Aqueous divalent manganese (Mn)-ion batteries are beginning to get more attention because of the abundant resources, low costs, environmental friendliness, and low reactivity of manganese in aqueous solution. Yet, the huge polarization of the Mn anode still exists, which is undesirable for practical applications. Thus, developing high-performance anode has remained a challenge. Herein, we explore the use of industrial pigment red 224, Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) as anode host for Mn2+ with high-rate capacity. Additionally, the concentration of the electrolyte is observed to affect the cycling stability due to the co-insertion of hydronium ion, and PTCDA has a best lifespan in a low-concentration electrolyte of 0.1 M MnSO4. A reversible contraction/expansion phenomenon in main crystallographic directions during Mn2+ into/out PTCDA crystal structures is demonstrated by experimental and theoretical results. Moreover, a “rocking-chair” Mn-ion battery is fabricated based on PTCDA anode and high-entropy Mn-based hexacyanoferrate (Mn-HEPBA) cathode. The Mn-HEPBA||PTCDA full cell delivers a high energy density of 98.8 Wh kg−1. This work will promote the further investigation of Mn-based aqueous rechargeable batteries.
{"title":"Aqueous “rocking-chair” Mn-ion battery based on an industrial pigment anode","authors":"Shengyang Dong, Zikang Xu, Zeyu Cao, Hang Ren, Jinyao Yang, Jingyuan Zhang, Xinyu Qu, Jing Li, Xiaochen Dong","doi":"10.1016/j.cej.2024.157774","DOIUrl":"https://doi.org/10.1016/j.cej.2024.157774","url":null,"abstract":"Aqueous divalent manganese (Mn)-ion batteries are beginning to get more attention because of the abundant resources, low costs, environmental friendliness, and low reactivity of manganese in aqueous solution. Yet, the huge polarization of the Mn anode still exists, which is undesirable for practical applications. Thus, developing high-performance anode has remained a challenge. Herein, we explore the use of industrial pigment red 224, Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) as anode host for Mn<sup>2+</sup> with high-rate capacity. Additionally, the concentration of the electrolyte is observed to affect the cycling stability due to the co-insertion of hydronium ion, and PTCDA has a best lifespan in a low-concentration electrolyte of 0.1 M MnSO<sub>4</sub>. A reversible contraction/expansion phenomenon in main crystallographic directions during Mn<sup>2+</sup> into/out PTCDA crystal structures is demonstrated by experimental and theoretical results. Moreover, a “rocking-chair” Mn-ion battery is fabricated based on PTCDA anode and high-entropy Mn-based hexacyanoferrate (Mn-HEPBA) cathode. The Mn-HEPBA||PTCDA full cell delivers a high energy density of 98.8 Wh kg<sup>−1</sup>. This work will promote the further investigation of Mn-based aqueous rechargeable batteries.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"36 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1016/j.cej.2024.157758
Jin Cao, Shangxian Chen, Zhengde Han, Ye-Tang Pan, Yichao Lin, Wei Wang, Rongjie Yang
Ferrocene (Fc) and metal–organic frameworks (MOFs) are established as effective functional additives in polymer composites, known for their synergistic effects. However, simple physical mixing does not fully harness their potential. To optimize their performance, we developed a method to graft ferrocene onto zeolitic imidazolate frameworks (ZIFs) via a Schiff base structure, followed by constructing a ferrocene-based covalent metal–organic porous polymer (CMOPP) network using Friedel-Crafts alkylation. This approach addresses the mesoporous structure limitation in ZIFs. During this process, the imidazole ligands are etched, yielding a yolk-shell structured, hierarchically nanoporous flame retardant. The synergy between ferrocene and ZIF significantly enhances the UV protection of epoxy resin, with a 99.1% reduction in UV transmittance. Additionally, ferrocene improves the filler-matrix compatibility, increasing tensile strength by 15.1%. This combination of flame-retardant elements and the porous structure’s adsorption capacity imparts exceptional flame retardancy and smoke suppression to the epoxy resin, evidenced by a Limiting Oxygen Index of 28.3% and a V-0 rating in the UL-94 test. Notable reductions include 56.5% in peak heat release rate, 55.1% in peak smoke production rate, and 71.6% in peak carbon monoxide production. This work introduces a novel strategy for designing high-performance multifunctional flame retardants.
二茂铁(Fc)和金属有机框架(MOFs)是聚合物复合材料中有效的功能添加剂,以其协同效应而闻名。然而,简单的物理混合并不能充分发挥它们的潜力。为了优化二茂铁的性能,我们开发了一种方法,通过席夫碱结构将二茂铁接枝到沸石咪唑框架(ZIF)上,然后利用弗里德尔-卡夫烷基化技术构建基于二茂铁的共价金属有机多孔聚合物(CMOPP)网络。这种方法解决了 ZIF 的介孔结构限制。在这一过程中,咪唑配体被蚀刻,产生了卵黄壳结构的分层纳米多孔阻燃剂。二茂铁和 ZIF 的协同作用显著增强了环氧树脂的紫外线防护能力,紫外线透过率降低了 99.1%。此外,二茂铁还能改善填料与基体的相容性,使拉伸强度提高 15.1%。阻燃元素与多孔结构的吸附能力相结合,使环氧树脂具有优异的阻燃性和抑烟性,其极限氧指数为 28.3%,在 UL-94 测试中达到 V-0 级。值得注意的是,这种材料的峰值热释放率降低了 56.5%,峰值烟雾产生率降低了 55.1%,峰值一氧化碳产生率降低了 71.6%。这项研究为高性能多功能阻燃剂的设计引入了一种新策略。
{"title":"Covalent metal–organic porous polymer on ZIF-67 realize anti-UV and highly stressed flame retardant epoxy composites","authors":"Jin Cao, Shangxian Chen, Zhengde Han, Ye-Tang Pan, Yichao Lin, Wei Wang, Rongjie Yang","doi":"10.1016/j.cej.2024.157758","DOIUrl":"https://doi.org/10.1016/j.cej.2024.157758","url":null,"abstract":"Ferrocene (Fc) and metal–organic frameworks (MOFs) are established as effective functional additives in polymer composites, known for their synergistic effects. However, simple physical mixing does not fully harness their potential. To optimize their performance, we developed a method to graft ferrocene onto zeolitic imidazolate frameworks (ZIFs) via a Schiff base structure, followed by constructing a ferrocene-based covalent metal–organic porous polymer (CMOPP) network using Friedel-Crafts alkylation. This approach addresses the mesoporous structure limitation in ZIFs. During this process, the imidazole ligands are etched, yielding a yolk-shell structured, hierarchically nanoporous flame retardant. The synergy between ferrocene and ZIF significantly enhances the UV protection of epoxy resin, with a 99.1% reduction in UV transmittance. Additionally, ferrocene improves the filler-matrix compatibility, increasing tensile strength by 15.1%. This combination of flame-retardant elements and the porous structure’s adsorption capacity imparts exceptional flame retardancy and smoke suppression to the epoxy resin, evidenced by a Limiting Oxygen Index of 28.3% and a V-0 rating in the UL-94 test. Notable reductions include 56.5% in peak heat release rate, 55.1% in peak smoke production rate, and 71.6% in peak carbon monoxide production. This work introduces a novel strategy for designing high-performance multifunctional flame retardants.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"35 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Developing electronic packaging materials with both outstanding electromagnetic wave (EMW) absorption and efficient heat dissipation is crucial for addressing vital issues of electromagnetic interference and heat accumulation in modern integrated circuits. Herein, we present a graphene-epoxy composite with dual-function of excellent microwave absorption and efficient heat dissipation as a promising candidate. The composite was fabricated by immersing epoxy resin into graphene aerogel (GA) with precisely controlled directional pores. Before immersion, the GA was annealed at temperatures from 600 to 3000 °C to investigate the influence of oxygen content and defects in the graphene on wave absorbing and heat dissipating properties of the graphene-epoxy composite. The composite with the GA annealed at 1200 °C exhibits a minimum reflection loss of −35.67 dB at a frequency of 8.80 GHz with a sample thickness of 2.0 mm, and the thermal conductivity is 0.69 W m−1 K−1, 283 % improvement over the epoxy matrix. Furthermore, the composite with the GA annealed at 2500 °C demonstrates an impressive absorption bandwidth (7.76 GHz) spanning from 10.24 to 18.00 GHz (covering a part of X-band and all the Ku-band) with a sample thickness of 3.0 mm, and the thermal conductivity is 6.81 W m−1 K−1, 3683 % improvement over the matrix. The graphene-epoxy composite exhibits excellent EMW absorption performance and high thermal conductivity, highlighting promising applications as electronic packaging material in high-power integrated circuits.
要解决现代集成电路中的电磁干扰和热量积累等重要问题,开发具有出色电磁波吸收能力和高效散热能力的电子封装材料至关重要。在此,我们提出了一种具有优异微波吸收和高效散热双重功能的石墨烯-环氧树脂复合材料。这种复合材料是通过将环氧树脂浸入具有精确控制的定向孔隙的石墨烯气凝胶(GA)中制成的。在浸入之前,先将石墨烯气凝胶在 600 至 3000 ℃ 的温度下退火,以研究石墨烯中的氧含量和缺陷对石墨烯-环氧树脂复合材料吸波和散热性能的影响。在样品厚度为 2.0 mm、频率为 8.80 GHz 时,1200 °C 退火的石墨烯-环氧树脂复合材料的最小反射损耗为 -35.67 dB,导热系数为 0.69 W m-1 K-1,比环氧树脂基体提高了 283%。此外,2500 °C 退火的石墨烯-环氧树脂复合材料的吸收带宽(7.76 GHz)从 10.24 GHz 到 18.00 GHz(覆盖部分 X 波段和全部 Ku 波段),样品厚度为 3.0 mm,热导率为 6.81 W m-1 K-1,比基体提高了 3683%。石墨烯-环氧树脂复合材料具有优异的电磁波吸收性能和高热导率,有望用作大功率集成电路中的电子封装材料。
{"title":"Graphene-epoxy composite with dual-function of excellent microwave absorption and efficient heat dissipation","authors":"Zhenqian Ma, Zhenliang Hao, Jingjie Dai, Hailong Zhang","doi":"10.1016/j.cej.2024.157807","DOIUrl":"https://doi.org/10.1016/j.cej.2024.157807","url":null,"abstract":"Developing electronic packaging materials with both outstanding electromagnetic wave (EMW) absorption and efficient heat dissipation is crucial for addressing vital issues of electromagnetic interference and heat accumulation in modern integrated circuits. Herein, we present a graphene-epoxy composite with dual-function of excellent microwave absorption and efficient heat dissipation as a promising candidate. The composite was fabricated by immersing epoxy resin into graphene aerogel (GA) with precisely controlled directional pores. Before immersion, the GA was annealed at temperatures from 600 to 3000 °C to investigate the influence of oxygen content and defects in the graphene on wave absorbing and heat dissipating properties of the graphene-epoxy composite. The composite with the GA annealed at 1200 °C exhibits a minimum reflection loss of −35.67 dB at a frequency of 8.80 GHz with a sample thickness of 2.0 mm, and the thermal conductivity is 0.69 W m<sup>−1</sup> K<sup>−1</sup>, 283 % improvement over the epoxy matrix. Furthermore, the composite with the GA annealed at 2500 °C demonstrates an impressive absorption bandwidth (7.76 GHz) spanning from 10.24 to 18.00 GHz (covering a part of X-band and all the Ku-band) with a sample thickness of 3.0 mm, and the thermal conductivity is 6.81 W m<sup>−1</sup> K<sup>−1</sup>, 3683 % improvement over the matrix. The graphene-epoxy composite exhibits excellent EMW absorption performance and high thermal conductivity, highlighting promising applications as electronic packaging material in high-power integrated circuits.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"64 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1016/j.cej.2024.157790
Jicheng Shan, Jun Song, Xuerong Wang, Bin Li, Haijing Zhu, Xiaosheng Qian
Despite its theoretically high energy density, polymer solid-state lithium batteries (PSSLBs) exhibit lower actual energy density. This discrepancy arises from the low ionic conductivity of the polymer solid-state electrolyte (PSSE) due to the coupling of lithium ion (Li+) transport to the relaxation of polymer chain segments. The objective of this study is to optimize the Li+ transport in PSSE. This is achieved by incorporating 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITFSI) to plasticize both cellulose and polyethylene oxide (PEO). By leveraging the synergistic effects of cellulose and PEO, an ion-conducting network is established. This network allows Li+ to form multiple Li-O coordination simultaneously with the hydroxyl group (OH) of cellulose and the ether group (EO) of PEO, thereby enabling Li+ to transport between the two polymers in a decoupled manner. The PSSE demonstrated an ionic conductivity of 4 × 10-4 mS/cm (at room temperature) and a Li+ transference number of 0.43, significantly exceeding traditional PEO-based values of 10-5 mS/cm and 0.1–0.2. Additionally, the high voltage stability of EMITFSI extends the electrochemical stability window of PSSE, achieving a stability window of 5 V. The assembled LiFePO4/Li cell achieved a specific capacity of 138 mA h/g at 50℃ (0.5C) with a capacity retention rate of 80 % after 280 cycles. This represents an innovative method for preparing high-energy–density solid-state lithium batteries.
{"title":"Design of cellulose/polyethylene oxide/EMITFSI-based composite electrolyte with synergistic transport mechanism for high-performance solid-state lithium batteries","authors":"Jicheng Shan, Jun Song, Xuerong Wang, Bin Li, Haijing Zhu, Xiaosheng Qian","doi":"10.1016/j.cej.2024.157790","DOIUrl":"https://doi.org/10.1016/j.cej.2024.157790","url":null,"abstract":"Despite its theoretically high energy density, polymer solid-state lithium batteries (PSSLBs) exhibit lower actual energy density. This discrepancy arises from the low ionic conductivity of the polymer solid-state electrolyte (PSSE) due to the coupling of lithium ion (Li<sup>+</sup>) transport to the relaxation of polymer chain segments. The objective of this study is to optimize the Li<sup>+</sup> transport in PSSE. This is achieved by incorporating 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITFSI) to plasticize both cellulose and polyethylene oxide (PEO). By leveraging the synergistic effects of cellulose and PEO, an ion-conducting network is established. This network allows Li<sup>+</sup> to form multiple Li-O coordination simultaneously with the hydroxyl group (OH) of cellulose and the ether group (EO) of PEO, thereby enabling Li<sup>+</sup> to transport between the two polymers in a decoupled manner. The PSSE demonstrated an ionic conductivity of 4 × 10<sup>-4</sup> mS/cm (at room temperature) and a Li<sup>+</sup> transference number of 0.43, significantly exceeding traditional PEO-based values of 10<sup>-5</sup> mS/cm and 0.1–0.2. Additionally, the high voltage stability of EMITFSI extends the electrochemical stability window of PSSE, achieving a stability window of 5 V. The assembled LiFePO<sub>4</sub>/Li cell achieved a specific capacity of 138 mA h/g at 50℃ (0.5C) with a capacity retention rate of 80 % after 280 cycles. This represents an innovative method for preparing high-energy–density solid-state lithium batteries.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"1 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1016/j.cej.2024.157818
Fangyuan Sun, Haibo Wu, Chengwei Jiang, Yonghao Chen, Yanan He, Shiqi Zu, Fengyu Su, Yanqing Tian, Yan Jun Liu
Photochromic and electrochromic devices have attracted remarkable attention due to their advantages of low power consumption, eye-friendliness, and broad application potential. However, developing dual-responsive devices with nice memory effect and rapid switching ability remains challenging. Here we report a novel strategy for fabricating dual-responsive photo-electrochromic device (PECD) based on TiO2-Prussian blue (PB) composite film and a novel extended viologen FHP. Exploiting the photocatalytic properties of TiO2, we successfully fabricated dual-responsive thin films and incorporated FHP as a complementary material to enhance the performance of the device. Notably, the resultant PECD exhibited remarkable performance, including long optical memory (33.91 h), fast response (4.6 s for coloring, 10.4 s for bleaching), high contrast (ΔT is 77.2 % at 692 nm), and excellent cycling stability (ΔT loss is smaller than 3.1 % after continuous working for 1000 cycles), highlighting their potential for advanced optical applications.
{"title":"Photochromic and electrochromic dual-responsive devices: Integration of TiO2-Prussian blue composites and novel extended viologen","authors":"Fangyuan Sun, Haibo Wu, Chengwei Jiang, Yonghao Chen, Yanan He, Shiqi Zu, Fengyu Su, Yanqing Tian, Yan Jun Liu","doi":"10.1016/j.cej.2024.157818","DOIUrl":"https://doi.org/10.1016/j.cej.2024.157818","url":null,"abstract":"Photochromic and electrochromic devices have attracted remarkable attention due to their advantages of low power consumption, eye-friendliness, and broad application potential. However, developing dual-responsive devices with nice memory effect and rapid switching ability remains challenging. Here we report a novel strategy for fabricating dual-responsive photo-electrochromic device (PECD) based on TiO<sub>2</sub>-Prussian blue (PB) composite film and a novel extended viologen <strong>FHP</strong>. Exploiting the photocatalytic properties of TiO<sub>2</sub>, we successfully fabricated dual-responsive thin films and incorporated <strong>FHP</strong> as a complementary material to enhance the performance of the device. Notably, the resultant PECD exhibited remarkable performance, including long optical memory (33.91 h), fast response (4.6 s for coloring, 10.4 s for bleaching), high contrast (ΔT is 77.2 % at 692 nm), and excellent cycling stability (ΔT loss is smaller than 3.1 % after continuous working for 1000 cycles), highlighting their potential for advanced optical applications.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"14 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photoluminescent materials have garnered a lot of interest lately because of their many uses in chemical sensing, bio-detection, and optoelectronic devices. However, existing photoluminescent 3D printing materials exhibit deficiencies in mechanical properties, durability, and stability, hindering their adaptation to 3D printing of complex structures or stress-varying applications, while compromising the long-term stability of devices. To address these limitations, a photoluminescent self-healing elastomers containing dynamically hindered urea bonds were developed in this study, demonstrating excellent tensile properties (560 %), high strength (4.25 MPa), and good self-healing capabilities (95.45 % healing efficiency). The elastomer also exhibits unique photoluminescent characteristics, with luminous intensity varying under significant deformations. Photoluminescent characteristics are still present in 3D printed elastomers. Moreover, the elastomers can be utilized for 3D printing complex structures and customized sensors, with the printed sensors capable of achieving segmented responses. Resistive sensors prepared from this material exhibit high sensitivity and good cyclic stability, and they are capable of detecting various human motions while providing additional sensory information through changes in luminescent intensity. This study offers new insights into the development of photoluminescent self-healing materials for multifunctional applications, including smart wearable devices, dynamic displays, and optical sensors.
由于光致发光材料在化学传感、生物检测和光电设备中的广泛应用,近来引起了人们的极大兴趣。然而,现有的光致发光 3D 打印材料在机械性能、耐久性和稳定性方面存在缺陷,无法适应复杂结构或应力变化应用的 3D 打印,同时也影响了设备的长期稳定性。为了解决这些局限性,本研究开发了一种含有动态受阻脲键的光致发光自愈合弹性体,显示出优异的拉伸性能(560 %)、高强度(4.25 兆帕)和良好的自愈合能力(95.45 % 愈合效率)。这种弹性体还具有独特的光致发光特性,在发生明显变形时发光强度会发生变化。光致发光特性在 3D 打印弹性体中依然存在。此外,这种弹性体还可用于三维打印复杂结构和定制传感器,打印出的传感器能够实现分段响应。用这种材料制备的电阻式传感器具有高灵敏度和良好的周期稳定性,能够检测人体的各种运动,同时通过发光强度的变化提供额外的感官信息。这项研究为开发光致发光自修复材料的多功能应用(包括智能可穿戴设备、动态显示和光学传感器)提供了新的见解。
{"title":"Self-healing, photoluminescent elastomers for 3D printing fabrication of flexible sensors","authors":"Chunyi Luo, Xin Luo, Danyang Liu, Guangmeng Ma, Longfei Zhang, Jianglin Fu, Yu Li, Fawei Guo, Mingtao Zhang, Yu Long","doi":"10.1016/j.cej.2024.157761","DOIUrl":"https://doi.org/10.1016/j.cej.2024.157761","url":null,"abstract":"Photoluminescent materials have garnered a lot of interest lately because of their many uses in chemical sensing, bio-detection, and optoelectronic devices. However, existing photoluminescent 3D printing materials exhibit deficiencies in mechanical properties, durability, and stability, hindering their adaptation to 3D printing of complex structures or stress-varying applications, while compromising the long-term stability of devices. To address these limitations, a photoluminescent self-healing elastomers containing dynamically hindered urea bonds were developed in this study, demonstrating excellent tensile properties (560 %), high strength (4.25 MPa), and good self-healing capabilities (95.45 % healing efficiency). The elastomer also exhibits unique photoluminescent characteristics, with luminous intensity varying under significant deformations. Photoluminescent characteristics are still present in 3D printed elastomers. Moreover, the elastomers can be utilized for 3D printing complex structures and customized sensors, with the printed sensors capable of achieving segmented responses. Resistive sensors prepared from this material exhibit high sensitivity and good cyclic stability, and they are capable of detecting various human motions while providing additional sensory information through changes in luminescent intensity. This study offers new insights into the development of photoluminescent self-healing materials for multifunctional applications, including smart wearable devices, dynamic displays, and optical sensors.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"18 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1016/j.cej.2024.157786
Dongfei Sun, Sen Lin, Shengxu Kuai, Tiantian Zhang, Lei Liu, Jingxin Zhao, Xiaozhong Zhou, Wenwen Liu, Bingang Xu
The structural stability and Na+ diffusion kinetics of two-dimensional layered materials are critical to deliver efficient Na+ storage. Here, few-layer MoS2 nanocrystals were anchored on N-doped carbon nanosheets (MoS2@NCs), which realizes fast Na+ storage and long cycle life. The tight chemical bonding (Mo-N-C bonds) of N atom to MoS2 nanocrystals and carbon nanosheets improves the electronic conductivity and the structural stability of MoS2@NCs, while the carbon nanosheets network supports the MoS2@NCs structure to reduce the volume effect and provides a surface-dominated mechanism for fast Na+ diffusion. Density functional theory results show that the low diffusion barrier of MoS2@NCs with Mo-N-C bonds accelerates the Na+ transfer kinetics. Consequently, MoS2@NCs possesses superior rate capability of 307 mA h g−1 at 20 A/g and excellent long-term stability over 3,000 cycles. The reversible Na+ (de)insertion behavior is elucidated through in-situ EIS and ex-situ XRD technology. In addition, the assembled MoS2@NCs//Na3V2(PO4)3/C full cell also exhibits a high reversible capacity and good cycle stability. This work opens a new route for optimizing two-dimensional layered materials that can be used for high energy density rechargeable SIBs.
二维层状材料的结构稳定性和 Na+ 扩散动力学是实现高效 Na+ 储存的关键。在这里,几层 MoS2 纳米晶体被锚定在掺杂 N 的碳纳米片(MoS2@NCs)上,从而实现了快速 Na+ 储存和长循环寿命。N原子与MoS2纳米晶体和碳纳米片的紧密化学键(Mo-N-C键)提高了MoS2@NCs的电子传导性和结构稳定性,而碳纳米片网络则支撑了MoS2@NCs结构以降低体积效应,并为Na+的快速扩散提供了表面主导机制。密度泛函理论结果表明,具有 Mo-N-C 键的 MoS2@NCs 的低扩散障碍加速了 Na+ 的转移动力学。因此,MoS2@NCs 在 20 A/g 时具有 307 mA h g-1 的卓越速率能力和超过 3,000 次循环的出色长期稳定性。通过原位 EIS 和原位 XRD 技术阐明了 Na+(脱)插入的可逆行为。此外,组装后的 MoS2@NCs//Na3V2(PO4)3/C 全电池也表现出较高的可逆容量和良好的循环稳定性。这项工作为优化可用于高能量密度可充电 SIB 的二维层状材料开辟了一条新途径。
{"title":"Interfacial Mo-N bonding enhancement of N-doped carbon nanosheets-stabilized ultrafine MoS2 enable ultrafast and durable sodium ion half/full batteries","authors":"Dongfei Sun, Sen Lin, Shengxu Kuai, Tiantian Zhang, Lei Liu, Jingxin Zhao, Xiaozhong Zhou, Wenwen Liu, Bingang Xu","doi":"10.1016/j.cej.2024.157786","DOIUrl":"https://doi.org/10.1016/j.cej.2024.157786","url":null,"abstract":"The structural stability and Na<sup>+</sup> diffusion kinetics of two-dimensional layered materials are critical to deliver efficient Na<sup>+</sup> storage. Here, few-layer MoS<sub>2</sub> nanocrystals were anchored on N-doped carbon nanosheets (MoS<sub>2</sub>@NCs), which realizes fast Na<sup>+</sup> storage and long cycle life. The tight chemical bonding (Mo-N-C bonds) of N atom to MoS<sub>2</sub> nanocrystals and carbon nanosheets improves the electronic conductivity and the structural stability of MoS<sub>2</sub>@NCs, while the carbon nanosheets network supports the MoS<sub>2</sub>@NCs structure to reduce the volume effect and provides a surface-dominated mechanism for fast Na<sup>+</sup> diffusion. Density functional theory results show that the low diffusion barrier of MoS<sub>2</sub>@NCs with Mo-N-C bonds accelerates the Na<sup>+</sup> transfer kinetics. Consequently, MoS<sub>2</sub>@NCs possesses superior rate capability of 307 mA h g<sup>−1</sup> at 20 A/g and excellent long-term stability over 3,000 cycles. The reversible Na<sup>+</sup> (de)insertion behavior is elucidated through in-situ EIS and ex-situ XRD technology.<!-- --> <!-- -->In addition, the assembled MoS<sub>2</sub>@NCs//Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>/C full cell also exhibits a high reversible capacity and good cycle stability. This work opens a new route for optimizing two-dimensional layered materials that can be used for high energy density rechargeable SIBs.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"9 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1016/j.cej.2024.157797
Sasha Yang, Jinxing Gu, Binbin Qian, Jim Mensah, Adam F. Lee, Karen Wilson, Barbara Etschmann, Xiya Fang, Jisheng Ma, Qinfen Gu, Lian Zhang
Spinel catalysts exhibit superior activity and structural stability across a wide range of catalytic reactions. Nevertheless, few studies have delved into the synthesis of spinels containing more than four metal cations, for which conventional syntheses from pure chemical precursors are costly and generate significant waste. Here we demonstrate a facile, rapid and scalable synthesis of layered spinel ferrite catalysts from fly ash waste that is otherwise detrimental to landfill ecosystems. The optimum waste-derived catalyst primarily comprised MgAl0.2Fe1.8O4, with a distorted structure due to the substitution of various cations (Ca2+, Mn2+, Mn3+, and Ti4+) at tetrahedral and/or octahedral iron sites, and demonstrates high activity (1.26 mmol⋅g−1⋅min−1) and stability (>100 h) for acetic acid ketonisation at a modest temperature (300 °C). Acidity measurements yield a corresponding turnover frequency of 2.21 min−1. Strong synergies are observed between the different metallic cations and octahedral Fe2+ species; XANES and in-situ DRIFTS indicate the latter is the primary active sites for ketonisation in fly ash-derived spinel ferrites, promoting both acetic acid adsorption as bidentate acetate and subsequent C–C coupling to acetone.
{"title":"Facile synthesis of layered spinel ferrite from fly ash waste as a stable and active ketonisation catalyst","authors":"Sasha Yang, Jinxing Gu, Binbin Qian, Jim Mensah, Adam F. Lee, Karen Wilson, Barbara Etschmann, Xiya Fang, Jisheng Ma, Qinfen Gu, Lian Zhang","doi":"10.1016/j.cej.2024.157797","DOIUrl":"https://doi.org/10.1016/j.cej.2024.157797","url":null,"abstract":"Spinel catalysts exhibit superior activity and structural stability across a wide range of catalytic reactions. Nevertheless, few studies have delved into the synthesis of spinels containing more than four metal cations, for which conventional syntheses from pure chemical precursors are costly and generate significant waste. Here we demonstrate a facile, rapid and scalable synthesis of layered spinel ferrite catalysts from fly ash waste that is otherwise detrimental to landfill ecosystems. The optimum waste-derived catalyst primarily comprised MgAl<sub>0.2</sub>Fe<sub>1.8</sub>O<sub>4</sub>, with a distorted structure due to the substitution of various cations (Ca<sup>2+</sup>, Mn<sup>2+</sup>, Mn<sup>3+</sup>, and Ti<sup>4+</sup>) at tetrahedral and/or octahedral iron sites, and demonstrates high activity (1.26 mmol⋅g<sup>−1</sup>⋅min<sup>−1</sup>) and stability (>100 h) for acetic acid ketonisation at a modest temperature (300 °C). Acidity measurements yield a corresponding turnover frequency of 2.21 min<sup>−1</sup>. Strong synergies are observed between the different metallic cations and octahedral Fe<sup>2+</sup> species; XANES and in-situ DRIFTS indicate the latter is the primary active sites for ketonisation in fly ash-derived spinel ferrites, promoting both acetic acid adsorption as bidentate acetate and subsequent C–C coupling to acetone.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"10 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study introduces a facile method for the controlled growth of addressable planar arrays of highly luminescent, catalyst-free 1,4-bis(5-phenyloxazol-2-yl)benzene (POPOP) nanowires. By employing a hollow mask over a faceted sapphire substrate, simultaneous control over the position and orientation of the nanowires is achieved through a mask-confined graphoepitaxial growth, offering substantial advantages over traditional post-growth assembly techniques. High-temperature annealing creates parallel nanogrooves on the sapphire surface, inducing a graphoepitaxial effect that aligns the nanowires with a consistent [102] crystallographic axis. The hollow mask further aids in precisely localizing nanowire growth through its shadowing effect. Optoelectronic investigations reveal that these nanowires emit intense and stable blue photoluminescence at room temperature, with a broad spectrum spanning from 400 to 600 nm. This luminescence is achieved through excitation by continuous-wave ultraviolet light or two-photon absorption using femtosecond infrared light. Notably, the emission quantum efficiency of POPOP nanowires reaches 59 %, a remarkable improvement over the 12 % observed in powder counterparts when excited with 405 nm light. Transit absorption spectra indicate that ground state bleaching and excited state absorption display consistent kinetics within a 100 ps time window, suggesting the same origin from singlet excitons. The precise alignment and positioning of these nanowires make them viable for in-situ integration into photodetectors with rapid ultraviolet light responses. This study advances the controlled growth of catalyst-free nanowire arrays and enhances the understanding of the optoelectronic properties of POPOP nanowires.
{"title":"Addressable planar arrays of highly-luminescent 1,4-bis(5-phenyloxazol-2-yl)benzene nanowires via mask-confined graphoepitaxy for optoelectronic applications","authors":"Wei Zhou, Wanglong Mao, Pingyang Huang, Xiong Huang, Haoyuan Xu, Bo Wu, Xiaofang Jiang, Xiangtao Chen, Hanyu Liu, Guofu Zhou, Jinyou Xu","doi":"10.1016/j.cej.2024.157759","DOIUrl":"https://doi.org/10.1016/j.cej.2024.157759","url":null,"abstract":"This study introduces a facile method for the controlled growth of addressable planar arrays of highly luminescent, catalyst-free 1,4-bis(5-phenyloxazol-2-yl)benzene (POPOP) nanowires. By employing a hollow mask over a faceted sapphire substrate, simultaneous control over the position and orientation of the nanowires is achieved through a mask-confined graphoepitaxial growth, offering substantial advantages over traditional post-growth assembly techniques. High-temperature annealing creates parallel nanogrooves on the sapphire surface, inducing a graphoepitaxial effect that aligns the nanowires with a consistent [102] crystallographic axis. The hollow mask further aids in precisely localizing nanowire growth through its shadowing effect. Optoelectronic investigations reveal that these nanowires emit intense and stable blue photoluminescence at room temperature, with a broad spectrum spanning from 400 to 600 nm. This luminescence is achieved through excitation by continuous-wave ultraviolet light or two-photon absorption using femtosecond infrared light. Notably, the emission quantum efficiency of POPOP nanowires reaches 59 %, a remarkable improvement over the 12 % observed in powder counterparts when excited with 405 nm light. Transit absorption spectra indicate that ground state bleaching and excited state absorption display consistent kinetics within a 100 ps time window, suggesting the same origin from singlet excitons. The precise alignment and positioning of these nanowires make them viable for <em>in-situ</em> integration into photodetectors with rapid ultraviolet light responses. This study advances the controlled growth of catalyst-free nanowire arrays and enhances the understanding of the optoelectronic properties of POPOP nanowires.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"6 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1016/j.cej.2024.157771
Chenlu Xue, Haipeng Jiang, Jiafeng Cheng, Wei Gao
Safe production and widespread application of AlH3 are limited by unstable hydrogen evolution and explosion risk. Alkali (earth) metal compounds, A(E)MCs, are promising materials for inhibiting AlH3 explosions due to abundant reserves, low toxicity, and environmentally friendly. Currently, systematic evaluation of explosion inhibition effect (EIE) and understanding of inhibition mechanism is lacking. This study examines the inhibition behavior of 16 A(E)MCs for AlH3 explosions using thermal properties of A(E)MCs to select inhibitors, and EIE of different groups on AlH3 is analyzed. Notably, KH2PO4 effectively reduces explosion intensity to 0.53 MPa·m/s, with the maximum pressure and maximum pressure rise rate of 0.68 MPa and 4.63 MPa/s. EIE can be quantitatively described by relative changes in particle Al2O3, and preventing the formation of particle Al2O3 can be effective in improving EIE. Combining characterizations and simulation results reveals that A(E)MCs inhibit AlH3 explosions in both chemical and physical ways. Further, the synthesized composite inhibitor KH2PO4/SiO2, which adsorbs flame radicals, reduces explosion intensity by 92.23 % and enhances EIE by 4.33 %. We hope our work can provide theoretical support for the safe application of hydrogen storage materials and the quantitative assessment of EIE.
{"title":"Inhibition mechanism and effect assessment of alkali (Earth) metal compound-based inhibitors on aluminum hydride explosion","authors":"Chenlu Xue, Haipeng Jiang, Jiafeng Cheng, Wei Gao","doi":"10.1016/j.cej.2024.157771","DOIUrl":"https://doi.org/10.1016/j.cej.2024.157771","url":null,"abstract":"Safe production and widespread application of AlH<sub>3</sub> are limited by unstable hydrogen evolution and explosion risk. Alkali (earth) metal compounds, A(E)MCs, are promising materials for inhibiting AlH<sub>3</sub> explosions due to abundant reserves, low toxicity, and environmentally friendly. Currently, systematic evaluation of explosion inhibition effect (EIE) and understanding of inhibition mechanism is lacking. This study examines the inhibition behavior of 16 A(E)MCs for AlH<sub>3</sub> explosions using thermal properties of A(E)MCs to select inhibitors, and EIE of different groups on AlH<sub>3</sub> is analyzed. Notably, KH<sub>2</sub>PO<sub>4</sub> effectively reduces explosion intensity to 0.53 MPa·m/s, with the maximum pressure and maximum pressure rise rate of 0.68 MPa and 4.63 MPa/s. EIE can be quantitatively described by relative changes in particle Al<sub>2</sub>O<sub>3</sub>, and preventing the formation of particle Al<sub>2</sub>O<sub>3</sub> can be effective in improving EIE. Combining characterizations and simulation results reveals that A(E)MCs inhibit AlH<sub>3</sub> explosions in both chemical and physical ways. Further, the synthesized composite inhibitor KH<sub>2</sub>PO<sub>4</sub>/SiO<sub>2</sub>, which adsorbs flame radicals, reduces explosion intensity by 92.23 % and enhances EIE by 4.33 %. We hope our work can provide theoretical support for the safe application of hydrogen storage materials and the quantitative assessment of EIE.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"8 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}