussian 09 and density functional theory calculations via the M06-2X/6-311+G(d,p) level method in dichloromethane. The results were consistent with experimental findings showing the formation of isoxazole products.

通过相应的腈氧化物与环庚三烯的 1,3-二极环加成,合成了两种 3-(对取代苯基)-3a,8a-二氢-4H-环庚[d]异噁唑。通过异噁唑衍生物与单线态氧的反应,以高产率(93%-95%)合成了两种内过氧化物,它们都是面选择性的单一产物。通过 X 射线分析,确认了苯基环中带有一个甲基的内过氧化物和由其合成的二元醇的确切构型。为了阐明其机理,研究人员使用高斯 09 软件包进行了模拟,并在二氯甲烷中通过 M06-2X/6-311+G(d,p) 级方法进行了密度泛函理论计算。结果与实验结果一致,显示出异噁唑产物的形成。
{"title":"Synthesis and photooxygenation of 3-(<i>p</i>-substituted phenyl)-3a,8a-dihydro-<i>4H</i>-cyclohepta[d]isoxazoles: facial selectivity.","authors":"Mahire Emel Olgun, Abdullah Menzek, Ertan Şahin, Yasin Çetinkaya","doi":"10.55730/1300-0527.3688","DOIUrl":"https://doi.org/10.55730/1300-0527.3688","url":null,"abstract":"<p><p>Two 3-(<i>p</i>-substituted phenyl)-3a,8a-dihydro-4<i>H</i>-cyclohepta[d]isoxazoles were synthesized by 1,3-dipolar cycloaddition of the corresponding nitrile oxides with cycloheptatriene. Two endoperoxides were synthesized as facially selective and single products in high yields (93%-95%) from the reactions of isoxazole derivatives with singlet oxygen. The exact configurations of the endoperoxide with a methyl group in the phenyl ring and the diol synthesized from it were confirmed by X-ray analysis. To elucidate the mechanism, the formation energy of the endoperoxide was investigated by simulations using the software package Gaussian 09 and density functional theory calculations via the M06-2X/6-311+G(d,p) level method in dichloromethane. The results were consistent with experimental findings showing the formation of isoxazole products.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 4","pages":"691-700"},"PeriodicalIF":1.3,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407366/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical study on the insertion reaction of the stannylenoid H2SnLiF with X-H bonds (X = N, O, F). 锡类化合物 H2SnLiF 与 X-H 键(X = N、O、F)插入反应的理论研究。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-02 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3671
Shuo Wu, Bingfei Yan, Shaoli Liu, Wenzuo Li

The insertion reactions of p-complex (RP) and three-membered ring configuration (RS) of stannylenoid H2SnLiF with NH3, H2O and HF have been studied theoretically by quantum chemical calculation. The structures of reactants, precursors, transition states, intermediates and products have been fully optimized at the M06-2X/def2-TZVP level. The single point energy of all fixed points were calculated using the QCISD method. The calculation results show that the three-membered ring configuration is easier to conduct the insertion reaction. Comparing the reaction energy barriers of RP, RS to NH3, H2O and HF, we found that the difficulty of the insertion reaction is NH3 > H2O > HF. The solvent corrected calculation results show that in THF, the reaction energy barrier of RP is lower than that in vacuum, while the reaction energy barrier of RS is higher. This work provides theoretical support for the reaction properties of stannylenoid.

我们通过量子化学计算从理论上研究了链烯类化合物 H2SnLiF 与 NH3、H2O 和 HF 的对复合物(RP)和三元环构型(RS)的插入反应。在 M06-2X/def2-TZVP 水平上对反应物、前体、过渡态、中间体和产物的结构进行了全面优化。采用 QCISD 方法计算了所有固定点的单点能量。计算结果表明,三元环构型更容易进行插入反应。比较 RP、RS 与 NH3、H2O 和 HF 的反应能垒,我们发现插入反应的难易程度为 NH3 > H2O > HF。溶剂校正计算结果表明,在 THF 中,RP 的反应能垒低于真空中的反应能垒,而 RS 的反应能垒较高。这项工作为链烯类化合物的反应特性提供了理论支持。
{"title":"Theoretical study on the insertion reaction of the stannylenoid H<sub>2</sub>SnLiF with X-H bonds (X = N, O, F).","authors":"Shuo Wu, Bingfei Yan, Shaoli Liu, Wenzuo Li","doi":"10.55730/1300-0527.3671","DOIUrl":"https://doi.org/10.55730/1300-0527.3671","url":null,"abstract":"<p><p>The insertion reactions of p-complex (RP) and three-membered ring configuration (RS) of stannylenoid H<sub>2</sub>SnLiF with NH<sub>3</sub>, H<sub>2</sub>O and HF have been studied theoretically by quantum chemical calculation. The structures of reactants, precursors, transition states, intermediates and products have been fully optimized at the M06-2X/def2-TZVP level. The single point energy of all fixed points were calculated using the QCISD method. The calculation results show that the three-membered ring configuration is easier to conduct the insertion reaction. Comparing the reaction energy barriers of RP, RS to NH<sub>3</sub>, H<sub>2</sub>O and HF, we found that the difficulty of the insertion reaction is NH<sub>3</sub> > H<sub>2</sub>O > HF. The solvent corrected calculation results show that in THF, the reaction energy barrier of RP is lower than that in vacuum, while the reaction energy barrier of RS is higher. This work provides theoretical support for the reaction properties of stannylenoid.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 3","pages":"448-458"},"PeriodicalIF":1.3,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265926/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photocatalytic degradation of methylene blue using a Cu2+-modified bimetallic titanium-based metal organic framework (MIL-125) photocatalyst with enhanced visible light activity. 使用具有增强可见光活性的 Cu2+ 改性双金属钛基金属有机框架 (MIL-125) 光催化剂光催化降解亚甲基蓝。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-04-30 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3695
Gülsüm Özçelik, Ferda Civan Çavuşoğlu, Şahika Sena Bayazit, Şeyma Özkara Aydinoğlu

Cu-modified TiO2 nanoparticles derived from MIL-125 were prepared by solvothermal method for the photocatalytic degradation of methylene blue under visible light illumination. For boosting the photocatalytic performance as well as the physicochemical properties of bare sample, 2 wt % Cu2+ ions were integrated into the nodes of the MIL-125 framework. The results showed that incorporation of 2 wt % Cu2+ ions into the MOF framework had significant effects on the crystallographic structure and morphological and optical properties of photocatalytic samples, as well as catalytic activity for the methylene blue degradation reaction. The high activity profile of Cu-modified TiO2 nanoparticles derived from MIL-125 might be attributed to the increased thermal stability, lower band gap energy, and smaller crystallite size of the sample. Activity tests were carried out at five varying MB initial concentrations and four different pH values. According to the findings, an increase in initial dye concentration resulted in a decrease in degradation efficiency. It was observed that increasing the pH value in the range of 3-11 initially led to higher degradation rates until pH 7, after which the degradation rate began to decline.

利用溶热法制备了由 MIL-125 衍生的铜改性 TiO2 纳米粒子,用于在可见光下光催化降解亚甲基蓝。为了提高裸样品的光催化性能和理化性质,在 MIL-125 框架的节点中加入了 2 wt % 的 Cu2+ 离子。结果表明,在 MOF 框架中加入 2 wt % 的 Cu2+ 离子对光催化样品的晶体结构、形态和光学特性以及亚甲基蓝降解反应的催化活性都有显著影响。由 MIL-125 制备的 Cu 改性 TiO2 纳米粒子的高活性特征可能归因于样品热稳定性的提高、带隙能的降低和晶体尺寸的减小。在五种不同的 MB 初始浓度和四种不同的 pH 值条件下进行了活性测试。研究结果表明,初始染料浓度增加会导致降解效率降低。据观察,在 pH 值为 3-11 的范围内,增加 pH 值最初会导致较高的降解率,直到 pH 值为 7,之后降解率开始下降。
{"title":"Photocatalytic degradation of methylene blue using a Cu<sup>2+</sup>-modified bimetallic titanium-based metal organic framework (MIL-125) photocatalyst with enhanced visible light activity.","authors":"Gülsüm Özçelik, Ferda Civan Çavuşoğlu, Şahika Sena Bayazit, Şeyma Özkara Aydinoğlu","doi":"10.55730/1300-0527.3695","DOIUrl":"https://doi.org/10.55730/1300-0527.3695","url":null,"abstract":"<p><p>Cu-modified TiO<sub>2</sub> nanoparticles derived from MIL-125 were prepared by solvothermal method for the photocatalytic degradation of methylene blue under visible light illumination. For boosting the photocatalytic performance as well as the physicochemical properties of bare sample, 2 wt % Cu<sup>2+</sup> ions were integrated into the nodes of the MIL-125 framework. The results showed that incorporation of 2 wt % Cu<sup>2+</sup> ions into the MOF framework had significant effects on the crystallographic structure and morphological and optical properties of photocatalytic samples, as well as catalytic activity for the methylene blue degradation reaction. The high activity profile of Cu-modified TiO<sub>2</sub> nanoparticles derived from MIL-125 might be attributed to the increased thermal stability, lower band gap energy, and smaller crystallite size of the sample. Activity tests were carried out at five varying MB initial concentrations and four different pH values. According to the findings, an increase in initial dye concentration resulted in a decrease in degradation efficiency. It was observed that increasing the pH value in the range of 3-11 initially led to higher degradation rates until pH 7, after which the degradation rate began to decline.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 5","pages":"756-769"},"PeriodicalIF":1.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DFT modeling of water-assisted hydrogen peroxide formation from a C(4a)-(hydro)peroxyflavin. C(4a)-(hydro)peroxyflavin 水辅助过氧化氢形成的 DFT 模型。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-04-18 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3673
Yılmaz Özkiliç

The cofactor of a class A monooxygenase is reduced at an external location of the enzyme and is subsequently pulled back into the active site after the reduction. This observation brings the question; is there any defense mechanism of the active site of a monooxygenase against the formation of the harmful hydrogen peroxide from the reactive C(4a)-(hydro)peroxide intermediate? In this study, the barrier energies of one to three water molecule-mediated uncoupling reaction mechanisms in water exposed reaction conditions were determined. These were found to be facile barriers. Secondly, uncoupling was modeled in the active site of kynurenine 3-monooxygenase complex which was represented with 258 atoms utilizing cluster approach. Comparison of the barrier energy of the cluster model to the models that represent the water exposed conditions revealed that the enzyme does not have an inhibitory reaction site architecture as the compared barrier energies are roughly the same. The main defense mechanism of KMO against the formation of the hydrogen peroxide is deduced to be the insulation, and without this insulation, the monooxygenation would not take place as the barrier height of the hydrogen peroxide formation within the active site is almost half of that of the monooxygenation.

A 类单加氧酶的辅助因子在酶的外部位置被还原,还原后又被拉回活性位点。这一观察结果提出了一个问题:单加氧酶的活性位点是否存在任何防御机制,以防止活性 C(4a)-(氢)过氧化物中间体形成有害的过氧化氢?本研究测定了一至三种水分子介导的解偶联反应机制在遇水反应条件下的势垒能。结果发现,这些都是简单的势垒。其次,在犬尿氨酸 3-单加氧酶复合物的活性位点建立了解偶联模型。将聚类模型的势垒能与表示水暴露条件的模型进行比较后发现,该酶没有抑制反应位点结构,因为两者的势垒能大致相同。推断出 KMO 对过氧化氢形成的主要防御机制是隔绝,如果没有这种隔绝,一氧化反应就不会发生,因为活性位点内过氧化氢形成的势垒高度几乎是一氧化反应的一半。
{"title":"DFT modeling of water-assisted hydrogen peroxide formation from a C(4a)-(hydro)peroxyflavin.","authors":"Yılmaz Özkiliç","doi":"10.55730/1300-0527.3673","DOIUrl":"https://doi.org/10.55730/1300-0527.3673","url":null,"abstract":"<p><p>The cofactor of a class A monooxygenase is reduced at an external location of the enzyme and is subsequently pulled back into the active site after the reduction. This observation brings the question; is there any defense mechanism of the active site of a monooxygenase against the formation of the harmful hydrogen peroxide from the reactive C(4a)-(hydro)peroxide intermediate? In this study, the barrier energies of one to three water molecule-mediated uncoupling reaction mechanisms in water exposed reaction conditions were determined. These were found to be facile barriers. Secondly, uncoupling was modeled in the active site of kynurenine 3-monooxygenase complex which was represented with 258 atoms utilizing cluster approach. Comparison of the barrier energy of the cluster model to the models that represent the water exposed conditions revealed that the enzyme does not have an inhibitory reaction site architecture as the compared barrier energies are roughly the same. The main defense mechanism of KMO against the formation of the hydrogen peroxide is deduced to be the insulation, and without this insulation, the monooxygenation would not take place as the barrier height of the hydrogen peroxide formation within the active site is almost half of that of the monooxygenation.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 3","pages":"470-483"},"PeriodicalIF":1.3,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liquefaction optimization of grape pulp using response surface methodology for biopolyol production and bio-based polyurethane foam synthesis. 利用响应面方法优化葡萄浆的液化,以生产生物多酚和合成生物基聚氨酯泡沫。
IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-03-18 eCollection Date: 2024-01-01 DOI: 10.55730/1300-0527.3680
Furkan Çolakoğlu, Emre Akdoğan, Murat Erdem

Both environmental and economic disadvantages of using petroleum-based products have been forcing researchers to work on environmentally friendly, sustainable, and economical alternatives. The purpose of this study is to optimize the solvothermal liquefaction process of grape pomace using response surface methodology coupled with a central composite design. After investigating the physicochemical properties of the liquified products (biopolyol) in detail, a bio-based rigid polyurethane foam (RPUF) was synthesized and characterized. The hydroxyl and acid numbers and viscosity values of all the biopolyols were analyzed. According to variance analysis results (%95 confidence range), both the reaction temperature and catalyst loading were determined as significant parameters on the liquefaction yield (LY). The model was validated experimentally in the following reaction conditions: 4.25% catalyst loading, 50 min reaction time, and 165 °C reaction temperature, which yields an LY of 81.3%. The biopolyols produced by the validation experiment display similar characteristics (hydroxyl number: 470.5 mg KOH/g; acid number: 2.31 mg KOH/g; viscosity: 1785 cP at 25 °C) to those of commercial polyols widely preferred in the production of polyurethane foam. The physicochemical properties of bio-based foam obtained from the biopolyol were determined and the thermal conductivity, closed-cell content, apparent density, and compressive strength values of bio-based RPUF were 31.3 mW/m·K, 71.1%, 33.4 kg/m3, and 105.3 kPa, respectively.

使用石油产品在环境和经济方面的不利因素迫使研究人员致力于开发环保、可持续和经济的替代品。本研究的目的是利用响应面方法和中心复合设计优化葡萄渣的溶热液化过程。在详细研究了液化产品(生物多元醇)的物理化学特性后,合成并表征了一种生物基硬质聚氨酯泡沫(RPUF)。对所有生物多元醇的羟基和酸数以及粘度值进行了分析。根据方差分析结果(置信区间为 95%),确定反应温度和催化剂负载量是液化产率(LY)的重要参数。该模型在以下反应条件下进行了实验验证:催化剂负载量为 4.25%,反应时间为 50 分钟,反应温度为 165 °C,液化产率为 81.3%。验证实验生成的生物多元醇与聚氨酯泡沫生产中广泛使用的商用多元醇具有相似的特性(羟基数:470.5 毫克 KOH/克;酸数:2.31 毫克 KOH/克;25 °C 时粘度:1785 cP)。测定了从生物多元醇中获得的生物基泡沫的理化特性,生物基 RPUF 的导热系数、闭孔率、表观密度和抗压强度值分别为 31.3 mW/m-K、71.1%、33.4 kg/m3 和 105.3 kPa。
{"title":"Liquefaction optimization of grape pulp using response surface methodology for biopolyol production and bio-based polyurethane foam synthesis.","authors":"Furkan Çolakoğlu, Emre Akdoğan, Murat Erdem","doi":"10.55730/1300-0527.3680","DOIUrl":"https://doi.org/10.55730/1300-0527.3680","url":null,"abstract":"<p><p>Both environmental and economic disadvantages of using petroleum-based products have been forcing researchers to work on environmentally friendly, sustainable, and economical alternatives. The purpose of this study is to optimize the solvothermal liquefaction process of grape pomace using response surface methodology coupled with a central composite design. After investigating the physicochemical properties of the liquified products (biopolyol) in detail, a bio-based rigid polyurethane foam (RPUF) was synthesized and characterized. The hydroxyl and acid numbers and viscosity values of all the biopolyols were analyzed. According to variance analysis results (%95 confidence range), both the reaction temperature and catalyst loading were determined as significant parameters on the liquefaction yield (LY). The model was validated experimentally in the following reaction conditions: 4.25% catalyst loading, 50 min reaction time, and 165 °C reaction temperature, which yields an LY of 81.3%. The biopolyols produced by the validation experiment display similar characteristics (hydroxyl number: 470.5 mg KOH/g; acid number: 2.31 mg KOH/g; viscosity: 1785 cP at 25 °C) to those of commercial polyols widely preferred in the production of polyurethane foam. The physicochemical properties of bio-based foam obtained from the biopolyol were determined and the thermal conductivity, closed-cell content, apparent density, and compressive strength values of bio-based RPUF were 31.3 mW/m·K, 71.1%, 33.4 kg/m<sup>3</sup>, and 105.3 kPa, respectively.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 4","pages":"568-581"},"PeriodicalIF":1.3,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Turkish Journal of Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1