Pub Date : 2024-04-22DOI: 10.1109/OJAP.2024.3391799
Tian-Xi Feng;Lei Zhu;Hui Li
This article presents the synthesis and design of 3-D microwave absorber with 70° angular stability for C-band and X-band. The operating principle is firstly investigated, where the absorber is considered as an energy convertor. With the help of our proposed universal equivalent transmission line (TL) model, the absorptive performance can be accordingly synthesized. Then, a design method for efficient absorption under large angles is presented. By selecting a proper synthesized angle (SA), the angular stability can be effectively improved. After that, the prototype with 70° angular stability is designed as an example with structural realization and practical implementation. Measurements agree well with synthesized and simulated results, successfully verifying the proposed design method. For specific C-band and X-band applications, the measured average absorption ratios (ARs) under normal incidence, 45° incidence, and 70° incidence are 94.2%, 94.0%, and 92.3%. Minimum measured ARs within the operating bandwidth are 88.4%, 81.5%, and 82.0% for normal, 45°, and 70° incidences. Besides, the proposed absorber element owns the advantage of simple structure with only one resistor. Such a class of microwave absorber is a potential candidate for wide coverage electromagnetic absorption.
本文介绍了具有 70° 角稳定性的 C 波段和 X 波段三维微波吸收器的合成和设计。首先研究了吸收器的工作原理,吸收器被视为一个能量转换器。在我们提出的通用等效传输线(TL)模型的帮助下,吸收性能可以得到相应的综合。然后,介绍了大角度下高效吸收的设计方法。通过选择适当的合成角度(SA),可以有效提高角度稳定性。随后,以 70° 角稳定性原型为例,设计了结构实现和实际应用。测量结果与合成和模拟结果完全吻合,成功验证了所提出的设计方法。在特定的 C 波段和 X 波段应用中,正常入射角、45° 入射角和 70° 入射角下测得的平均吸收比(AR)分别为 94.2%、94.0% 和 92.3%。在正常入射角、45° 入射角和 70° 入射角下,工作带宽内的最小测量吸收比分别为 88.4%、81.5% 和 82.0%。此外,所提出的吸收元件结构简单,只有一个电阻器。这类微波吸收器是广覆盖电磁吸收的潜在候选器件。
{"title":"Synthesis and Design of 3-D Microwave Absorber With 70° Angular Stability for C-Band and X-Band","authors":"Tian-Xi Feng;Lei Zhu;Hui Li","doi":"10.1109/OJAP.2024.3391799","DOIUrl":"10.1109/OJAP.2024.3391799","url":null,"abstract":"This article presents the synthesis and design of 3-D microwave absorber with 70° angular stability for C-band and X-band. The operating principle is firstly investigated, where the absorber is considered as an energy convertor. With the help of our proposed universal equivalent transmission line (TL) model, the absorptive performance can be accordingly synthesized. Then, a design method for efficient absorption under large angles is presented. By selecting a proper synthesized angle (SA), the angular stability can be effectively improved. After that, the prototype with 70° angular stability is designed as an example with structural realization and practical implementation. Measurements agree well with synthesized and simulated results, successfully verifying the proposed design method. For specific C-band and X-band applications, the measured average absorption ratios (ARs) under normal incidence, 45° incidence, and 70° incidence are 94.2%, 94.0%, and 92.3%. Minimum measured ARs within the operating bandwidth are 88.4%, 81.5%, and 82.0% for normal, 45°, and 70° incidences. Besides, the proposed absorber element owns the advantage of simple structure with only one resistor. Such a class of microwave absorber is a potential candidate for wide coverage electromagnetic absorption.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"5 4","pages":"933-941"},"PeriodicalIF":3.5,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10506238","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140634503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-22DOI: 10.1109/OJAP.2024.3392160
Amine Essa;Eqab Almajali;Soliman Mahmoud;Rony E. Amaya;Saqer S. Alja’Afreh;Muhammad Ikram
This paper presents a thorough review of the main techniques used for wireless power transfer (WPT) in implantable medical devices (IMDs) with a specific focus on the techniques that employ implantable antennas for energy harvesting (electromagnetic (EM) WPT techniques). The techniques are first analysed and compared based on the IMD application, power transfer efficiency (PTE), transfer distance, implantation depth, implant size, operating frequency, and specific absorption rate (SAR). The study provides a critical analysis of the main WPT system’s as well as implantable antennas’ design parameters that control the PTE and hence the charging rate of the IMD. The investigated design parameters include the WPT TX-RX antennas’ gain, WPT-RX size, transfer distance, and the WPT TX-RX antennas’ alignment. Tutorial simulation examples are included to showcase the impact of these design parameters on the amount of power coupled to the IMD. The paper also discusses recent techniques used for improving the amount of power received by implantable antennas, and hence higher PTE and IMDs charging rate, namely, the use of implantable MIMO WPT-RX antennas to mitigate antennas misalignment and the use of metamaterial surfaces to focus the power emitted from WPT-TX antennas towards the implantable WPT-RX antennas. The findings and observations reported in this study serve as a valuable resource for designers and researchers to comprehend the effect of various WPT TX-RX antennas design parameters on PTE. The analysis and full-wave simulation examples, included in the paper, are shown very useful in understanding the challenges associated with WPT in IMDs and in proposing potential solutions.
{"title":"Wireless Power Transfer for Implantable Medical Devices: Impact of Implantable Antennas on Energy Harvesting","authors":"Amine Essa;Eqab Almajali;Soliman Mahmoud;Rony E. Amaya;Saqer S. Alja’Afreh;Muhammad Ikram","doi":"10.1109/OJAP.2024.3392160","DOIUrl":"10.1109/OJAP.2024.3392160","url":null,"abstract":"This paper presents a thorough review of the main techniques used for wireless power transfer (WPT) in implantable medical devices (IMDs) with a specific focus on the techniques that employ implantable antennas for energy harvesting (electromagnetic (EM) WPT techniques). The techniques are first analysed and compared based on the IMD application, power transfer efficiency (PTE), transfer distance, implantation depth, implant size, operating frequency, and specific absorption rate (SAR). The study provides a critical analysis of the main WPT system’s as well as implantable antennas’ design parameters that control the PTE and hence the charging rate of the IMD. The investigated design parameters include the WPT TX-RX antennas’ gain, WPT-RX size, transfer distance, and the WPT TX-RX antennas’ alignment. Tutorial simulation examples are included to showcase the impact of these design parameters on the amount of power coupled to the IMD. The paper also discusses recent techniques used for improving the amount of power received by implantable antennas, and hence higher PTE and IMDs charging rate, namely, the use of implantable MIMO WPT-RX antennas to mitigate antennas misalignment and the use of metamaterial surfaces to focus the power emitted from WPT-TX antennas towards the implantable WPT-RX antennas. The findings and observations reported in this study serve as a valuable resource for designers and researchers to comprehend the effect of various WPT TX-RX antennas design parameters on PTE. The analysis and full-wave simulation examples, included in the paper, are shown very useful in understanding the challenges associated with WPT in IMDs and in proposing potential solutions.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"5 3","pages":"739-758"},"PeriodicalIF":4.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10506213","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140634504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-12DOI: 10.1109/OJAP.2024.3388327
Sara Willhammar;Liesbet van der Perre;Fredrik Tufvesson
One of the required communication solutions to support novel use cases, e.g., in industrial environments, for 5G systems and beyond is ultra-reliability low-latency communication (URLLC). An enabling technology for URLLC is massive multiple-input multiple-output (MIMO), which with its large antenna arrays can increase reliability due to improved user separation, array gain and the channel hardening effect. Measurements have been performed in an operating factory environment at 3.7 GHz with a co-located massive MIMO array and a unique randomly distributed array. Channel hardening can appear when the number of antennas is increased such that the variations of channel gain (small-scale fading) is decreased and it is here quantified. The cumulative distribution function (CDF) of the channel gains then becomes steeper and its tail is reduced. This CDF is modeled and the required fading margins are quantified. By deploying a distributed array, the large-scale power variations can also be reduced, further improving reliability. The large array in this rich scattering environment, creates a more reliable channel as it approaches an independent identically distributed (i.i.d.) complex Gaussian channel, indicating that one can rethink the system design in terms of, e.g., channel coding and re-transmission strategies, in order to reduce latency. To conclude, massive MIMO is a highly interesting technology for reliable connectivity in reflective and heavily shadowed industrial environments.
{"title":"Fading in Reflective and Heavily Shadowed Industrial Environments With Large Antenna Arrays","authors":"Sara Willhammar;Liesbet van der Perre;Fredrik Tufvesson","doi":"10.1109/OJAP.2024.3388327","DOIUrl":"10.1109/OJAP.2024.3388327","url":null,"abstract":"One of the required communication solutions to support novel use cases, e.g., in industrial environments, for 5G systems and beyond is ultra-reliability low-latency communication (URLLC). An enabling technology for URLLC is massive multiple-input multiple-output (MIMO), which with its large antenna arrays can increase reliability due to improved user separation, array gain and the channel hardening effect. Measurements have been performed in an operating factory environment at 3.7 GHz with a co-located massive MIMO array and a unique randomly distributed array. Channel hardening can appear when the number of antennas is increased such that the variations of channel gain (small-scale fading) is decreased and it is here quantified. The cumulative distribution function (CDF) of the channel gains then becomes steeper and its tail is reduced. This CDF is modeled and the required fading margins are quantified. By deploying a distributed array, the large-scale power variations can also be reduced, further improving reliability. The large array in this rich scattering environment, creates a more reliable channel as it approaches an independent identically distributed (i.i.d.) complex Gaussian channel, indicating that one can rethink the system design in terms of, e.g., channel coding and re-transmission strategies, in order to reduce latency. To conclude, massive MIMO is a highly interesting technology for reliable connectivity in reflective and heavily shadowed industrial environments.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"5 6","pages":"1455-1464"},"PeriodicalIF":3.5,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10498065","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140587303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-10DOI: 10.1109/OJAP.2024.3387331
Braden P. Smyth;Hamed Khoshniyat;Mahdi Barati;Samuel Clark;Rashid Mirzavand;Ashwin K. Iyer
This paper presents an energy-autonomous antenna system that combines energy harvesting (EH) with radio frequency identification (RFID) communication to measure the battery charge level in real time. The system employs a dual-band patch antenna, a dual-band matching stub, and a diplexer, which are designed with metamaterial-based electromagnetic bandgap technology (MTM-EBG). Due to the MTM-EBG’s uniplanar and via-less design, it can be directly embedded into the antenna and microstrip feed components, thereby contributing to their compactness, lowering cost, and simplifying fabrication. The RFID and EH portions of the system operate at frequencies of 915 MHz and 2.48 GHz, respectively. This system operates by rectifying RF power in the EH band in order to charge a supercapacitor battery, while a varactor imparts phase to the backscattered RFID signal. The phase of reflection is related to the level of charge in the battery, which is then read by the RFID reader. By acquiring the tag and charging information without power, this structure is energy autonomous, so there is no need for a permanent power source that will need to be replaced over time. Using supercapacitors or rechargeable batteries, the proposed structure can provide power for critical functions while monitoring their charging status remotely. The antenna system and RFID/EH architecture have been fabricated and measured, and battery level monitoring has been demonstrated.
本文介绍了一种能量自主天线系统,该系统将能量收集(EH)与射频识别(RFID)通信相结合,可实时测量电池电量。该系统采用基于超材料电磁带隙技术(MTM-EBG)设计的双频贴片天线、双频匹配桩和双工器。由于 MTM-EBG 的单平面和无通孔设计,它可以直接嵌入天线和微带馈电元件中,从而有助于它们的紧凑性、降低成本和简化制造。系统的 RFID 和 EH 部分的工作频率分别为 915 MHz 和 2.48 GHz。该系统通过整流 EH 波段的射频功率来为超级电容器电池充电,而变容器则为反向散射的射频识别(RFID)信号提供相位。反射相位与电池中的电量有关,然后由 RFID 阅读器读取。这种结构无需电源即可获取标签和充电信息,因此无需长期更换的永久电源。利用超级电容器或可充电电池,拟议的结构可为关键功能提供电源,同时远程监控其充电状态。天线系统和 RFID/EH 架构已经制作完成并进行了测量,电池电量监测也已演示。
{"title":"Energy Autonomous Dual-Band Antenna System for RFID-Based Real-Time Battery Level Monitoring","authors":"Braden P. Smyth;Hamed Khoshniyat;Mahdi Barati;Samuel Clark;Rashid Mirzavand;Ashwin K. Iyer","doi":"10.1109/OJAP.2024.3387331","DOIUrl":"10.1109/OJAP.2024.3387331","url":null,"abstract":"This paper presents an energy-autonomous antenna system that combines energy harvesting (EH) with radio frequency identification (RFID) communication to measure the battery charge level in real time. The system employs a dual-band patch antenna, a dual-band matching stub, and a diplexer, which are designed with metamaterial-based electromagnetic bandgap technology (MTM-EBG). Due to the MTM-EBG’s uniplanar and via-less design, it can be directly embedded into the antenna and microstrip feed components, thereby contributing to their compactness, lowering cost, and simplifying fabrication. The RFID and EH portions of the system operate at frequencies of 915 MHz and 2.48 GHz, respectively. This system operates by rectifying RF power in the EH band in order to charge a supercapacitor battery, while a varactor imparts phase to the backscattered RFID signal. The phase of reflection is related to the level of charge in the battery, which is then read by the RFID reader. By acquiring the tag and charging information without power, this structure is energy autonomous, so there is no need for a permanent power source that will need to be replaced over time. Using supercapacitors or rechargeable batteries, the proposed structure can provide power for critical functions while monitoring their charging status remotely. The antenna system and RFID/EH architecture have been fabricated and measured, and battery level monitoring has been demonstrated.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"5 5","pages":"1140-1151"},"PeriodicalIF":3.5,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10496470","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140579125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-10DOI: 10.1109/OJAP.2024.3384397
Ketavath Kumar Naik;Bokkisam Venkata Sai Sailaja
A compact dual-band reconfigurable elliptical-shaped patch antenna designed in this article. The proposed patch antenna with rectangular strip lines and an elliptical with half-moon slots presented to operate dual bands. To achieve the reconfigurability, RF-MEMS switches proposed on rectangular strip lines of the patch antenna. The capacitive shunt type RF-switch designed the proposed elliptical antenna to operate at 5G applications. The displacement of the proposed RF-MEMS switch with an air gap of $3~mu $