Pub Date : 2024-08-22DOI: 10.1109/JERM.2024.3442073
{"title":"IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal","authors":"","doi":"10.1109/JERM.2024.3442073","DOIUrl":"https://doi.org/10.1109/JERM.2024.3442073","url":null,"abstract":"","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"C3-C3"},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643730","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1109/JERM.2024.3442071
{"title":"IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information","authors":"","doi":"10.1109/JERM.2024.3442071","DOIUrl":"https://doi.org/10.1109/JERM.2024.3442071","url":null,"abstract":"","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"C2-C2"},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643733","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19DOI: 10.1109/JERM.2024.3433008
Rakesh Singh;Dharmendra Singh;Manoj Gupta
Breast cancer imaging technology requires the artificial breast phantom for early-stage breast cancer testing. The creation of a breast phantom that can replicate the dielectric properties found in real breast tissue holds significant importance in the optimization of the imaging system where computation of the effective dielectric properties of the breast, with and without the tumor needs more attention. Therefore, in this paper, an attempt has been made to develop the dielectric mixing model approach which may represent the real scenario of breast cancer like breast with different size of the tumor. This paper is also proposed to fabricate the phantom using gelatin and water and different size of tumor such as 2 mm, 4 mm, 6 mm, 8 mm and 10 mm which has been inserted in the phantom, and obtained result were compared with dielectric mixing model approach. The dielectric properties of a fabricated phantom, and phantom embedded with different sizes of tumor, were obtained using an open-ended coaxial probe method and computed the effective dielectric properties using dielectric mixing model approach spanning the frequency range from 1 GHz to 10 GHz. It is observed that the measurement results are in quite good agreement with the result of the dielectric mixing model. The main aim of the paper is to observe the change in dielectric properties when the tumor sizes are changing and it is found that there are considerable changes in dielectric with different dimension of the tumor in the frequency range 1 GHz to 10 GHz.
{"title":"Computation of Effective Dielectric Properties Using Dielectric Mixing Model Approach for Breast Cancer Detection","authors":"Rakesh Singh;Dharmendra Singh;Manoj Gupta","doi":"10.1109/JERM.2024.3433008","DOIUrl":"https://doi.org/10.1109/JERM.2024.3433008","url":null,"abstract":"Breast cancer imaging technology requires the artificial breast phantom for early-stage breast cancer testing. The creation of a breast phantom that can replicate the dielectric properties found in real breast tissue holds significant importance in the optimization of the imaging system where computation of the effective dielectric properties of the breast, with and without the tumor needs more attention. Therefore, in this paper, an attempt has been made to develop the dielectric mixing model approach which may represent the real scenario of breast cancer like breast with different size of the tumor. This paper is also proposed to fabricate the phantom using gelatin and water and different size of tumor such as 2 mm, 4 mm, 6 mm, 8 mm and 10 mm which has been inserted in the phantom, and obtained result were compared with dielectric mixing model approach. The dielectric properties of a fabricated phantom, and phantom embedded with different sizes of tumor, were obtained using an open-ended coaxial probe method and computed the effective dielectric properties using dielectric mixing model approach spanning the frequency range from 1 GHz to 10 GHz. It is observed that the measurement results are in quite good agreement with the result of the dielectric mixing model. The main aim of the paper is to observe the change in dielectric properties when the tumor sizes are changing and it is found that there are considerable changes in dielectric with different dimension of the tumor in the frequency range 1 GHz to 10 GHz.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"42-48"},"PeriodicalIF":3.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1109/JERM.2024.3434519
Robert Streeter;Jooeun Lee;Gabriel Santamaria Botello;Zorana Popović
Determination of the thickness, permittivity, and conductivity of tissue layers in the microwave region of the electromagnetic spectrum is relevant to a number of applications, such as breast-cancer imaging and non-invasive subcutaneous tissue thermometry. Many current characterization approaches are limited to one or two layers, often required to be aqueous. This paper presents simplified modeling of a stack of tissue layers as a series of complex impedance transmission lines in the 2–20 GHz decade. A near-field, broadband interrogation antenna designed for this frequency range and placed on the skin is validated with complex reflection coefficient measurements on seventeen different stacks of materials. Initial measurements are used to build a lookup table of features that are then used to classify three independent sets of follow-up measurements on the same stacks. After processing and consideration of very thin and very low loss materials, the error rates for classification are found to be between 5.9% and 14.7%. This confirms that features extracted from a simple, calibrated one-port broadband reflection coefficient measurement provide sufficient information to identify the composition of a layered stack, modeling tissue layers.
{"title":"Classification of Multi-Layer Tissue-Mimicking Dielectric Stacks From 2 to 20 GHz","authors":"Robert Streeter;Jooeun Lee;Gabriel Santamaria Botello;Zorana Popović","doi":"10.1109/JERM.2024.3434519","DOIUrl":"https://doi.org/10.1109/JERM.2024.3434519","url":null,"abstract":"Determination of the thickness, permittivity, and conductivity of tissue layers in the microwave region of the electromagnetic spectrum is relevant to a number of applications, such as breast-cancer imaging and non-invasive subcutaneous tissue thermometry. Many current characterization approaches are limited to one or two layers, often required to be aqueous. This paper presents simplified modeling of a stack of tissue layers as a series of complex impedance transmission lines in the 2–20 GHz decade. A near-field, broadband interrogation antenna designed for this frequency range and placed on the skin is validated with complex reflection coefficient measurements on seventeen different stacks of materials. Initial measurements are used to build a lookup table of features that are then used to classify three independent sets of follow-up measurements on the same stacks. After processing and consideration of very thin and very low loss materials, the error rates for classification are found to be between 5.9% and 14.7%. This confirms that features extracted from a simple, calibrated one-port broadband reflection coefficient measurement provide sufficient information to identify the composition of a layered stack, modeling tissue layers.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"36-41"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Malignant melanoma, the aggressive form of skin cancer, progresses via radial and vertical growth. The aim of this study is to assess the feasibility of microwave-based diagnosis of melanoma at different stages of tumor progression. To this end, we used the physiological data for melanoma progression to develop a theoretical model of melanoma growth, followed by the oil-in-gelatin based tissue phantoms, which aim to mimic the dielectric behavior of the tissues under consideration. The phantoms are then dielectrically characterized using a slim-form open-ended coaxial probe by systematically sampling dielectric values across the mimicked skin surfaces at a range of points over the 0.5 – 26.5 GHz frequency range. The resulting observations revealed that the microwave spectroscopy exhibits the capability not only to distinguish between healthy and malignant skin, but also differentiate between tumors at different stages of vertical growth, which may not be visually discernible from the skin surface. The measured results are compared with the estimated dielectric values of malignant melanoma using Lichteneker's mixing equation obtained from the literature and it was observed that the measured results closely agree with the literature values.
{"title":"Models of Melanoma Growth for Assessment of Microwave-Based Diagnostic Tools","authors":"Jasmine Boparai;Rachel Tchinov;Oliver Miller;Yanis Jallouli;Milica Popović","doi":"10.1109/JERM.2024.3430315","DOIUrl":"https://doi.org/10.1109/JERM.2024.3430315","url":null,"abstract":"Malignant melanoma, the aggressive form of skin cancer, progresses via radial and vertical growth. The aim of this study is to assess the feasibility of microwave-based diagnosis of melanoma at different stages of tumor progression. To this end, we used the physiological data for melanoma progression to develop a theoretical model of melanoma growth, followed by the oil-in-gelatin based tissue phantoms, which aim to mimic the dielectric behavior of the tissues under consideration. The phantoms are then dielectrically characterized using a slim-form open-ended coaxial probe by systematically sampling dielectric values across the mimicked skin surfaces at a range of points over the 0.5 – 26.5 GHz frequency range. The resulting observations revealed that the microwave spectroscopy exhibits the capability not only to distinguish between healthy and malignant skin, but also differentiate between tumors at different stages of vertical growth, which may not be visually discernible from the skin surface. The measured results are compared with the estimated dielectric values of malignant melanoma using Lichteneker's mixing equation obtained from the literature and it was observed that the measured results closely agree with the literature values.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"305-315"},"PeriodicalIF":3.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1109/JERM.2024.3426270
Ali Kaiss;Md. Asiful Islam;Asimina Kiourti
We report Beat Estimation, a novel method used to calculate Heart Rate Variability (HRV) from low Signal to Noise Ratio (SNR) data (−7 dB to −4 dB in this work) acquired via wearable magnetocardiography (MCG). MCG activity is first collected using an in-house wearable sensor and filtered to remove noise outside the band of interest. Beat Estimation extracts a single heart beat from the filtered recording and correlates it with a small number of beats individually to average out the remaining noise. The de-noised beat is then correlated with the full recording to identify the location of each of the heart beats. Using these locations, HRV parameters are, finally, calculated. Results show $sim$99.9% accuracy in estimating HRV metrics using beat-to-beat intervals as opposed to traditional R-to-R-peak intervals. The average accuracy of detecting the true location of beats is shown to increase to 96.43% using Beat Estimation as opposed to 59.98% using our previous method that relied on R-peak detection. In summary, Beat Estimation renders wearable MCG sensors capable of accurately estimating HRV, despite the low SNR levels associated with sensor operation. The approach can be game-changing in assessing heart health, cardiovascular fitness, stress levels, cognitive workload, and more.
{"title":"Estimating Heart Rate Variability in Challenging Low SNR Regimes Using Wearable Magnetocardiography Sensors","authors":"Ali Kaiss;Md. Asiful Islam;Asimina Kiourti","doi":"10.1109/JERM.2024.3426270","DOIUrl":"https://doi.org/10.1109/JERM.2024.3426270","url":null,"abstract":"We report <sc>Beat Estimation</small>, a novel method used to calculate Heart Rate Variability (HRV) from low Signal to Noise Ratio (SNR) data (−7 dB to −4 dB in this work) acquired via wearable magnetocardiography (MCG). MCG activity is first collected using an in-house wearable sensor and filtered to remove noise outside the band of interest. <sc>Beat Estimation</small> extracts a single heart beat from the filtered recording and correlates it with a small number of beats individually to average out the remaining noise. The de-noised beat is then correlated with the full recording to identify the location of each of the heart beats. Using these locations, HRV parameters are, finally, calculated. Results show <inline-formula><tex-math>$sim$</tex-math></inline-formula>99.9% accuracy in estimating HRV metrics using beat-to-beat intervals as opposed to traditional R-to-R-peak intervals. The average accuracy of detecting the true location of beats is shown to increase to 96.43% using <sc>Beat Estimation</small> as opposed to 59.98% using our previous method that relied on R-peak detection. In summary, <sc>Beat Estimation</small> renders wearable MCG sensors capable of accurately estimating HRV, despite the low SNR levels associated with sensor operation. The approach can be game-changing in assessing heart health, cardiovascular fitness, stress levels, cognitive workload, and more.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"27-35"},"PeriodicalIF":3.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1109/JERM.2024.3420737
Yuchen Ma;Changrong Liu;Yong Huang;Hua Ke;Xueguan Liu
To improve the wireless power transfer efficiency (PTE) of implantable medical devices (IMDs), a receiving rectenna consisting of a magneto-electric (ME) heterostructure mechanical antenna combined with an RF inductive coil is proposed in this paper. The receiving antenna, which operates at 54 kHz, consists of a ME antenna of 30 × 10 × 0.456 mm3 and a 60-turn inductive coil wound of 30 × 12 × 3 mm3. The receiving and transmitting antennas are analyzed and the wireless power transfer performance is measured. The specific absorption rate (SAR) at the resonant frequency is simulated to satisfy the safety standard. The final measured PTE at a distance of 15 mm between the transmitting coil and the proposed receiving antenna is 2.8159%, which is considerably higher than that of a single ME antenna or an inductive coil. The proposed receiving antenna is suitable for wireless biomedical devices.
{"title":"Combined Magnetoelectric/Coil Receiving Antenna for Biomedical Wireless Power Transfer","authors":"Yuchen Ma;Changrong Liu;Yong Huang;Hua Ke;Xueguan Liu","doi":"10.1109/JERM.2024.3420737","DOIUrl":"https://doi.org/10.1109/JERM.2024.3420737","url":null,"abstract":"To improve the wireless power transfer efficiency (PTE) of implantable medical devices (IMDs), a receiving rectenna consisting of a magneto-electric (ME) heterostructure mechanical antenna combined with an RF inductive coil is proposed in this paper. The receiving antenna, which operates at 54 kHz, consists of a ME antenna of 30 × 10 × 0.456 mm<sup>3</sup> and a 60-turn inductive coil wound of 30 × 12 × 3 mm<sup>3</sup>. The receiving and transmitting antennas are analyzed and the wireless power transfer performance is measured. The specific absorption rate (SAR) at the resonant frequency is simulated to satisfy the safety standard. The final measured PTE at a distance of 15 mm between the transmitting coil and the proposed receiving antenna is 2.8159%, which is considerably higher than that of a single ME antenna or an inductive coil. The proposed receiving antenna is suitable for wireless biomedical devices.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"15-26"},"PeriodicalIF":3.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1109/JERM.2024.3419232
Leonardo Makinistian;Leandro Vives
Over the last decades, the interest on the biological effects of static and extremely low frequency magnetic fields (ELF-MF) on living organisms has been continuously growing. A myriad of bioeffects has been reported in the most diverse models, from bacteria and fungi to plants and even humans. Motivation has encompassed the most basic scientific curiosity, but also the concern for possible detrimental effects and the search for therapeutic and technological uses of ELF-MF. Experimentation has, to some extent, also focused on putting to test theoretical models of interaction. A substantial variety of devices, and even whole facilities, were developed to explore this yet poorly understood topic. In this review, we provide an up-to-date survey of the said devices and facilities, plus a revision on the various types of shielding reported in the literature. Finally, we enumerate a wide range of possible applications that are currently under study, whose development inevitably depends on an appropriate choice of field-generating devices, facilities and shielding. This should help researchers design their own experimental set ups from a wide perspective of what has already been developed and tested to date.
{"title":"Devices, Facilities, and Shielding for Biological Experiments With Static and Extremely Low Frequency Magnetic Fields","authors":"Leonardo Makinistian;Leandro Vives","doi":"10.1109/JERM.2024.3419232","DOIUrl":"https://doi.org/10.1109/JERM.2024.3419232","url":null,"abstract":"Over the last decades, the interest on the biological effects of static and extremely low frequency magnetic fields (ELF-MF) on living organisms has been continuously growing. A myriad of bioeffects has been reported in the most diverse models, from bacteria and fungi to plants and even humans. Motivation has encompassed the most basic scientific curiosity, but also the concern for possible detrimental effects and the search for therapeutic and technological uses of ELF-MF. Experimentation has, to some extent, also focused on putting to test theoretical models of interaction. A substantial variety of devices, and even whole facilities, were developed to explore this yet poorly understood topic. In this review, we provide an up-to-date survey of the said devices and facilities, plus a revision on the various types of shielding reported in the literature. Finally, we enumerate a wide range of possible applications that are currently under study, whose development inevitably depends on an appropriate choice of field-generating devices, facilities and shielding. This should help researchers design their own experimental set ups from a wide perspective of what has already been developed and tested to date.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 2","pages":"141-156"},"PeriodicalIF":3.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144117311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}