Hydraulic cavitation erosion is a prevalent form of wear in fluid engineering, which primarily results from the mechanical effects of cavity collapse. However, a precise understanding of the dynamic pitting process has been lacking. Coupled synchronized cavitation-erosion experiments with high-fidelity compressible cavitation simulations in a Venturi, this study investigates the mechanical pitting mechanism. The results definitively demonstrate that pitting originates solely from detached cavity collapse, and is irrelevant to attached cavity development and movement. The collapse process is revealed to be progressive, evolving through three successive physical stages: the initial isolated cavity collapse stage, the core large cavity collapse stage where extreme pressure arises from the spatiotemporal superposition of collapse-induced shocks, and the subsequent rebound cavity collapse stage characterized by multiple pressure peaks. Specifically, quantitative analysis attributes differential pitting severity to these three stages: the large cavity collapse stage is the core pitting source, the rebound cavity collapse stage is a significant contributor, while the isolated cavity collapse stage presents only minor supplementary pitting. Moreover, the study clarifies that the potential pitting risk from cavity shedding is not direct but attributable to the collapse of shedding-induced isolated cavities; however, the actual damage is negligible due to low pressure amplitude and distribution density. Additionally, pitting severity worsens nonlinearly with cavitation aggravation, underscoring that preventing severe cavitation is paramount for mitigating damage.
扫码关注我们
求助内容:
应助结果提醒方式:
