Pub Date : 2024-10-18DOI: 10.1016/j.wear.2024.205606
Ziming Zeng , Yidi Li , Hui Wang , Ruilin Lai , Jianwei Teng , Yunping Li
Al-Sn alloy is utilized as a bearing material to replace conventional Sn-based alloy in the design of bearing liners due to its higher load-carrying capacity and wear resistance. However, cracks readily initiate in casting Al-Sn alloy near the coarse Sn phase, leading to low mechanical properties and insufficient wear resistance. The present study introduces a new method, additive friction stir deposition (AFSD), to produce AlSn20Cu alloy with fine grains and sub-micron-scale Sn phases, resulting in enhanced mechanical performance and wear resistance. Compared to both casting and cold rolling + annealing AlSn20Cu alloys, the ultimate tensile strength of AFSD AlSn20Cu alloy is improved by 80.56 % and 16.67 % respectively. Additionally, AFSD AlSn20Cu alloy demonstrates a lower coefficient of friction (COF) and lower wear rate without significant subsurface damage. This is attributed to the fine and uniformly distributed Sn phase forming a uniform and dense surface lubrication layer that adapts the friction pair to the boundary lubrication state, preventing the initiation and development of cracks.
{"title":"Tribological behavior of AlSn20Cu alloy manufactured by additive friction stir deposition","authors":"Ziming Zeng , Yidi Li , Hui Wang , Ruilin Lai , Jianwei Teng , Yunping Li","doi":"10.1016/j.wear.2024.205606","DOIUrl":"10.1016/j.wear.2024.205606","url":null,"abstract":"<div><div>Al-Sn alloy is utilized as a bearing material to replace conventional Sn-based alloy in the design of bearing liners due to its higher load-carrying capacity and wear resistance. However, cracks readily initiate in casting Al-Sn alloy near the coarse Sn phase, leading to low mechanical properties and insufficient wear resistance. The present study introduces a new method, additive friction stir deposition (AFSD), to produce AlSn20Cu alloy with fine grains and sub-micron-scale Sn phases, resulting in enhanced mechanical performance and wear resistance. Compared to both casting and cold rolling + annealing AlSn20Cu alloys, the ultimate tensile strength of AFSD AlSn20Cu alloy is improved by 80.56 % and 16.67 % respectively. Additionally, AFSD AlSn20Cu alloy demonstrates a lower coefficient of friction (COF) and lower wear rate without significant subsurface damage. This is attributed to the fine and uniformly distributed Sn phase forming a uniform and dense surface lubrication layer that adapts the friction pair to the boundary lubrication state, preventing the initiation and development of cracks.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"560 ","pages":"Article 205606"},"PeriodicalIF":5.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1016/j.wear.2024.205599
Zaiyu Xiang , Jiakun Zhang , Songlan Xie , Zhengming Xiao , Bin Tang , Deqiang He
The deformation capability of elastic damping component (EDC) significantly influences the tribological behavior at high-speed train braking interfaces. The key prerequisite to fully exploit its efficacy lies in ensuring that the EDC exhibits appropriate deformation. In this work, we propose aperture processing in different regions of the EDC to optimize its deformation area and improve the interfaces tribological behavior. The EDC was mounted on the rear side of the friction block, and experiments on friction braking were carried out using a custom-built simulation rig designed to test the braking performance. This enables the study of the friction and wear characteristics across different EDC conditions, along with the characteristics related to friction-induced vibration and noise (FIVN). A finite element model (FEM) was developed reflecting the primary structure of the test rig, with initial surface wear simulations conducted on the blocks to achieve wear surfaces approximating the experimental outcomes. Implicit dynamic analysis (IDA) was then conducted based on this foundation. The enhancement in tribological behavior through optimizing the EDC deformation area was analyzed by integrating test results with finite element analysis (FEA) findings. The results indicate that aperture processing in different regions of the EDC has no significant effect on its dynamic response but can significantly alter its deformation characteristics, thereby achieving optimization of the EDC deformation. Adjusting apertures in various sections of the EDC markedly affects the development pattern and strength of FIVN. However, this approach maintains the fundamental characteristics of the braking system. Aperture processing enabling more extensive deformation in the EDC can notably interrupt FIVN continuity, showing clear intermittent characteristics, while potentially increasing FIVN intensity. The EDC mainly affects the tribological behavior by influencing contact characteristics such as the oscillation intensity of contact area and frictional force, thereby altering the characteristics of FIVN. The overall deformation of the EDC has a considerable effect on the movement of braking interface debris, as well as wear patterns, eccentric wear, and contact plateaus characteristics. An improperly designed deformation area in the EDC can lead to excessive softness, challenging the block's ability to maintain consistent contact with the brake disc. This issue often causes pronounced eccentric wear on the block and considerable material detachment at the wear site, which triggers intense FIVN.
弹性阻尼元件(EDC)的变形能力对高速列车制动界面的摩擦学行为有重大影响。充分发挥其功效的关键前提是确保 EDC 表现出适当的变形。在这项工作中,我们建议对 EDC 的不同区域进行开孔处理,以优化其变形区域并改善界面摩擦学行为。EDC 安装在摩擦块的后侧,并使用定制的模拟装置进行了摩擦制动实验,以测试制动性能。这样就可以研究不同 EDC 条件下的摩擦和磨损特性,以及与摩擦引起的振动和噪音(FIVN)相关的特性。开发的有限元模型(FEM)反映了测试装置的主要结构,并对块体进行了初始表面磨损模拟,以获得与实验结果近似的磨损表面。然后在此基础上进行了隐式动态分析(IDA)。通过将测试结果与有限元分析(FEA)结果相结合,分析了通过优化 EDC 变形区域而提高摩擦学性能的情况。结果表明,在 EDC 的不同区域进行开孔处理对其动态响应没有明显影响,但可以显著改变其变形特性,从而实现 EDC 变形的优化。调整 EDC 不同区域的孔径会明显影响 FIVN 的发展模式和强度。不过,这种方法保持了制动系统的基本特性。通过开孔处理使 EDC 发生更广泛的变形,会明显中断 FIVN 的连续性,显示出明显的间歇特征,同时有可能增加 FIVN 的强度。EDC 主要通过影响接触特性(如接触面积的振荡强度和摩擦力)来影响摩擦学行为,从而改变 FIVN 的特性。EDC 的整体变形对制动界面碎屑的移动以及磨损模式、偏心磨损和接触板特性都有相当大的影响。设计不当的 EDC 变形区域会导致过度软化,从而影响制动块与制动盘保持稳定接触的能力。这一问题通常会导致制动块出现明显的偏心磨损,磨损部位的材料大量脱落,从而引发强烈的摩擦磨损。
{"title":"A method to enhance the performance of elastic damping component to improve tribological behavior at the high-speed train braking interface: Deformation optimization through perforation structure","authors":"Zaiyu Xiang , Jiakun Zhang , Songlan Xie , Zhengming Xiao , Bin Tang , Deqiang He","doi":"10.1016/j.wear.2024.205599","DOIUrl":"10.1016/j.wear.2024.205599","url":null,"abstract":"<div><div>The deformation capability of elastic damping component (EDC) significantly influences the tribological behavior at high-speed train braking interfaces. The key prerequisite to fully exploit its efficacy lies in ensuring that the EDC exhibits appropriate deformation. In this work, we propose aperture processing in different regions of the EDC to optimize its deformation area and improve the interfaces tribological behavior. The EDC was mounted on the rear side of the friction block, and experiments on friction braking were carried out using a custom-built simulation rig designed to test the braking performance. This enables the study of the friction and wear characteristics across different EDC conditions, along with the characteristics related to friction-induced vibration and noise (FIVN). A finite element model (FEM) was developed reflecting the primary structure of the test rig, with initial surface wear simulations conducted on the blocks to achieve wear surfaces approximating the experimental outcomes. Implicit dynamic analysis (IDA) was then conducted based on this foundation. The enhancement in tribological behavior through optimizing the EDC deformation area was analyzed by integrating test results with finite element analysis (FEA) findings. The results indicate that aperture processing in different regions of the EDC has no significant effect on its dynamic response but can significantly alter its deformation characteristics, thereby achieving optimization of the EDC deformation. Adjusting apertures in various sections of the EDC markedly affects the development pattern and strength of FIVN. However, this approach maintains the fundamental characteristics of the braking system. Aperture processing enabling more extensive deformation in the EDC can notably interrupt FIVN continuity, showing clear intermittent characteristics, while potentially increasing FIVN intensity. The EDC mainly affects the tribological behavior by influencing contact characteristics such as the oscillation intensity of contact area and frictional force, thereby altering the characteristics of FIVN. The overall deformation of the EDC has a considerable effect on the movement of braking interface debris, as well as wear patterns, eccentric wear, and contact plateaus characteristics. An improperly designed deformation area in the EDC can lead to excessive softness, challenging the block's ability to maintain consistent contact with the brake disc. This issue often causes pronounced eccentric wear on the block and considerable material detachment at the wear site, which triggers intense FIVN.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"560 ","pages":"Article 205599"},"PeriodicalIF":5.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1016/j.wear.2024.205597
Yong-jun Jiao , Zheng-yang Li , Zeng-ping Pu , Mei-yin Zheng , Quan-yao Ren , Zhen-bing Cai , Yin-wei Wu , Sui-zheng Qiu
Grid-to-rod fretting wear is an important factor causing the fuel failure in nuclear power plants. Accident tolerant fuel (ATF) Cr coating and oxide ceramic coating have been developed to improve the fretting wear performance. In this research, two different oxide layers and Cr coating were prepared on zirconium (Zr) alloy, and the fretting wear performance were studied. The morphology, microstructure, tribo-corrosion reaction, and wear characteristics were analyzed. The oxide layer formed at high-temperature pressurized water (HTPW) has the lowest wear rate of 0.11 × 103 μm3/Nm due to the high hardness and compact structure, which leads to the corresponding friction pairs presenting the highest wear rate of 8.42 × 103 μm3/Nm. The wear depth of oxide layer formed at HTPW is about 5 times lower than that of as-received Zr alloy, and it is also less than the thickness of oxide layer. The oxide layer formed at HTPW after fretting has a larger thickness than the initial state because the plastic deformation layer caused by shear stress can quickly oxidize to zirconia in high-temperature water, and the wear rate of oxide layer is lower than the formation rate of oxide layer. The wear mechanism of two different oxide layers is delamination and abrasive wear, and that of Cr coating is abrasive wear and fatigue wear.
{"title":"Study on the fretting wear performance of oxide layer and Cr coating on zirconium alloy in high-temperature water","authors":"Yong-jun Jiao , Zheng-yang Li , Zeng-ping Pu , Mei-yin Zheng , Quan-yao Ren , Zhen-bing Cai , Yin-wei Wu , Sui-zheng Qiu","doi":"10.1016/j.wear.2024.205597","DOIUrl":"10.1016/j.wear.2024.205597","url":null,"abstract":"<div><div>Grid-to-rod fretting wear is an important factor causing the fuel failure in nuclear power plants. Accident tolerant fuel (ATF) Cr coating and oxide ceramic coating have been developed to improve the fretting wear performance. In this research, two different oxide layers and Cr coating were prepared on zirconium (Zr) alloy, and the fretting wear performance were studied. The morphology, microstructure, tribo-corrosion reaction, and wear characteristics were analyzed. The oxide layer formed at high-temperature pressurized water (HTPW) has the lowest wear rate of 0.11 × 10<sup>3</sup> μm<sup>3</sup>/Nm due to the high hardness and compact structure, which leads to the corresponding friction pairs presenting the highest wear rate of 8.42 × 10<sup>3</sup> μm<sup>3</sup>/Nm. The wear depth of oxide layer formed at HTPW is about 5 times lower than that of as-received Zr alloy, and it is also less than the thickness of oxide layer. The oxide layer formed at HTPW after fretting has a larger thickness than the initial state because the plastic deformation layer caused by shear stress can quickly oxidize to zirconia in high-temperature water, and the wear rate of oxide layer is lower than the formation rate of oxide layer. The wear mechanism of two different oxide layers is delamination and abrasive wear, and that of Cr coating is abrasive wear and fatigue wear.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"560 ","pages":"Article 205597"},"PeriodicalIF":5.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.wear.2024.205598
Yan Liu, Hang Lv, Qilin Yang, Hui Chen
In the present work, Al-based composite coatings with various Sc additions were deposited on the surface of 2024 aluminium alloy. The effects of Sc element on the microstructure and performance of composite coating were investigated and discussed. The results showed that a moderate Sc addition (0.2 wt %) could refine the grains, reduce the porosity, eliminate micro-cracks, and improve the TiC distribution of composite coating. However, an excessive addition of Sc increased the content of Al-Cu-Sc ternary phase, resulting in the decrease of strength. In addition, the composite coating with 0.2 wt % Sc addition exhibited the best tensile properties with an ultimate tensile strength of 256 MPa and an elongation of 4.16 %, which was 54.4 % and 8.9 % higher than that of original composite coating, respectively. The friction temperature had a great impact on the wear mechanism of composite coatings. The composite coating with 0.2 wt % Sc addition exhibited the lowest wear rate at various temperature.
With 0.2 wt% Sc addition, the microstructure of composite coating was refined significantly, along with a more uniform distribution of TiC particles. The synergetic effect of fine-grain strengthening, dispersion strengthening, and solution strengthening contributed to the improvement of strength and plasticity for composite coating. In addition, a more robust bonding between TiC and matrix also improve the friction performance of composite coating.
{"title":"The effects of trace Sc addition on mechanical property and wear behavior of 2024/TiC composite coating processed by laser melting deposition","authors":"Yan Liu, Hang Lv, Qilin Yang, Hui Chen","doi":"10.1016/j.wear.2024.205598","DOIUrl":"10.1016/j.wear.2024.205598","url":null,"abstract":"<div><div>In the present work, Al-based composite coatings with various Sc additions were deposited on the surface of 2024 aluminium alloy. The effects of Sc element on the microstructure and performance of composite coating were investigated and discussed. The results showed that a moderate Sc addition (0.2 wt %) could refine the grains, reduce the porosity, eliminate micro-cracks, and improve the TiC distribution of composite coating. However, an excessive addition of Sc increased the content of Al-Cu-Sc ternary phase, resulting in the decrease of strength. In addition, the composite coating with 0.2 wt % Sc addition exhibited the best tensile properties with an ultimate tensile strength of 256 MPa and an elongation of 4.16 %, which was 54.4 % and 8.9 % higher than that of original composite coating, respectively. The friction temperature had a great impact on the wear mechanism of composite coatings. The composite coating with 0.2 wt % Sc addition exhibited the lowest wear rate at various temperature.</div><div>With 0.2 wt% Sc addition, the microstructure of composite coating was refined significantly, along with a more uniform distribution of TiC particles. The synergetic effect of fine-grain strengthening, dispersion strengthening, and solution strengthening contributed to the improvement of strength and plasticity for composite coating. In addition, a more robust bonding between TiC and matrix also improve the friction performance of composite coating.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"560 ","pages":"Article 205598"},"PeriodicalIF":5.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.wear.2024.205594
Mingxue Shen , Chen Yan , Zhixiong Bai , Fengjun Gong , Chunhong Li , Qiuping Li
With increasing axle loads and train speeds, pearlitic rail steels are subjected to significant challenges in this service condition due to its wear resistance and hardness limitation. In this paper, the rail steel with different martensite and bainite contents is prepared by isothermal quenching. The effect of these microstructural changes on rolling contact damage behaviors was investigated using dry-wet contact wear tests. The results indicate that the rail steel is primarily composed of bainite and martensite after isothermal quenching. Compared to the pearlitic microstructure before isothermal quenching, the mixed martensite and bainite microstructure of rail steel achieved by isothermal quenching effectively mitigates rolling contact damage and resists plastic deformation. This improvement is associated with increased material hardness, reduced grain angles and grain refinement. Meanwhile, the plastic deformation zone caused by rolling contact presents a hardening phenomenon, accompanied by increased dislocation density and grain refinement. This hardening layer effectively hinders crack propagation to greater depths. In addition, due to the intense splitting of austenite grains by martensite during quenching, rail steels with high martensite contents possessed high material hardness and small grain size. Therefore, under rolling contact wear, it was found that fatigue cracking without matrix spalling was the primary wear behavior on the wear surface of rail steel with high martensite contents, and its crack length was reduced by 30.8 % compared to pearlitic microstructure.
{"title":"Comparative study on wear and fatigue behaviors of rail steels with varying levels of martensite and bainite under rolling-sliding contact conditions","authors":"Mingxue Shen , Chen Yan , Zhixiong Bai , Fengjun Gong , Chunhong Li , Qiuping Li","doi":"10.1016/j.wear.2024.205594","DOIUrl":"10.1016/j.wear.2024.205594","url":null,"abstract":"<div><div>With increasing axle loads and train speeds, pearlitic rail steels are subjected to significant challenges in this service condition due to its wear resistance and hardness limitation. In this paper, the rail steel with different martensite and bainite contents is prepared by isothermal quenching. The effect of these microstructural changes on rolling contact damage behaviors was investigated using dry-wet contact wear tests. The results indicate that the rail steel is primarily composed of bainite and martensite after isothermal quenching. Compared to the pearlitic microstructure before isothermal quenching, the mixed martensite and bainite microstructure of rail steel achieved by isothermal quenching effectively mitigates rolling contact damage and resists plastic deformation. This improvement is associated with increased material hardness, reduced grain angles and grain refinement. Meanwhile, the plastic deformation zone caused by rolling contact presents a hardening phenomenon, accompanied by increased dislocation density and grain refinement. This hardening layer effectively hinders crack propagation to greater depths. In addition, due to the intense splitting of austenite grains by martensite during quenching, rail steels with high martensite contents possessed high material hardness and small grain size. Therefore, under rolling contact wear, it was found that fatigue cracking without matrix spalling was the primary wear behavior on the wear surface of rail steel with high martensite contents, and its crack length was reduced by 30.8 % compared to pearlitic microstructure.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"560 ","pages":"Article 205594"},"PeriodicalIF":5.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.wear.2024.205593
Juan P. Abdelnabe , Walter R. Tuckart , Martín I. Crespo , Germán Prieto
Galling is a type of wear that affects the oil and gas industry causing loss of profits due to unexpected stops in the exploration and extraction process. In the present work, the galling resistance of four API grade steels (L80 type 1, T95 type 2, P110, and Q125) used in the industry was evaluated by means of cross-cylinder tests. The surfaces were analyzed, and a Galling Tendency number was computed in order to rank the materials. Additionally, tensile and hardness tests were conducted to analyze the influence of the mechanical properties on galling. It was found that P110 exhibited the worst response and T95 the best one. For materials with the same ductility, an increase in strength is associated with higher galling resistance. A new index, based on the ductility and yield strength of the material, is proposed to predict the galling performance, demonstrating a strong correlation with the galling tendency.
{"title":"Mechanical properties and galling resistance of API grade steels: A comparative study","authors":"Juan P. Abdelnabe , Walter R. Tuckart , Martín I. Crespo , Germán Prieto","doi":"10.1016/j.wear.2024.205593","DOIUrl":"10.1016/j.wear.2024.205593","url":null,"abstract":"<div><div>Galling is a type of wear that affects the oil and gas industry causing loss of profits due to unexpected stops in the exploration and extraction process. In the present work, the galling resistance of four API grade steels (L80 type 1, T95 type 2, P110, and Q125) used in the industry was evaluated by means of cross-cylinder tests. The surfaces were analyzed, and a Galling Tendency number was computed in order to rank the materials. Additionally, tensile and hardness tests were conducted to analyze the influence of the mechanical properties on galling. It was found that P110 exhibited the worst response and T95 the best one. For materials with the same ductility, an increase in strength is associated with higher galling resistance. A new index, based on the ductility and yield strength of the material, is proposed to predict the galling performance, demonstrating a strong correlation with the galling tendency.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"560 ","pages":"Article 205593"},"PeriodicalIF":5.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.wear.2024.205596
Qi Wang , Chuheng Zhang , Xiangtao Deng , Liang Liang , Liujie Xu , Zhaodong Wang
Sliding wear results indicated that although the wear rates increased with a decrease in the hardness of the samples, the wear rate of the strength–ductility matching sample with a recrystallization volume fraction of 75 % (V75) abnormally decreased. High strength and low dislocation density in the strength–ductility matching sample were conducive to the formation of the hexagonal close-packed (HCP) phase. However, the high dislocation density in the sample with a low recrystallization volume fraction of 26 % (V26) and the low stress generated during wear testing due to the low strength of the sample with a high recrystallization volume fraction of 87 % (V87) were not conducive to the production of the HCP phase. The thickness of the HCP phase in the subsurface of V75 was 21 μm, which was 2.3 times that of V87 (9 μm) after wear. The generation of the HCP phase not only improved the work-hardening ability of the sample but also led to grain refinement, which was beneficial for acquiring a thicker ultrafine grain layer. The inferior plasticity of V26 and the deformability due to the low strength of V87 were not favorable for the formation of a stable dynamic oxide film. The higher strength resisted deformation, and outstanding ductility reduced the probability of crack generation in V75, which demonstrated a thicker deformation layer and a complete dynamic oxide film after wear, conducive to reducing the wear rate. The proposed bimodal-structural material design strategy provides an effective method for designing materials with high wear resistances.
{"title":"Optimal wear resistance of particle-reinforced heterostructure high-entropy alloy FeMnCoCr by strength–ductility matching and TRIP effect","authors":"Qi Wang , Chuheng Zhang , Xiangtao Deng , Liang Liang , Liujie Xu , Zhaodong Wang","doi":"10.1016/j.wear.2024.205596","DOIUrl":"10.1016/j.wear.2024.205596","url":null,"abstract":"<div><div>Sliding wear results indicated that although the wear rates increased with a decrease in the hardness of the samples, the wear rate of the strength–ductility matching sample with a recrystallization volume fraction of 75 % (V75) abnormally decreased. High strength and low dislocation density in the strength–ductility matching sample were conducive to the formation of the hexagonal close-packed (HCP) phase. However, the high dislocation density in the sample with a low recrystallization volume fraction of 26 % (V26) and the low stress generated during wear testing due to the low strength of the sample with a high recrystallization volume fraction of 87 % (V87) were not conducive to the production of the HCP phase. The thickness of the HCP phase in the subsurface of V75 was 21 μm, which was 2.3 times that of V87 (9 μm) after wear. The generation of the HCP phase not only improved the work-hardening ability of the sample but also led to grain refinement, which was beneficial for acquiring a thicker ultrafine grain layer. The inferior plasticity of V26 and the deformability due to the low strength of V87 were not favorable for the formation of a stable dynamic oxide film. The higher strength resisted deformation, and outstanding ductility reduced the probability of crack generation in V75, which demonstrated a thicker deformation layer and a complete dynamic oxide film after wear, conducive to reducing the wear rate. The proposed bimodal-structural material design strategy provides an effective method for designing materials with high wear resistances.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"560 ","pages":"Article 205596"},"PeriodicalIF":5.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.wear.2024.205590
Da Hu , Jiabin Lu , Yuhang Jin , Huilong Li , Qiusheng Yan
This study proposes the preparation of CIP@Fe3O4 composite magnetic particles, which maintain excellent magnetic properties while exhibiting superior Fenton reaction performance for the magnetorheological chemical polishing of single-crystal SiC. The CIP@Fe3O4 particles were prepared by coating a nanoscale layer of Fe3O4 onto micron-sized carbonyl iron powder (CIP) using the co-precipitation method. Their Fenton reaction performance and magnetic properties were characterized, and CIP@Fe3O4 was used as a solid-phase catalyst in Fenton reaction-induced etching, frictional wear, and polishing experiments on single-crystal SiC. The prepared CIP@Fe3O4 particles have a saturation magnetization of 184.3 emu/g, representing only an 8.7 % reduction compared to CIP, yet achieved a decolorization rate of 76.2 % for the methyl orange indicator (compared to only 17.2 % with CIP alone). The Fenton reaction using CIP@Fe3O4 resulted in a prominent corrosion layer on the surface of single-crystal SiC, with the oxygen atomic fraction reaching 22.15 %. The study examined material removal from SiC under Fenton reactions with different solid-phase catalysts: CIP, CIP@Fe3O4, and CIP + Fe3O4. Frictional wear results indicated that the maximum scratch cross-sectional removal area on the SiC surface under the Fenton reaction with CIP@Fe3O4 was 474.38 μm2, representing a 207.3 % increase compared to without the Fenton reaction. Additionally, Si-O compounds were identified in the debris. Polishing experiments showed that the material removal rate (MRR) with the Fenton reaction was 3295 nm/h, an increase of 220.2 % compared to without the Fenton reaction, and the surface roughness was reduced to Ra 0.895 nm, a 73.4 % reduction compared to without the Fenton reaction. This study provides additional evidence for the application of magnetorheological technology and the Fenton reaction in the polishing field of single-crystal SiC.
{"title":"Preparation of CIP@Fe3O4 particles and their impact on the fenton reaction processing performance of single-crystal SiC","authors":"Da Hu , Jiabin Lu , Yuhang Jin , Huilong Li , Qiusheng Yan","doi":"10.1016/j.wear.2024.205590","DOIUrl":"10.1016/j.wear.2024.205590","url":null,"abstract":"<div><div>This study proposes the preparation of CIP@Fe<sub>3</sub>O<sub>4</sub> composite magnetic particles, which maintain excellent magnetic properties while exhibiting superior Fenton reaction performance for the magnetorheological chemical polishing of single-crystal SiC. The CIP@Fe<sub>3</sub>O<sub>4</sub> particles were prepared by coating a nanoscale layer of Fe<sub>3</sub>O<sub>4</sub> onto micron-sized carbonyl iron powder (CIP) using the co-precipitation method. Their Fenton reaction performance and magnetic properties were characterized, and CIP@Fe<sub>3</sub>O<sub>4</sub> was used as a solid-phase catalyst in Fenton reaction-induced etching, frictional wear, and polishing experiments on single-crystal SiC. The prepared CIP@Fe<sub>3</sub>O<sub>4</sub> particles have a saturation magnetization of 184.3 emu/g, representing only an 8.7 % reduction compared to CIP, yet achieved a decolorization rate of 76.2 % for the methyl orange indicator (compared to only 17.2 % with CIP alone). The Fenton reaction using CIP@Fe<sub>3</sub>O<sub>4</sub> resulted in a prominent corrosion layer on the surface of single-crystal SiC, with the oxygen atomic fraction reaching 22.15 %. The study examined material removal from SiC under Fenton reactions with different solid-phase catalysts: CIP, CIP@Fe<sub>3</sub>O<sub>4</sub>, and CIP + Fe<sub>3</sub>O<sub>4</sub>. Frictional wear results indicated that the maximum scratch cross-sectional removal area on the SiC surface under the Fenton reaction with CIP@Fe<sub>3</sub>O<sub>4</sub> was 474.38 μm<sup>2</sup>, representing a 207.3 % increase compared to without the Fenton reaction. Additionally, <em>Si</em>-O compounds were identified in the debris. Polishing experiments showed that the material removal rate (MRR) with the Fenton reaction was 3295 nm/h, an increase of 220.2 % compared to without the Fenton reaction, and the surface roughness was reduced to Ra 0.895 nm, a 73.4 % reduction compared to without the Fenton reaction. This study provides additional evidence for the application of magnetorheological technology and the Fenton reaction in the polishing field of single-crystal SiC.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"558 ","pages":"Article 205590"},"PeriodicalIF":5.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.wear.2024.205592
Weitao Sun , Ning Wu , Xuqi Shao , Lijun Deng , Yongfeng Li , Bin Wang , Jian Zhang
Enhancing strength or hardness is a widely employed strategy to improve wear resistance of ZL109 aluminum alloy at elevated temperatures. This study aimed to investigate the effects of various strengthening treatments on the wear performance of ZL109 aluminum alloy. Three strengthening methods, namely structural refinement, strain hardening, and precipitation strengthening, were employed to achieve a similar hardness level. Subsequently, the wear tests were conducted using a reciprocating ball-on-disk tribometer under different temperature conditions. The results showed that all the strengthening samples exhibited a similar wear rate (approximately 7.0 × 10−4 mm3/N·m) at room temperature. However, at 250 °C, the precipitation strengthening sample performed best with a wear rate of 1.32 × 10−3 mm3/N·m, followed by the strain hardening and structural refinement samples (approximately 1.7 × 10−3 mm3/N·m). This superior performance was attributed to the precipitation phase, which could effectively maintain material strength through dislocation pinning. By contrast, dynamic recovery and recrystallization behavior weakened the effectiveness of strain hardening, while crystal growth diminished the efficacy of structural refinement. In addition, the wear mechanisms transitioned from abrasion to adhesion and slight oxidative wear as the temperature increased.
{"title":"The effects of different strengthening treatments on wear performance of ZL109 aluminum alloy at high temperature","authors":"Weitao Sun , Ning Wu , Xuqi Shao , Lijun Deng , Yongfeng Li , Bin Wang , Jian Zhang","doi":"10.1016/j.wear.2024.205592","DOIUrl":"10.1016/j.wear.2024.205592","url":null,"abstract":"<div><div>Enhancing strength or hardness is a widely employed strategy to improve wear resistance of ZL109 aluminum alloy at elevated temperatures. This study aimed to investigate the effects of various strengthening treatments on the wear performance of ZL109 aluminum alloy. Three strengthening methods, namely structural refinement, strain hardening, and precipitation strengthening, were employed to achieve a similar hardness level. Subsequently, the wear tests were conducted using a reciprocating ball-on-disk tribometer under different temperature conditions. The results showed that all the strengthening samples exhibited a similar wear rate (approximately 7.0 × 10<sup>−4</sup> mm<sup>3</sup>/N·m) at room temperature. However, at 250 °C, the precipitation strengthening sample performed best with a wear rate of 1.32 × 10<sup>−3</sup> mm<sup>3</sup>/N·m, followed by the strain hardening and structural refinement samples (approximately 1.7 × 10<sup>−3</sup> mm<sup>3</sup>/N·m). This superior performance was attributed to the precipitation phase, which could effectively maintain material strength through dislocation pinning. By contrast, dynamic recovery and recrystallization behavior weakened the effectiveness of strain hardening, while crystal growth diminished the efficacy of structural refinement. In addition, the wear mechanisms transitioned from abrasion to adhesion and slight oxidative wear as the temperature increased.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"558 ","pages":"Article 205592"},"PeriodicalIF":5.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.wear.2024.205591
Delong Zeng , Yating Qiu , Yanliang Yi , Daxiang Sun , Changliang Shi , Yang Lu , Shengfeng Zhou
Cu-based immiscible alloys have significant potential application value in the field of electrical contacts. This study investigated the tribological behavior of Cu-Fe-P immiscible alloys produced via laser powder bed fusion (LPBF) under current-carrying conditions. The alloys consist of softer ε-Cu phase and harder Fe-rich phases. The Fe-rich phase acts as a protective reinforcement during current-carrying friction and wear tests, improving the wear resistance of the alloy. With the increasing current, the coefficient of friction initially rose and then decreased, whereas the wear rate showed a gradual increase. At low currents (0, 2, 3 and 5 A), mechanical wear predominantly governs the wear mechanism. As the current increases, the mechanical wear gradually transitions from adhesive wear to abrasive wear, accompanied by weak oxidative wear. At higher currents (7 A and 10 A), the wear mechanism is dominated by arc erosion wear and oxidative wear. Notably, when the current exceeded 2 A, an oxide film consisting of CuO, Fe2O3, and Fe3O4 formed, enhancing the frictional properties of the alloy. Once the current surpassed 5 A, the arc discharge occurred at high currents, forming molten phases and arc erosion pits on the worn surface of the Cu-Fe-P immiscible alloy.
铜基不相溶合金在电接触领域具有重要的潜在应用价值。本研究调查了在载流条件下通过激光粉末床熔融(LPBF)生产的铜-铁-磷不溶合金的摩擦学行为。合金由较软的ε-Cu相和较硬的富Fe相组成。在载流摩擦和磨损试验中,富铁相起到了保护性强化作用,提高了合金的耐磨性。随着电流的增加,摩擦系数先上升后下降,而磨损率则逐渐增加。在低电流(0、2、3 和 5 A)条件下,磨损机制主要是机械磨损。随着电流的增加,机械磨损逐渐从粘着磨损过渡到磨料磨损,并伴有微弱的氧化磨损。在更大的电流(7 A 和 10 A)下,磨损机制主要是电弧侵蚀磨损和氧化磨损。值得注意的是,当电流超过 2 A 时,由 CuO、Fe2O3 和 Fe3O4 组成的氧化膜形成,增强了合金的摩擦性能。当电流超过 5 A 时,电弧在高电流下放电,在 Cu-Fe-P 不相溶合金的磨损表面形成熔融相和电弧侵蚀坑。
{"title":"Effect of current on the tribological behavior of Cu-Fe-P immiscible alloy produced by laser powder bed fusion","authors":"Delong Zeng , Yating Qiu , Yanliang Yi , Daxiang Sun , Changliang Shi , Yang Lu , Shengfeng Zhou","doi":"10.1016/j.wear.2024.205591","DOIUrl":"10.1016/j.wear.2024.205591","url":null,"abstract":"<div><div>Cu-based immiscible alloys have significant potential application value in the field of electrical contacts. This study investigated the tribological behavior of Cu-Fe-P immiscible alloys produced via laser powder bed fusion (LPBF) under current-carrying conditions. The alloys consist of softer ε-Cu phase and harder Fe-rich phases. The Fe-rich phase acts as a protective reinforcement during current-carrying friction and wear tests, improving the wear resistance of the alloy. With the increasing current, the coefficient of friction initially rose and then decreased, whereas the wear rate showed a gradual increase. At low currents (0, 2, 3 and 5 A), mechanical wear predominantly governs the wear mechanism. As the current increases, the mechanical wear gradually transitions from adhesive wear to abrasive wear, accompanied by weak oxidative wear. At higher currents (7 A and 10 A), the wear mechanism is dominated by arc erosion wear and oxidative wear. Notably, when the current exceeded 2 A, an oxide film consisting of CuO, Fe<sub>2</sub>O<sub>3</sub>, and Fe<sub>3</sub>O<sub>4</sub> formed, enhancing the frictional properties of the alloy. Once the current surpassed 5 A, the arc discharge occurred at high currents, forming molten phases and arc erosion pits on the worn surface of the Cu-Fe-P immiscible alloy.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"558 ","pages":"Article 205591"},"PeriodicalIF":5.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}