Copper complexes inspired by O2-activating enzymes have been widely investigated as molecular water oxidation catalysts, capable of facile and reversible O─O bond formation and cleavage under mild conditions. In this study, two copper phenanthroline complexes, namely, Cu(phen) and Cu(dophen), exhibit high turnover frequencies (TOFs) of 74 ± 13 and (5.66 ± 0.29) × 103 s−1 for water oxidation, respectively. Moreover, amino acid-functionalized carbon dots (CDs) were used to support the adhesion of the [Cu] complexes onto the electrode, significantly enhancing the TOFs of (2.80 ± 0.12) × 103 and (4.11 ± 0.24) × 104 s−1, respectively, exceeding the activity of photosystem II in nature. Remarkably, the amino acid-functionalized CDs provide a secondary sphere that mimics the catalytic microenvironment of the copper centre, which promotes proton-coupled electron transfer and O─O bond formation. Finally, the photovoltaic-electrolysis (PVE) system was established using CDs-supported Cu catalysts and commercial silicon solar panels, achieving a high solar-to-hydrogen efficiency of 11.59% under the illumination of AM 1.5 G. This represents the most efficient solar-driven water splitting system based on copper-based catalysts to date, introducing the biomimetic secondary sphere to a “proton-rocking” process for water oxidation catalysis and application of the PVE system.
{"title":"Synergistic Effect of Bio-Inspired Microenvironment Modulation and Catalytic Site Design Enhances the Oxygen Evolution Performance of Copper-Phenanthroline Catalysts","authors":"Mu-Han Zhou, Tao Zheng, Rui-Qi Li, Yi-Lin Xie, Gui-Lin Ruan, Fentahun Wondu Dagnaw, Xu-Bing Li, Zhi-Xing Wu, Qing-Xiao Tong, Jing-Xin Jian","doi":"10.1002/cey2.70063","DOIUrl":"https://doi.org/10.1002/cey2.70063","url":null,"abstract":"<p>Copper complexes inspired by O<sub>2</sub>-activating enzymes have been widely investigated as molecular water oxidation catalysts, capable of facile and reversible O─O bond formation and cleavage under mild conditions. In this study, two copper phenanthroline complexes, namely, Cu(phen) and Cu(dophen), exhibit high turnover frequencies (TOFs) of 74 ± 13 and (5.66 ± 0.29) × 10<sup>3</sup> s<sup>−1</sup> for water oxidation, respectively. Moreover, amino acid-functionalized carbon dots (CDs) were used to support the adhesion of the [Cu] complexes onto the electrode, significantly enhancing the TOFs of (2.80 ± 0.12) × 10<sup>3</sup> and (4.11 ± 0.24) × 10<sup>4</sup> s<sup>−1</sup>, respectively, exceeding the activity of photosystem II in nature. Remarkably, the amino acid-functionalized CDs provide a secondary sphere that mimics the catalytic microenvironment of the copper centre, which promotes proton-coupled electron transfer and O─O bond formation. Finally, the photovoltaic-electrolysis (PVE) system was established using CDs-supported Cu catalysts and commercial silicon solar panels, achieving a high solar-to-hydrogen efficiency of 11.59% under the illumination of AM 1.5 G. This represents the most efficient solar-driven water splitting system based on copper-based catalysts to date, introducing the biomimetic secondary sphere to a “proton-rocking” process for water oxidation catalysis and application of the PVE system.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 10","pages":""},"PeriodicalIF":24.2,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.70063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145371898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Unbeom Baeck, Min-Cheol Kim, Duong Nguyen Nguyen, Jaekyum Kim, Jaehyoung Lim, Yujin Chae, Namsoo Shin, Heechae Choi, Joon Young Kim, Chan-Hwa Chung, Woo-Seok Choe, Ho Seok Park, Uk Sim, Jung Kyu Kim
Back cover image: The rational design of transition metal incorporated electrocatalyst for hydrogen evolution reaction is an effective way to produce economical hydrogen. However, the practical application of data-driven methodology is limited due to the complexity of electrochemical systems. In article number cey2.70006, Kim and Sim et al. present the machine learning based facile strategy to optimize the catalyst and experimental conditions. The trained model accurately predicts experimental variables, which are validated by proton exchange membrane-based water electrolysis system. This work provides insight into the simplified approach for the design optimization of machine learning-assisted catalysts and systems.