DNA barcodes, short and unique DNA sequences, play a crucial role in sample identification when processing many samples simultaneously, which helps reduce experimental costs. Nevertheless, the low quality of long-read sequencing makes it difficult to identify barcodes accurately, which poses significant challenges for the design of barcodes for large numbers of samples in a single sequencing run. Here, we present a comprehensive study of the generation of barcodes and develop a tool, PRO, that can be used for selecting optimal barcode sets and demultiplexing. We formulate the barcode design problem as a combinatorial problem and prove that finding the optimal largest barcode set in a given DNA sequence space in which all sequences have the same length is theoretically NP-complete. For practical applications, we developed the novel method PRO by introducing the probability divergence between two DNA sequences to expand the capacity of barcode kits while ensuring demultiplexing accuracy. Specifically, the maximum size of the barcode kits designed by PRO is 2,292, which keeps the length of barcodes the same as that of the official ones used by Oxford Nanopore Technologies (ONT). We validated the performance of PRO on a simulated nanopore dataset with high error rates. The demultiplexing accuracy of PRO reached 98.29% for a barcode kit of size 2,922, 4.31% higher than that of Guppy, the official demultiplexing tool. When the size of the barcode kit generated by PRO is the same as the official size provided by ONT, both tools show superior and comparable demultiplexing accuracy.
Combining photodynamic therapy (PDT) with chemodynamic therapy (CDT) has been proven to be a promising strategy to improve the treatment efficiency of cancer, because of the synergistic therapeutic effect arising between the two modalities. Herein, we report an inorganic nanoagent based on ternary NiCoTi-layered double hydroxide (NiCoTi-LDH) nanosheets to realize highly efficient photodynamic/chemodynamic synergistic therapy. The NiCoTi-LDH nanosheets exhibit oxygen vacancy-promoted electron-hole separation and photogenerated hole-induced O2-independent reactive oxygen species (ROS) generation under acidic circumstances, realizing in situ pH-responsive PDT. Moreover, due to the effective conversion between Co3+ and Co2+ caused by photogenerated electrons, the NiCoTi-LDH nanosheets catalyze the release of hydroxyl radicals (·OH) from H2O2 through Fenton reactions, resulting in CDT. Laser irradiation enhances the catalyzed ability of the NiCoTi-LDH nanosheets to promote the ROS generation, resulting in a better performance than TiO2 nanoparticles at pH 6.5. In vitro and in vivo experimental results show conclusively that NiCoTi-LDH nanosheets plus irradiation lead to efficient cell apoptosis and significant inhibition of tumor growth. This study reports a new pH-responsive inorganic nanoagent with oxygen vacancy-promoted photodynamic/chemodynamic synergistic performance, offering a potentially appealing clinical strategy for selective tumor elimination.