Pub Date : 2023-08-29DOI: 10.1109/JERM.2023.3307220
Muthu Rattina Subash Ramu;Kavitha Arunachalam
A 434 MHz patch antenna encapsulated in a planar metal cavity is reported for hyperthermia (HT) treatment of superficial cancers. The optimized patch antenna is 3.6 cm $ times$ 3.6 cm with return loss > 20 dB, ―10 dB bandwidth of 14 MHz, and predominantly tangential electric field in the near field at 434 MHz. Antenna effective field size (EFS) and penetration depth observed from simulation are 17.22 cm2 and 1.26 cm, respectively. The antenna optimized using bulk body tissue was assessed on heterogeneous human body model followed by experimental verification on tissue-mimicking phantom and ex-vivo bovine tissues. Thermal EFS (TEFS) and thermal effective penetration depth (TEPD) of 20.92 cm2 and 2.05 cm measured in tissue phantoms are comparable to 18.61 cm2 and 2.19 cm determined in simulations. Experiments on homogeneous tissue phantom and heterogeneous ex-vivo bovine tissues show localized power deposition in agreement with the simulations. The metal encapsulated patch antenna with EFS to aperture area ratio of 1.33 is well suited for HT treatment of localized superficial cancer. It is also concluded that it could be used for designing planar array capable of delivering adjustable heating pattern to treat large area diffused superficial cancers.
{"title":"Miniaturized 434 MHz Cavity Encapsulated Patch Antenna for Superficial Hyperthermia Treatment","authors":"Muthu Rattina Subash Ramu;Kavitha Arunachalam","doi":"10.1109/JERM.2023.3307220","DOIUrl":"10.1109/JERM.2023.3307220","url":null,"abstract":"A 434 MHz patch antenna encapsulated in a planar metal cavity is reported for hyperthermia (HT) treatment of superficial cancers. The optimized patch antenna is 3.6 cm $ times$ 3.6 cm with return loss > 20 dB, ―10 dB bandwidth of 14 MHz, and predominantly tangential electric field in the near field at 434 MHz. Antenna effective field size (EFS) and penetration depth observed from simulation are 17.22 cm2 and 1.26 cm, respectively. The antenna optimized using bulk body tissue was assessed on heterogeneous human body model followed by experimental verification on tissue-mimicking phantom and ex-vivo bovine tissues. Thermal EFS (TEFS) and thermal effective penetration depth (TEPD) of 20.92 cm2 and 2.05 cm measured in tissue phantoms are comparable to 18.61 cm2 and 2.19 cm determined in simulations. Experiments on homogeneous tissue phantom and heterogeneous ex-vivo bovine tissues show localized power deposition in agreement with the simulations. The metal encapsulated patch antenna with EFS to aperture area ratio of 1.33 is well suited for HT treatment of localized superficial cancer. It is also concluded that it could be used for designing planar array capable of delivering adjustable heating pattern to treat large area diffused superficial cancers.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"7 4","pages":"392-399"},"PeriodicalIF":3.2,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77017011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-22DOI: 10.1109/JERM.2023.3302662
{"title":"IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information","authors":"","doi":"10.1109/JERM.2023.3302662","DOIUrl":"https://doi.org/10.1109/JERM.2023.3302662","url":null,"abstract":"","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"7 3","pages":"C2-C2"},"PeriodicalIF":3.2,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7397573/10226431/10226442.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50291929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-22DOI: 10.1109/JERM.2023.3302666
{"title":"IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal","authors":"","doi":"10.1109/JERM.2023.3302666","DOIUrl":"https://doi.org/10.1109/JERM.2023.3302666","url":null,"abstract":"","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"7 3","pages":"C3-C3"},"PeriodicalIF":3.2,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7397573/10226431/10226437.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50404733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, we report a coaxial antenna consisting of a flexible Y-monopole with dual-band operation and low-profile wideband flexible ferrite choke for delivering localized HT treatment at shallow insertion depth of 50 mm inside the cervix using custom fabricated non-metallic intrauterine cervix tandem of 8 mm outer diameter and 1 mm wall thickness. Variable treatment coverage was achieved by selecting the excitation of the dual-band Y-monopole as 915 and 1300 MHz. The Y-monopole is a coaxial wire with a Y-split in the exposed inner conductor and wideband flexible ferrite sheet on the outer conductor to suppress the secondary current. The water loaded Y-monopole inside the intrauterine tandem cervix applicator with 15° bend angle resonated at 915 and 1300 MHz for arm lengths of 21 and 13.5 mm, respectively. The heating characteristics of Y-monopole was assessed using tissue-mimicking phantoms. Phantom measurements indicate dual band operation with power reflection coefficient $ leq -$