Pub Date : 2024-09-01DOI: 10.1016/j.fmre.2023.03.021
Core-shell nanoparticles (CSNPs) are widely used in energy harvesting, conversion, and thermal management due to the excellent physical properties of different components. Because of the synergistic interaction between the core and the shell, the thermal radiative properties are expected to be further enhanced. In this work, we achieve near-field radiative heat transfer (NFRHT) enhancement between SiC@Drude CSNPs. Numerical results show that the total heat flux between NPs is 1.47 times and 9.98 times higher than homogeneous SiC and Drude NPs at the same radius when the core volume fraction is 0.76. Surface modes hybridization arising from the interfaces of the shell-core and shell-air contributes to the improved thermal radiation. The effect of shift frequency on the NFRHT between SiC@Drude CSNPs is studied, showing that the enhancement ratio of NFRHT between CSNPs can reach 4.34 at a shift frequency of 1 × 1014 rad/s, which is 38.34 times higher than the previous work. This study demonstrates that surface modes hybridization in CSNPs can significantly improve NFRHT and open a novel path for high-efficiency energy transport at the nanoscale.
{"title":"Enhanced near-field radiative heat transfer between core-shell nanoparticles through surface modes hybridization","authors":"","doi":"10.1016/j.fmre.2023.03.021","DOIUrl":"10.1016/j.fmre.2023.03.021","url":null,"abstract":"<div><div>Core-shell nanoparticles (CSNPs) are widely used in energy harvesting, conversion, and thermal management due to the excellent physical properties of different components. Because of the synergistic interaction between the core and the shell, the thermal radiative properties are expected to be further enhanced. In this work, we achieve near-field radiative heat transfer (NFRHT) enhancement between SiC@Drude CSNPs. Numerical results show that the total heat flux between NPs is 1.47 times and 9.98 times higher than homogeneous SiC and Drude NPs at the same radius when the core volume fraction is 0.76. Surface modes hybridization arising from the interfaces of the shell-core and shell-air contributes to the improved thermal radiation. The effect of shift frequency on the NFRHT between SiC@Drude CSNPs is studied, showing that the enhancement ratio of NFRHT between CSNPs can reach 4.34 at a shift frequency of 1 × 10<sup>14</sup> rad/s, which is 38.34 times higher than the previous work. This study demonstrates that surface modes hybridization in CSNPs can significantly improve NFRHT and open a novel path for high-efficiency energy transport at the nanoscale.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 5","pages":"Pages 1092-1099"},"PeriodicalIF":6.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43097142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.fmre.2022.08.022
Using in situ observations collected by a drifting air–sea interface buoy (DrIB) in the northern South China Sea from August 30 to September 13, 2018, the extreme air–sea turbulent fluxes that occurred from September 8 to 13 during tropical cyclone (TC) Barijat were investigated. The most striking features were substantial increases in momentum and heat fluxes, with maximum increases of 10.8 m s−1 in the wind speed (WS), 0.73 N m−2 in the wind stress, 68.1 W m−2 in the sensible heat fluxes (SH) and 258.8 W m−2 in the latent heat fluxes (LH). The maximum WS, wind stress, SH and LH values amounted to 15.3 m s−1, 0.8 N m−2, 70.9 W m−2 and 329.9 W m−2, respectively. Using these new DrIB observations, the performance of two state-of-the-art, high-resolution reanalysis products, ERA5 and MERRA2, was assessed. The consistency of the observed values with ERA5 was slightly better than with MERRA2, reflected in higher correlations but both products underestimated the WS during TC conditions. In calm weather conditions, the turbulent heat fluxes were overestimated, because they simulated a too dry and cold atmospheric state, enhancing the air–sea differences in temperature and humidity. Considering that an accurate representation of the air–sea turbulent and momentum fluxes is essential for understanding and predicting ocean and atmospheric variability, our findings indicate that more high-quality temperature and relative humidity observations are required to evaluate and improve existing reanalysis products.
利用2018年8月30日至9月13日南海北部漂流海气界面浮标(DrIB)采集的原位观测资料,研究了9月8日至13日热带气旋(TC)"百里嘉 "期间发生的极端海气湍流通量。最显著的特征是动量和热通量大幅增加,最大风速(WS)增加了 10.8 m s-1,风应力增加了 0.73 N m-2,显热通量(SH)增加了 68.1 W m-2,潜热通量(LH)增加了 258.8 W m-2。最大 WS 值、风压值、SH 值和 LH 值分别为 15.3 m s-1、0.8 N m-2、70.9 W m-2 和 329.9 W m-2。利用这些新的 DrIB 观测数据,对两种最先进的高分辨率再分析产品 ERA5 和 MERRA2 的性能进行了评估。观测值与ERA5的一致性略好于MERRA2,反映在更高的相关性上,但这两种产品都低估了TC条件下的WS。在风平浪静的天气条件下,湍流热通量被高估了,因为它们模拟的大气状态过于干燥和寒冷,加剧了海气温湿度差异。考虑到准确表示海气湍流和动量通量对于理解和预测海洋和大气变率至关重要,我们的研究结果表明,需要更多高质量的温度和相对湿度观测资料来评估和改进现有的再分析产品。
{"title":"Extreme air–sea turbulent fluxes during tropical cyclone Barijat observed by a newly designed drifting buoy","authors":"","doi":"10.1016/j.fmre.2022.08.022","DOIUrl":"10.1016/j.fmre.2022.08.022","url":null,"abstract":"<div><div>Using <em>in situ</em> observations collected by a drifting air–sea interface buoy (DrIB) in the northern South China Sea from August 30 to September 13, 2018, the extreme air–sea turbulent fluxes that occurred from September 8 to 13 during tropical cyclone (TC) Barijat were investigated. The most striking features were substantial increases in momentum and heat fluxes, with maximum increases of 10.8 m s<sup>−1</sup> in the wind speed (WS), 0.73 N m<sup>−2</sup> in the wind stress, 68.1 W m<sup>−2</sup> in the sensible heat fluxes (SH) and 258.8 W m<sup>−2</sup> in the latent heat fluxes (LH). The maximum WS, wind stress, SH and LH values amounted to 15.3 m s<sup>−1</sup>, 0.8 N m<sup>−2</sup>, 70.9 W m<sup>−2</sup> and 329.9 W m<sup>−2</sup>, respectively. Using these new DrIB observations, the performance of two state-of-the-art, high-resolution reanalysis products, ERA5 and MERRA2, was assessed. The consistency of the observed values with ERA5 was slightly better than with MERRA2, reflected in higher correlations but both products underestimated the WS during TC conditions. In calm weather conditions, the turbulent heat fluxes were overestimated, because they simulated a too dry and cold atmospheric state, enhancing the air–sea differences in temperature and humidity. Considering that an accurate representation of the air–sea turbulent and momentum fluxes is essential for understanding and predicting ocean and atmospheric variability, our findings indicate that more high-quality temperature and relative humidity observations are required to evaluate and improve existing reanalysis products.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 5","pages":"Pages 1225-1234"},"PeriodicalIF":6.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43399629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.fmre.2022.06.012
CO oxidation has been studied for more than a century; however, molecular-level understanding of its activation protocol and related intermediates remains elusive. Here, we present a unified mechanistic and kinetic picture of various electronic metal–support interactions within platinum–carbon catalysts via in situ spectroscopic/kinetic analyses and multi-scale simulations. Transient kinetic analysis and molecular dynamics simulations with a reactive force field provided a quantitative description of the competition between the oxygen association and oxygen dissociation mechanisms tuned by the interfacial charge distribution and CO coverage. Steady-state isotopic transient kinetic analysis and density functional theory calculations revealed a simultaneous shift in the rate-determining step (RDS) from O2* dissociation to O* and CO* and O2* and CO* association. A de novo strategy from the interfacial charge distribution to the reaction mechanism, kinetics/thermodynamics of RDS, and, ultimately, catalytic performance was developed to quantitatively map the above CO activation mechanism with an order-of-magnitude increase in reactivity. The proposed catalytic picture and de novo strategy are expected to prompt the development of theories and methodologies for heterogeneous catalysis.
一个多世纪以来,人们一直在研究一氧化碳的氧化作用;然而,人们对其活化协议和相关中间产物的分子水平的理解仍然很模糊。在此,我们通过原位光谱/动力学分析和多尺度模拟,展示了铂-碳催化剂中各种电子金属-支撑相互作用的统一机理和动力学图景。利用反应力场进行的瞬态动力学分析和分子动力学模拟定量描述了受界面电荷分布和 CO 覆盖率调整的氧结合与氧解离机制之间的竞争。稳态同位素瞬态动力学分析和密度泛函理论计算揭示了速率决定步骤(RDS)从 O2* 解离到 O* 和 CO* 以及 O2* 和 CO* 结合的同步转变。从界面电荷分布到反应机理、RDS 的动力学/热力学以及最终的催化性能,我们开发了一种全新的策略,以定量绘制上述 CO 活化机理图,并使反应活性提高了一个数量级。所提出的催化图景和新策略有望推动异相催化理论和方法的发展。
{"title":"Engineering electronic platinum–carbon support interaction to tame carbon monoxide activation","authors":"","doi":"10.1016/j.fmre.2022.06.012","DOIUrl":"10.1016/j.fmre.2022.06.012","url":null,"abstract":"<div><div>CO oxidation has been studied for more than a century; however, molecular-level understanding of its activation protocol and related intermediates remains elusive. Here, we present a unified mechanistic and kinetic picture of various electronic metal–support interactions within platinum–carbon catalysts via in situ spectroscopic/kinetic analyses and multi-scale simulations. Transient kinetic analysis and molecular dynamics simulations with a reactive force field provided a quantitative description of the competition between the oxygen association and oxygen dissociation mechanisms tuned by the interfacial charge distribution and CO coverage. Steady-state isotopic transient kinetic analysis and density functional theory calculations revealed a simultaneous shift in the rate-determining step (RDS) from O<sub>2</sub>* dissociation to O* and CO* and O<sub>2</sub>* and CO* association. A de novo strategy from the interfacial charge distribution to the reaction mechanism, kinetics/thermodynamics of RDS, and, ultimately, catalytic performance was developed to quantitatively map the above CO activation mechanism with an order-of-magnitude increase in reactivity. The proposed catalytic picture and de novo strategy are expected to prompt the development of theories and methodologies for heterogeneous catalysis.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 5","pages":"Pages 1118-1127"},"PeriodicalIF":6.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45455462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.fmre.2022.09.031
Jing Ni , Mengyun Wang , Tianpei Wang , Caiwang Yan , Chuanli Ren , Gang Li , Yanbing Ding , Huizhang Li , Lingbin Du , Yue Jiang , Jiaping Chen , Yanong Wang , Dazhi Xu , Meng Zhu , Juncheng Dai , Hongxia Ma , Zhibin Hu , Hongbing Shen , Qingyi Wei , Guangfu Jin
To investigate whether genetic variants may provide additional prognostic value to improve the existing clinical staging system for gastric cancer (GC), we performed two genome-wide association studies (GWASs) of GC survival in the Jiangsu (N = 1049) and Shanghai (N = 1405) cohorts. By using a TCGA dataset, we validated genetic markers identified from a meta-analysis of these two Chinese cohorts to determine GC survival-associated loci. Then, we constructed a weighted polygenic hazard score (PHS) and developed a nomogram in combination with clinical variables. We also evaluated prognostic accuracy with the time-dependent receiver operating characteristic (ROC) curve, net reclassification improvement (NRI) and integrated discrimination improvement (IDI). We identified a single nucleotide polymorphism (SNP) of rs1618332 at 15q15.1 that was associated with the survival of GC patients with a P value of 4.12 × 10−8, and we also found additional 25 SNPs having consistent associations among these two Chinese cohort and TCGA cohort. The PHS derived from these 26 SNPs (PHS-26) was an independent prognostic factor for GC survival (all P < 0.001). The 5-year AUC of PHS-26 was 0.68, 0.66 and 0.67 for Jiangsu, Shanghai and their pooled cohorts, respectively, which increased to 0.80, 0.82 and 0.81, correspondingly, after being integrated into a nomogram together with variables of the clinical model. The PHS-26 could improve the NRIs by 16.20%, 4.90% and 8.70%, respectively, and the IDIs by 11.90%, 8.00% and 9.70%, respectively. The 26-SNP based PHS could substantially improve the accuracy of prognostic assessment and might facilitate precision medicine for GC patients.
{"title":"Construction and evaluation of a polygenic hazard score for prognostic assessment in localized gastric cancer","authors":"Jing Ni , Mengyun Wang , Tianpei Wang , Caiwang Yan , Chuanli Ren , Gang Li , Yanbing Ding , Huizhang Li , Lingbin Du , Yue Jiang , Jiaping Chen , Yanong Wang , Dazhi Xu , Meng Zhu , Juncheng Dai , Hongxia Ma , Zhibin Hu , Hongbing Shen , Qingyi Wei , Guangfu Jin","doi":"10.1016/j.fmre.2022.09.031","DOIUrl":"10.1016/j.fmre.2022.09.031","url":null,"abstract":"<div><div>To investigate whether genetic variants may provide additional prognostic value to improve the existing clinical staging system for gastric cancer (GC), we performed two genome-wide association studies (GWASs) of GC survival in the Jiangsu (<em>N</em> = 1049) and Shanghai (<em>N</em> = 1405) cohorts. By using a TCGA dataset, we validated genetic markers identified from a meta-analysis of these two Chinese cohorts to determine GC survival-associated loci. Then, we constructed a weighted polygenic hazard score (PHS) and developed a nomogram in combination with clinical variables. We also evaluated prognostic accuracy with the time-dependent receiver operating characteristic (ROC) curve, net reclassification improvement (NRI) and integrated discrimination improvement (IDI). We identified a single nucleotide polymorphism (SNP) of rs1618332 at 15q15.1 that was associated with the survival of GC patients with a <em>P</em> value of 4.12 × 10<sup>−8</sup>, and we also found additional 25 SNPs having consistent associations among these two Chinese cohort and TCGA cohort. The PHS derived from these 26 SNPs (PHS-26) was an independent prognostic factor for GC survival (all <em>P</em> < 0.001). The 5-year AUC of PHS-26 was 0.68, 0.66 and 0.67 for Jiangsu, Shanghai and their pooled cohorts, respectively, which increased to 0.80, 0.82 and 0.81, correspondingly, after being integrated into a nomogram together with variables of the clinical model. The PHS-26 could improve the NRIs by 16.20%, 4.90% and 8.70%, respectively, and the IDIs by 11.90%, 8.00% and 9.70%, respectively. The 26-SNP based PHS could substantially improve the accuracy of prognostic assessment and might facilitate precision medicine for GC patients.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 5","pages":"Pages 1331-1338"},"PeriodicalIF":6.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.fmre.2022.09.035
In this work, a surface-potential based compact model focusing on the quantum confinement effects of ultimately scaled gate-all-around (GAA) MOSFET is presented. Energy quantization with sub-band formation along the radius direction of cylindrical GAAs or thickness direction of nanosheet GAAs leads to significant quantization effects. An analytical model of surface potentials is developed by solving the Poisson equation with incorporating sub-band effects. In combination with the existing transport model framework, charge-voltage and current-voltage formulations are developed based on the surface potential. The model formulations are then extensively validated using TCAD numerical simulations as well as Si data of nanosheet GAA MOSFETs. Simulations of typical circuits verify the model robustness and convergence for its applications in GAA technology.
{"title":"Compact modeling of quantum confinements in nanoscale gate-all-around MOSFETs","authors":"","doi":"10.1016/j.fmre.2022.09.035","DOIUrl":"10.1016/j.fmre.2022.09.035","url":null,"abstract":"<div><div>In this work, a surface-potential based compact model focusing on the quantum confinement effects of ultimately scaled gate-all-around (GAA) MOSFET is presented. Energy quantization with sub-band formation along the radius direction of cylindrical GAAs or thickness direction of nanosheet GAAs leads to significant quantization effects. An analytical model of surface potentials is developed by solving the Poisson equation with incorporating sub-band effects. In combination with the existing transport model framework, charge-voltage and current-voltage formulations are developed based on the surface potential. The model formulations are then extensively validated using TCAD numerical simulations as well as Si data of nanosheet GAA MOSFETs. Simulations of typical circuits verify the model robustness and convergence for its applications in GAA technology.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 5","pages":"Pages 1306-1313"},"PeriodicalIF":6.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45461377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.fmre.2023.06.006
Scene segmentation is widely used in autonomous driving for environmental perception. Semantic scene segmentation has gained considerable attention owing to its rich semantic information. It assigns labels to the pixels in an image, thereby enabling automatic image labeling. Current approaches are based mainly on convolutional neural networks (CNN), however, they rely on numerous labels. Therefore, the use of a small amount of labeled data to achieve semantic segmentation has become increasingly important. In this study, we developed a domain adaptation framework based on optimal transport (OT) and an attention mechanism to address this issue. Specifically, we first generated the output space via a CNN owing to its superior of feature representation. Second, we utilized OT to achieve a more robust alignment of the source and target domains in the output space, where the OT plan defined a well attention mechanism to improve the adaptation of the model. In particular, the OT reduced the number of network parameters and made the network more interpretable. Third, to better describe the multiscale properties of the features, we constructed a multiscale segmentation network to perform domain adaptation. Finally, to verify the performance of the proposed method, we conducted an experiment to compare the proposed method with three benchmark and four SOTA methods using three scene datasets. The mean intersection-over-union (mIOU) was significantly improved, and visualization results under multiple domain adaptation scenarios also show that the proposed method performed better than semantic segmentation methods.
场景分割被广泛应用于自动驾驶的环境感知。语义场景分割因其丰富的语义信息而备受关注。它为图像中的像素分配标签,从而实现自动图像标注。目前的方法主要基于卷积神经网络(CNN),但它们依赖于大量的标签。因此,使用少量标签数据实现语义分割变得越来越重要。在本研究中,我们开发了一个基于最优传输(OT)和注意力机制的领域适应框架来解决这一问题。具体来说,由于 CNN 在特征表示方面的优势,我们首先通过 CNN 生成输出空间。其次,我们利用 OT 在输出空间中实现源域和目标域更稳健的对齐,其中 OT 计划定义了一种良好的注意力机制,以改善模型的适应性。特别是,OT 减少了网络参数的数量,使网络更具可解释性。第三,为了更好地描述特征的多尺度特性,我们构建了一个多尺度分割网络来执行域自适应。最后,为了验证所提方法的性能,我们使用三个场景数据集进行了实验,将所提方法与三种基准方法和四种 SOTA 方法进行了比较。结果表明,提出的方法显著提高了平均交集重合度(mIOU),多域自适应场景下的可视化结果也表明,提出的方法比语义分割方法表现更好。
{"title":"Domain adaptive semantic segmentation by optimal transport","authors":"","doi":"10.1016/j.fmre.2023.06.006","DOIUrl":"10.1016/j.fmre.2023.06.006","url":null,"abstract":"<div><div>Scene segmentation is widely used in autonomous driving for environmental perception. Semantic scene segmentation has gained considerable attention owing to its rich semantic information. It assigns labels to the pixels in an image, thereby enabling automatic image labeling. Current approaches are based mainly on convolutional neural networks (CNN), however, they rely on numerous labels. Therefore, the use of a small amount of labeled data to achieve semantic segmentation has become increasingly important. In this study, we developed a domain adaptation framework based on optimal transport (OT) and an attention mechanism to address this issue. Specifically, we first generated the output space via a CNN owing to its superior of feature representation. Second, we utilized OT to achieve a more robust alignment of the source and target domains in the output space, where the OT plan defined a well attention mechanism to improve the adaptation of the model. In particular, the OT reduced the number of network parameters and made the network more interpretable. Third, to better describe the multiscale properties of the features, we constructed a multiscale segmentation network to perform domain adaptation. Finally, to verify the performance of the proposed method, we conducted an experiment to compare the proposed method with three benchmark and four SOTA methods using three scene datasets. The mean intersection-over-union (mIOU) was significantly improved, and visualization results under multiple domain adaptation scenarios also show that the proposed method performed better than semantic segmentation methods.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 5","pages":"Pages 981-991"},"PeriodicalIF":6.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136185130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.fmre.2022.03.026
Non-thermal plasma (NTP) catalysis is considered one of the most promising technologies to address a wide range of energy and environmental needs, such as carbon dioxide (CO2) conversion, NH3 synthesis, and volatile organic compounds (VOCs) removal. A systematic approach to optimizing NTP systems benefits from understanding VOCs' fundamental NTP destruction behavior and analyzing the correlations between molecular structures and conversion and selectivity. Herein, the mechanical performance of the toluene destruction in NTP is examined and compared with benzene bearing a similar molecular structure. Different experimental and theoretical techniques are applied, including synchrotron vacuum ultraviolet photoionization mass spectrometry(SVUV-PIMS), thermochemistry, and quantum chemistry. Comparatively, toluene is more readily destroyed under the same NTP conditions than benzene. More intriguingly, the distribution of the decomposition species is significantly different. The theoretical calculations reveal that the abundant methyl radicals generated in toluene decomposition mainly lead to the various species distribution. These radicals promote some reactions, such as the decomposition of o-benzoquinone, one of the key intermediates, thus leading to new reaction pathways and products different from benzene. Finally, the critical mechanistic steps of toluene decomposition under the present non-thermal plasma conditions are established, which include the interactions between toluene and electrons or reactive radicals, the cleavage of the aromatic ring, and the various reaction pathways involving of methyl radicals. This study presents an effective approach to elucidate the distinct fundamental reaction mechanisms arising from subtle structural differences, offering new insights into the underlying plasma chemistry crucial for advancing various promising environmental and energy applications of non-thermal plasma systems.
{"title":"Reaction mechanism of toluene decomposition in non-thermal plasma: How does it compare with benzene?","authors":"","doi":"10.1016/j.fmre.2022.03.026","DOIUrl":"10.1016/j.fmre.2022.03.026","url":null,"abstract":"<div><div>Non-thermal plasma (NTP) catalysis is considered one of the most promising technologies to address a wide range of energy and environmental needs, such as carbon dioxide (CO<sub>2</sub>) conversion, NH<sub>3</sub> synthesis, and volatile organic compounds (VOCs) removal. A systematic approach to optimizing NTP systems benefits from understanding VOCs' fundamental NTP destruction behavior and analyzing the correlations between molecular structures and conversion and selectivity. Herein, the mechanical performance of the toluene destruction in NTP is examined and compared with benzene bearing a similar molecular structure. Different experimental and theoretical techniques are applied, including synchrotron vacuum ultraviolet photoionization mass spectrometry(SVUV-PIMS), thermochemistry, and quantum chemistry. Comparatively, toluene is more readily destroyed under the same NTP conditions than benzene. More intriguingly, the distribution of the decomposition species is significantly different. The theoretical calculations reveal that the abundant methyl radicals generated in toluene decomposition mainly lead to the various species distribution. These radicals promote some reactions, such as the decomposition of o-benzoquinone, one of the key intermediates, thus leading to new reaction pathways and products different from benzene. Finally, the critical mechanistic steps of toluene decomposition under the present non-thermal plasma conditions are established, which include the interactions between toluene and electrons or reactive radicals, the cleavage of the aromatic ring, and the various reaction pathways involving of methyl radicals. This study presents an effective approach to elucidate the distinct fundamental reaction mechanisms arising from subtle structural differences, offering new insights into the underlying plasma chemistry crucial for advancing various promising environmental and energy applications of non-thermal plasma systems.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 5","pages":"Pages 1100-1109"},"PeriodicalIF":6.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42065852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.fmre.2022.11.008
China is likely to lead global offshore wind power development, in the hope of transforming the coal-based electricity system and reducing greenhouse gas emissions. However, the potential of power generation and emissions mitigation is largely unknown, and the contribution of offshore wind utilization to regional carbon neutrality needs to be further clarified. Here, we reveal that offshore wind energy resources are abundant in China, with an estimated power generation potential of about 17.5 PWh, more than doubling the current power consumption nationwide. Although current utilization of offshore wind energy in China accounts for 21% of global overall capacity, the total share is still limited, supplying just 0.4% of national electricity needs (2019). With the increasing use of offshore wind, by 2050, the planned installation along China coast would be nearly five times as much as current (2019) global capacity, or 25 times of current national offshore wind power generation. The total CO2 emissions reduction in 2050 due to the decrease in coal use is projected to be 294.3 Tg CO2-eq yr–1, equivalent to 20% of current emissions from coal-fired power in the coastal region. The size of reduced emissions is higher than current CO2 emissions in about 90% of countries. Our results highlight the important role of offshore wind power in upgrading the energy system and achieving carbon neutrality. Future studies are encouraged to further explore technological, economic and institutional challenges facing offshore wind energy deployment and low-carbon energy system development.
{"title":"Offshore wind power in China: A potential solution to electricity transformation and carbon neutrality","authors":"","doi":"10.1016/j.fmre.2022.11.008","DOIUrl":"10.1016/j.fmre.2022.11.008","url":null,"abstract":"<div><div>China is likely to lead global offshore wind power development, in the hope of transforming the coal-based electricity system and reducing greenhouse gas emissions. However, the potential of power generation and emissions mitigation is largely unknown, and the contribution of offshore wind utilization to regional carbon neutrality needs to be further clarified. Here, we reveal that offshore wind energy resources are abundant in China, with an estimated power generation potential of about 17.5 PWh, more than doubling the current power consumption nationwide. Although current utilization of offshore wind energy in China accounts for 21% of global overall capacity, the total share is still limited, supplying just 0.4% of national electricity needs (2019). With the increasing use of offshore wind, by 2050, the planned installation along China coast would be nearly five times as much as current (2019) global capacity, or 25 times of current national offshore wind power generation. The total CO<sub>2</sub> emissions reduction in 2050 due to the decrease in coal use is projected to be 294.3 Tg CO<sub>2</sub>-eq yr<sup>–1</sup>, equivalent to 20% of current emissions from coal-fired power in the coastal region. The size of reduced emissions is higher than current CO<sub>2</sub> emissions in about 90% of countries. Our results highlight the important role of offshore wind power in upgrading the energy system and achieving carbon neutrality. Future studies are encouraged to further explore technological, economic and institutional challenges facing offshore wind energy deployment and low-carbon energy system development.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 5","pages":"Pages 1206-1215"},"PeriodicalIF":6.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49654913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.fmre.2023.10.007
The space-based laser interferometers, LISA, Taiji and TianQin, are targeting to observe milliHz gravitational waves (GWs) in the 2030s. The joint observations from multiple space-based detectors yield significant advantages. In this work, we recap the studies and investigations for the joint space-based GW detector networks to highlight: 1) the high precision of sky localization for the massive binary black hole (BBH) coalescences and the GW sirens in the cosmological implication, 2) the effectiveness to test the parity violation in the stochastic GW background observations, 3) the efficiency of subtracting galactic foreground, 4) the improvement in stellar-mass BBH observations. We inspect alternative networks by trading off massive BBH observations and stochastic GW background observation.
{"title":"On networks of space-based gravitational-wave detectors","authors":"","doi":"10.1016/j.fmre.2023.10.007","DOIUrl":"10.1016/j.fmre.2023.10.007","url":null,"abstract":"<div><div>The space-based laser interferometers, LISA, Taiji and TianQin, are targeting to observe milliHz gravitational waves (GWs) in the 2030s. The joint observations from multiple space-based detectors yield significant advantages. In this work, we recap the studies and investigations for the joint space-based GW detector networks to highlight: 1) the high precision of sky localization for the massive binary black hole (BBH) coalescences and the GW sirens in the cosmological implication, 2) the effectiveness to test the parity violation in the stochastic GW background observations, 3) the efficiency of subtracting galactic foreground, 4) the improvement in stellar-mass BBH observations. We inspect alternative networks by trading off massive BBH observations and stochastic GW background observation.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 5","pages":"Pages 1072-1085"},"PeriodicalIF":6.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.fmre.2023.05.009
Cell-free wound dressings (WDs) with desirable effectiveness and safety have received much attention in the field of regenerative medicine. However, the weak linkages between bioactive polymers and the spatial structure of WDs frequently result in interventional treatment failure. Herein, we create a series of quaternized chitosan (QCS)-incorporated composite hydrogels (referred to as GHCH-n) by UV cross-linking and then convert them into microneedle patches (MNPs). QCS, which is positively charged and amphiphilic, is essential for broad-spectrum antibacterial and haemostatic activities. QCS is proven to be slightly toxic, so it is immobilized into the methacrylate gelatine (GelMA) molecular cage to minimize adverse effects. A polydimethylsiloxane micro-mould is used to shape the MNPs. MNPs can pierce tissue, seal off bleeding sites, and cling to wounds securely. Thus, MNPs can cooperate with GHCH-n hydrogels to halt bleeding and accelerate wound healing. This study recommends GHCH-10 MNPs as an advanced biomaterial. Several preclinical research models have thoroughly validated the application effect of GHCH-10 MNPs. This research also proposes a novel strategy for integrating the nature of bioactive polymers and the structure of composite biomaterials. This strategy is not only applicable to the fabrication of next-generation WDs but also shows great potential in expanding interdisciplinary domains.
{"title":"Facile fabrication of quaternized chitosan-incorporated biomolecular patches for non-compressive haemostasis and wound healing","authors":"","doi":"10.1016/j.fmre.2023.05.009","DOIUrl":"10.1016/j.fmre.2023.05.009","url":null,"abstract":"<div><div>Cell-free wound dressings (WDs) with desirable effectiveness and safety have received much attention in the field of regenerative medicine. However, the weak linkages between bioactive polymers and the spatial structure of WDs frequently result in interventional treatment failure. Herein, we create a series of quaternized chitosan (QCS)-incorporated composite hydrogels (referred to as GHCH-n) by UV cross-linking and then convert them into microneedle patches (MNPs). QCS, which is positively charged and amphiphilic, is essential for broad-spectrum antibacterial and haemostatic activities. QCS is proven to be slightly toxic, so it is immobilized into the methacrylate gelatine (GelMA) molecular cage to minimize adverse effects. A polydimethylsiloxane micro-mould is used to shape the MNPs. MNPs can pierce tissue, seal off bleeding sites, and cling to wounds securely. Thus, MNPs can cooperate with GHCH-n hydrogels to halt bleeding and accelerate wound healing. This study recommends GHCH-10 MNPs as an advanced biomaterial. Several preclinical research models have thoroughly validated the application effect of GHCH-10 MNPs. This research also proposes a novel strategy for integrating the nature of bioactive polymers and the structure of composite biomaterials. This strategy is not only applicable to the fabrication of next-generation WDs but also shows great potential in expanding interdisciplinary domains.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 5","pages":"Pages 1243-1253"},"PeriodicalIF":6.2,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135504445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}