Highly selective and sensitive in vivo neurotransmitter dynamic monitoring of the central nervous system has long been a challenging endeavor. Here, an implantable and biocompatible microsensor with excellent performances was reported by electrodepositing poly(3,4-ethylenedioxythiophene)-electrochemically reduced graphene oxide (PEDOT-ERGO) nanocomposites and poly(tannic acid) (pTA) sequentially on the carbon fiber electrode (CFE) surface, and its feasibility in in vivo electrochemical sensing applications were demonstrated. Due to the synergistic electrocatalytic effect of PEDOT-ERGO nanocomposites with the negative-charged pTA on dopamine (DA) redox reaction, the microsensor exhibits high detection sensitivities of 1.1 and 0.37 nA μM-1 in the detection ranges of 0.02-0.5 and 0.5-20 μM with a low limit of detection of 9.2 nM. Also, the microsensor shows excellent selectivity, good sensing stability, repeatability, and reproducibility. In addition, the highly hydrophilic and negative-charged pTA inhibits the nonspecific adsorption of hydrophobic proteins, which endows the microsensor with good antifouling ability. Moreover, DA dynamics in rat brain were successfully monitored in real time, and the selective sensing ability of the microsensor in vivo was also demonstrated. The present study provides a new method for selective dynamics monitoring of DA in the brain, which would help to better understand the pathological and physiological functions of DA.
Insulin is a peptide hormone secreted from pancreatic beta cells to regulate blood glucose homeostasis. Maturation of active insulin occurs within insulin secretory granules (ISG) by acidification of the lumen and enzymatic cleavage of insulin before secretion. This process is dysregulated in diabetes, and many questions remain on how the cell controls insulin maturation. We address this gap in knowledge by designing two genetically encoded fluorescence pH sensors and a fluorescence lifetime imaging and analysis pipeline to monitor the pH of individual secretory ISGs within live cells at higher resolution and precision than previously possible. We observed different subpopulations of ISGs based on their pH and subcellular localization. Signals regulating metabolism vs membrane depolarization mobilize different subpopulations of ISGs for secretion, and we confirm that maturation signals acidify ISGs. We conclude that different signaling networks uniquely impact ISG mobilization and secretion. Future applications of these tools will be useful for exploring how these processes are dysregulated in diabetes and provide new paths for developing more effective treatments.