首页 > 最新文献

Atmospheric Environment: X最新文献

英文 中文
Insights into civil aviation emissions in China: Analysis of an emission inventory of air pollutants and the ChinaHighAirPollutants (CHAP) dataset 洞察中国民航排放:对空气污染物排放清单和中国高空气污染物(CHAP)数据集的分析
IF 4.6 Q1 Environmental Science Pub Date : 2024-04-01 DOI: 10.1016/j.aeaoa.2024.100270
Xin Xu , Qian You , Zheng Zhang , Zimeng Zhao , Zhaotong Wang , Bidi Zhang , Xin Bo

The emissions from the civil aviation sector are a significant source of CO2 and air pollutants, which represent a serious threat to ambient air quality and public health. To gain a deeper understanding of civil aviation airport emissions, it is imperative to develop a precise and comprehensive emission inventory of China's civil aviation airports. However, there are limited studies dedicated to analyzing and verifying the accuracy and completeness of China's civil aviation emission inventory. Here, this study explored pollution characteristics from temporal trends and spatial distribution perspectives based on a previously developed 2019–2020 high-resolution air pollution and CO2 emission inventory of the landing and take-off (LTO) cycle of civil aviation airports in China and the ChinaHighAirPollutants (CHAP) dataset. Besides, this study established an empirical model to evaluate the relationship between the air pollutant emissions of China's civil aviation sector in 2019–2020 and the pollutant concentration from the CHAP dataset. Compared to those in 2019, the total NOx, CO, PM, and SO2 emissions during the LTO phase in China's civil aviation sector in 2020 decreased by 14.29%–24.32%, and the average concentrations of NO2, CO, PM10, and SO2 in 2020 decreased by 6.33%–9.45%. The eastern, central, and southern regions of China are characterized by high emissions of pollutants, a phenomenon closely related to the economic prosperity and tourism development in these areas. They tend to boast higher route densities, increasing air transport activity and consequently resulting in elevated emissions. In addition, NOx had the highest correlation coefficient in the empirical model, with a correlation coefficient of 0.603 in 2019. Our findings provide new insights into civil aviation emissions in China from the analysis of the emission inventory of air pollutants and the CHAP dataset and provide a new method for verifying the accuracy and completeness of China's civil aviation emission inventory.

民航业是二氧化碳和空气污染物的重要排放源,对环境空气质量和公众健康构成严重威胁。为了更深入地了解民航机场的排放情况,当务之急是编制一份精确、全面的中国民航机场排放清单。然而,专门用于分析和验证中国民航排放清单准确性和完整性的研究十分有限。在此,本研究基于之前开发的 2019-2020 年中国民航机场起降(LTO)周期高分辨率空气污染和二氧化碳排放清单以及中国高空污染物(CHAP)数据集,从时间趋势和空间分布角度探讨了污染特征。此外,本研究还建立了一个实证模型来评估 2019-2020 年中国民航大气污染物排放与 CHAP 数据集污染物浓度之间的关系。与2019年相比,2020年中国民航LTO阶段氮氧化物、一氧化碳、可吸入颗粒物和二氧化硫排放总量下降了14.29%-24.32%,2020年氮氧化物、一氧化碳、可吸入颗粒物和二氧化硫平均浓度下降了6.33%-9.45%。中国东部、中部和南部地区的污染物排放量较高,这一现象与这些地区的经济繁荣和旅游业发展密切相关。这些地区的航线密度较高,增加了航空运输活动,从而导致排放量增加。此外,在实证模型中,氮氧化物的相关系数最高,2019 年的相关系数为 0.603。我们的研究结果通过对大气污染物排放清单的分析和 CHAP 数据集,为中国民航排放提供了新的见解,并为验证中国民航排放清单的准确性和完整性提供了新的方法。
{"title":"Insights into civil aviation emissions in China: Analysis of an emission inventory of air pollutants and the ChinaHighAirPollutants (CHAP) dataset","authors":"Xin Xu ,&nbsp;Qian You ,&nbsp;Zheng Zhang ,&nbsp;Zimeng Zhao ,&nbsp;Zhaotong Wang ,&nbsp;Bidi Zhang ,&nbsp;Xin Bo","doi":"10.1016/j.aeaoa.2024.100270","DOIUrl":"https://doi.org/10.1016/j.aeaoa.2024.100270","url":null,"abstract":"<div><p>The emissions from the civil aviation sector are a significant source of CO<sub>2</sub> and air pollutants, which represent a serious threat to ambient air quality and public health. To gain a deeper understanding of civil aviation airport emissions, it is imperative to develop a precise and comprehensive emission inventory of China's civil aviation airports. However, there are limited studies dedicated to analyzing and verifying the accuracy and completeness of China's civil aviation emission inventory. Here, this study explored pollution characteristics from temporal trends and spatial distribution perspectives based on a previously developed 2019–2020 high-resolution air pollution and CO<sub>2</sub> emission inventory of the landing and take-off (LTO) cycle of civil aviation airports in China and the ChinaHighAirPollutants (CHAP) dataset. Besides, this study established an empirical model to evaluate the relationship between the air pollutant emissions of China's civil aviation sector in 2019–2020 and the pollutant concentration from the CHAP dataset. Compared to those in 2019, the total NOx, CO, PM, and SO<sub>2</sub> emissions during the LTO phase in China's civil aviation sector in 2020 decreased by 14.29%–24.32%, and the average concentrations of NO<sub>2</sub>, CO, PM<sub>10</sub>, and SO<sub>2</sub> in 2020 decreased by 6.33%–9.45%. The eastern, central, and southern regions of China are characterized by high emissions of pollutants, a phenomenon closely related to the economic prosperity and tourism development in these areas. They tend to boast higher route densities, increasing air transport activity and consequently resulting in elevated emissions. In addition, NOx had the highest correlation coefficient in the empirical model, with a correlation coefficient of 0.603 in 2019. Our findings provide new insights into civil aviation emissions in China from the analysis of the emission inventory of air pollutants and the CHAP dataset and provide a new method for verifying the accuracy and completeness of China's civil aviation emission inventory.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000376/pdfft?md5=1cd7d3e7fac18c6ede6fd077bd46eb9f&pid=1-s2.0-S2590162124000376-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141243647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contribution of regional versus trans-regional anthropogenic sources to the particulate matter over western India derived from high-resolution modeling 通过高分辨率建模得出的印度西部上空颗粒物的区域和跨区域人为来源的比例
IF 4.6 Q1 Environmental Science Pub Date : 2024-04-01 DOI: 10.1016/j.aeaoa.2024.100268
Shubham Dhaka , Shipra Lakshmi , Narendra Ojha , Andrea Pozzer , Amit Sharma

Elevated concentrations of particulate matter (PM) significantly deteriorate the air quality; however, the contributions from regional versus remote anthropogenic sources have remained uncertain over the western Indian region. In this regard, we have performed high-resolution regional modeling (WRF-Chem v3.9.1) to quantify the contribution of regional versus trans-regional anthropogenic sources to PM2.5 (fine PM) and PM2.5-10 (coarse PM) concentrations in contrasting seasons. Seasonal variability in spatial mean Aerosol Optical Depth (AOD) derived from the WRF-Chem model (0.21–0.42) agreed reasonably with MERRA-2 reanalysis (0.29–0.54) and MODIS satellite (0.23–0.51) over western India. Variability in surface PM2.5 and PM10 concentrations were also reproduced as per the benchmarks (|Fractional Bias| ≤ 60% and |Fractional Error| ≤ 75%) at most of the stations in this region. Results from sensitivity simulations reveal the dominant contribution of both regional and trans-regional anthropogenic sources to PM2.5 concentrations over western India in winter and post-monsoon, when PM2.5 concentrations are generally high. On the other hand, contribution from background levels (due to domain-wide natural emissions, fire emissions and pollutant transport from beyond domain boundaries) is highest during pre-monsoon and monsoon with a significant contribution of mineral dust especially to PM2.5-10 (coarse PM). Analysis of PM spatial distribution at ∼900hpa pressure level reveals greater relative contributions of trans-regional emissions and background levels compared to that near the surface. Our study highlights key roles of trans-regional anthropogenic emissions and mineral dust, besides the local and regional emissions, in air pollution over western India. The quantitative analyses presented here would be useful for designing measures to minimize health and environmental impacts in line with the objectives of the National Clean Air Programme (NCAP) in India.

颗粒物(PM)浓度升高会严重恶化空气质量;然而,在印度西部地区,区域与远程人为源的贡献仍不确定。为此,我们进行了高分辨率区域建模(WRF-Chem v3.9.1),以量化区域和跨区域人为源在不同季节对 PM2.5(细颗粒物)和 PM2.5-10(粗颗粒物)浓度的贡献。WRF-Chem 模型得出的空间平均气溶胶光学深度(AOD)的季节变化(0.21-0.42)与印度西部的 MERRA-2 再分析(0.29-0.54)和 MODIS 卫星(0.23-0.51)吻合。该地区大部分站点的地表 PM2.5 和 PM10 浓度的变化也按照基准("分数偏差"≤ 60% 和 "分数误差"≤ 75%)进行了再现。敏感性模拟的结果显示,在印度西部冬季和季风后,区域和跨区域人为源对 PM2.5 浓度的贡献占主导地位,此时 PM2.5 浓度通常较高。另一方面,在季风前和季风期间,本底水平的贡献(由于域范围内的自然排放、火灾排放和来自域边界以外的污染物迁移)最大,尤其是矿物粉尘对 PM2.5-10(粗颗粒物)的贡献很大。对 ∼900hpa 压力水平的可吸入颗粒物空间分布的分析表明,与近地面的可吸入颗粒物空间分布相比,跨区域排放和本底水平的相对贡献更大。我们的研究强调了除本地和区域排放外,跨区域人为排放和矿物尘埃在印度西部空气污染中的关键作用。这里提出的定量分析将有助于根据印度国家清洁空气计划(NCAP)的目标设计措施,最大限度地减少对健康和环境的影响。
{"title":"Contribution of regional versus trans-regional anthropogenic sources to the particulate matter over western India derived from high-resolution modeling","authors":"Shubham Dhaka ,&nbsp;Shipra Lakshmi ,&nbsp;Narendra Ojha ,&nbsp;Andrea Pozzer ,&nbsp;Amit Sharma","doi":"10.1016/j.aeaoa.2024.100268","DOIUrl":"10.1016/j.aeaoa.2024.100268","url":null,"abstract":"<div><p>Elevated concentrations of particulate matter (PM) significantly deteriorate the air quality; however, the contributions from regional versus remote anthropogenic sources have remained uncertain over the western Indian region. In this regard, we have performed high-resolution regional modeling (WRF-Chem v3.9.1) to quantify the contribution of regional versus trans-regional anthropogenic sources to PM<sub>2.5</sub> (fine PM) and PM<sub>2.5-10</sub> (coarse PM) concentrations in contrasting seasons. Seasonal variability in spatial mean Aerosol Optical Depth (AOD) derived from the WRF-Chem model (0.21–0.42) agreed reasonably with MERRA-2 reanalysis (0.29–0.54) and MODIS satellite (0.23–0.51) over western India. Variability in surface PM<sub>2.5</sub> and PM<sub>10</sub> concentrations were also reproduced as per the benchmarks (|Fractional Bias| ≤ 60% and |Fractional Error| ≤ 75%) at most of the stations in this region. Results from sensitivity simulations reveal the dominant contribution of both regional and trans-regional anthropogenic sources to PM<sub>2.5</sub> concentrations over western India in winter and post-monsoon, when PM<sub>2.5</sub> concentrations are generally high. On the other hand, contribution from background levels (due to domain-wide natural emissions, fire emissions and pollutant transport from beyond domain boundaries) is highest during pre-monsoon and monsoon with a significant contribution of mineral dust especially to PM<sub>2.5-10</sub> (coarse PM). Analysis of PM spatial distribution at ∼900hpa pressure level reveals greater relative contributions of trans-regional emissions and background levels compared to that near the surface. Our study highlights key roles of trans-regional anthropogenic emissions and mineral dust, besides the local and regional emissions, in air pollution over western India. The quantitative analyses presented here would be useful for designing measures to minimize health and environmental impacts in line with the objectives of the National Clean Air Programme (NCAP) in India.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000352/pdfft?md5=9ff69358f76bdae9b60f7c673779f6c2&pid=1-s2.0-S2590162124000352-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141143751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating PM levels on an underground metro platform by exploring a new model-based factor research 通过探索基于新模型的因子研究估算地铁地下站台的可吸入颗粒物水平
IF 4.6 Q1 Environmental Science Pub Date : 2024-04-01 DOI: 10.1016/j.aeaoa.2024.100261
Minghui Tu, Ulf Olofsson

Over recent decades, the adverse impacts of airborne particles on human health have received wide attention. Elevated PM concentrations on underground platforms might pose a significant public health issue within underground metro systems. This study explores the impact of introducing a new type of train on the concentration of airborne particles on an underground metro platform through statistical modelling, analyses interactions between various factors, and estimates air quality on underground platforms after introducing a new type of train. Based on the data from a long-term field measurement, a linear mixed model, the multi-factor interaction model, which is an expansion of a previous multi-factor model, explored the impacts of train operations, passenger flow, urban background PM levels, ventilation, nighttime maintenance work, and their interactions on hourly PM10, PM2.5, and PM1 values on the platform. The model results show a positive correlation between those factors and platform PM10, PM2.5 and PM1 values, with significant interactions among these factors. The new model has a higher estimate quality than the previous model. Based on the combination of the model and measurement results, the levels of underground PM decreased significantly after replacing the old type of trains with new ones.

近几十年来,空气中的颗粒物对人类健康的不利影响受到了广泛关注。在地下地铁系统中,地下月台上可吸入颗粒物浓度的升高可能会造成严重的公共健康问题。本研究通过统计建模探讨了引入新型列车对地铁地下站台空气中颗粒物浓度的影响,分析了各种因素之间的相互作用,并估计了引入新型列车后地下站台的空气质量。根据长期实地测量的数据,采用线性混合模型,即多因素交互模型(对之前的多因素模型进行了扩展),探讨了列车运行、客流量、城市背景 PM 水平、通风、夜间维护工作及其交互作用对站台上每小时 PM10、PM2.5 和 PM1 值的影响。模型结果显示,这些因素与站台 PM10、PM2.5 和 PM1 值之间呈正相关,且这些因素之间存在显著的相互作用。与之前的模型相比,新模型的估计质量更高。根据模型和测量结果的结合,在用新型列车替换旧型列车后,地下 PM 的水平明显下降。
{"title":"Estimating PM levels on an underground metro platform by exploring a new model-based factor research","authors":"Minghui Tu,&nbsp;Ulf Olofsson","doi":"10.1016/j.aeaoa.2024.100261","DOIUrl":"10.1016/j.aeaoa.2024.100261","url":null,"abstract":"<div><p>Over recent decades, the adverse impacts of airborne particles on human health have received wide attention. Elevated PM concentrations on underground platforms might pose a significant public health issue within underground metro systems. This study explores the impact of introducing a new type of train on the concentration of airborne particles on an underground metro platform through statistical modelling, analyses interactions between various factors, and estimates air quality on underground platforms after introducing a new type of train. Based on the data from a long-term field measurement, a linear mixed model, the multi-factor interaction model, which is an expansion of a previous multi-factor model, explored the impacts of train operations, passenger flow, urban background PM levels, ventilation, nighttime maintenance work, and their interactions on hourly PM10, PM2.5, and PM1 values on the platform. The model results show a positive correlation between those factors and platform PM10, PM2.5 and PM1 values, with significant interactions among these factors. The new model has a higher estimate quality than the previous model. Based on the combination of the model and measurement results, the levels of underground PM decreased significantly after replacing the old type of trains with new ones.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000285/pdfft?md5=2ac19e65881cbed5e3ce5ac098f5fda0&pid=1-s2.0-S2590162124000285-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141058353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydroprocessing of fossil fuel-based aviation kerosene – Technology options and climate impact mitigation potentials 基于化石燃料的航空煤油的水处理--技术选择和减轻气候影响的潜力
IF 4.6 Q1 Environmental Science Pub Date : 2024-04-01 DOI: 10.1016/j.aeaoa.2024.100259
Gunnar Quante , Steffen Voß , Nils Bullerdiek , Christiane Voigt , Martin Kaltschmitt

Aviation contributes about 4 % of global anthropogenic climate forcing primarily by contrails, CO2 and NOx emissions. Renewably sourced aviation kerosene can help to reduce the climate impact from CO2 and from contrails, but so far, its production capacities are very small. Hence, the climate impact of using fossil fuel-based kerosene with a hydrogen content increased by hydroprocessing as short term mitigation measure is studied here. Therefore, the change in net energy forcing (ΔEFnet) in 2019 is calculated as the sum of the change in contrail energy forcing (ΔEFcontrail) and additional CO2 emissions (ΔEFhydroprocessing) from aviation kerosene hydroprocessing (ΔEFnet = ΔEFcontrail + ΔEFhydroprocessing). The results show that hydroprocessed aviation kerosene can reduce the net energy forcing EFnet by about 33 % with ΔEFhydroprocessing penalty of 5 %-points. Increasing the hydroprocessing severity increases the relative climate benefit, which is only slightly affected by the emissions factor for hydroprocessing or the choice of the time horizon. Data limitations about fuel composition and its effect on contrails and climate cause considerable uncertainties and the fuel's compliance with specification standards needs consideration. This study on the climate effect of hydroprocessed fossil kerosene can help to assess near-term measures to reduce the climate impact from aviation.

在全球人为气候作用力中,航空约占 4%,主要来自于烟尘、二氧化碳和氮氧化物的排放。可再生航空煤油有助于减少二氧化碳和烟尘对气候的影响,但到目前为止,其生产能力还非常小。因此,本文研究了使用化石燃料煤油(通过加氢处理增加氢含量)作为短期减缓措施对气候的影响。因此,2019 年的净能量强迫变化(ΔEFnet)是由航空煤油加氢处理产生的尾迹能量强迫变化(ΔEFcontrail)和额外二氧化碳排放(ΔEFhydroprocessing)之和计算得出的(ΔEFnet = ΔEFcontrail + ΔEFhydroprocessing)。结果表明,加氢处理航空煤油可将净能量强迫 EFnet 降低约 33%,ΔEF 加氢处理惩罚为 5%-点。提高加氢处理的严重程度可增加相对气候效益,而加氢处理的排放因子或时间范围的选择对气候效益的影响很小。由于燃料成分及其对反气云和气候的影响方面的数据限制,造成了相当大的不确定性,而且需要考虑燃料是否符合规范标准。这项关于加氢处理化石煤油对气候影响的研究有助于评估减少航空对气候影响的近期措施。
{"title":"Hydroprocessing of fossil fuel-based aviation kerosene – Technology options and climate impact mitigation potentials","authors":"Gunnar Quante ,&nbsp;Steffen Voß ,&nbsp;Nils Bullerdiek ,&nbsp;Christiane Voigt ,&nbsp;Martin Kaltschmitt","doi":"10.1016/j.aeaoa.2024.100259","DOIUrl":"https://doi.org/10.1016/j.aeaoa.2024.100259","url":null,"abstract":"<div><p>Aviation contributes about 4 % of global anthropogenic climate forcing primarily by contrails, CO<sub>2</sub> and NO<sub>x</sub> emissions. Renewably sourced aviation kerosene can help to reduce the climate impact from CO<sub>2</sub> and from contrails, but so far, its production capacities are very small. Hence, the climate impact of using fossil fuel-based kerosene with a hydrogen content increased by hydroprocessing as short term mitigation measure is studied here. Therefore, the change in net energy forcing (ΔEF<sub>net</sub>) in 2019 is calculated as the sum of the change in contrail energy forcing (ΔEF<sub>contrail</sub>) and additional CO<sub>2</sub> emissions (ΔEF<sub>hydroprocessing</sub>) from aviation kerosene hydroprocessing (ΔEF<sub>net</sub> = ΔEF<sub>contrail</sub> + ΔEF<sub>hydroprocessing</sub>). The results show that hydroprocessed aviation kerosene can reduce the net energy forcing EF<sub>net</sub> by about 33 % with ΔEF<sub>hydroprocessing</sub> penalty of 5 %-points. Increasing the hydroprocessing severity increases the relative climate benefit, which is only slightly affected by the emissions factor for hydroprocessing or the choice of the time horizon. Data limitations about fuel composition and its effect on contrails and climate cause considerable uncertainties and the fuel's compliance with specification standards needs consideration. This study on the climate effect of hydroprocessed fossil kerosene can help to assess near-term measures to reduce the climate impact from aviation.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000261/pdfft?md5=373b2138d64d9499a4f0913773ac6db8&pid=1-s2.0-S2590162124000261-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140622175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of non-target gas interferences on a multi-gas cavity ring-down spectrometer 多气腔环降光谱仪上的非目标气体干扰调查
IF 4.6 Q1 Environmental Science Pub Date : 2024-04-01 DOI: 10.1016/j.aeaoa.2024.100258
Pablo García, Anna Holm Støckler, Anders Feilberg, Jesper Nørlem Kamp

Emissions from agriculture are a worldwide problem as it is the major anthropogenic source of ammonia, methane, and nitrous oxide. Several efforts have been made to mitigate emissions. To achieve this, reliable measuring techniques are necessary to quantify the impact of the emissions. Different techniques relying on different principles are available. Generally, these techniques demonstrate good agreement on their measurements but there is a lack of studies that thoroughly investigate cross-interferences. In this work, three different models of Cavity Ring-Down Spectrometers measuring ammonia, nitrous oxide, and methane were tested in parallel for potential biases due to interference from ammonia, water vapor, and twelve volatile organic compounds commonly present in agricultural environments. Our results showed a small negative bias with increasing humidity on nitrous oxide and minor interferences of ammonia on nitrous oxide and methane. None of the tested volatile organic compounds interfered with ammonia, methane, or nitrous oxide measurements. Overall, concentration measurements of ammonia, nitrous oxide, and methane with cavity ring-down spectrometry have proven reliable under typical agricultural conditions. Minor interferences were only observed under exceptional conditions.

农业排放是一个世界性问题,因为它是氨气、甲烷和氧化亚氮的主要人为来源。为了减少排放,人们已经做出了许多努力。为此,需要可靠的测量技术来量化排放的影响。目前有基于不同原理的不同技术。一般来说,这些技术的测量结果显示出良好的一致性,但缺乏彻底调查交叉干扰的研究。在这项工作中,我们对测量氨、一氧化二氮和甲烷的三种不同型号的空腔环降分光仪进行了平行测试,以了解氨、水蒸气和农业环境中常见的 12 种挥发性有机化合物的干扰可能造成的偏差。结果表明,随着湿度的增加,氧化亚氮会出现微小的负偏差,而氨对氧化亚氮和甲烷的干扰较小。所测试的挥发性有机化合物都不会干扰氨、甲烷或一氧化二氮的测量。总的来说,在典型的农业条件下,使用空腔降环光谱法测量氨、一氧化二氮和甲烷的浓度是可靠的。只有在特殊条件下才能观察到轻微的干扰。
{"title":"Investigation of non-target gas interferences on a multi-gas cavity ring-down spectrometer","authors":"Pablo García,&nbsp;Anna Holm Støckler,&nbsp;Anders Feilberg,&nbsp;Jesper Nørlem Kamp","doi":"10.1016/j.aeaoa.2024.100258","DOIUrl":"https://doi.org/10.1016/j.aeaoa.2024.100258","url":null,"abstract":"<div><p>Emissions from agriculture are a worldwide problem as it is the major anthropogenic source of ammonia, methane, and nitrous oxide. Several efforts have been made to mitigate emissions. To achieve this, reliable measuring techniques are necessary to quantify the impact of the emissions. Different techniques relying on different principles are available. Generally, these techniques demonstrate good agreement on their measurements but there is a lack of studies that thoroughly investigate cross-interferences. In this work, three different models of Cavity Ring-Down Spectrometers measuring ammonia, nitrous oxide, and methane were tested in parallel for potential biases due to interference from ammonia, water vapor, and twelve volatile organic compounds commonly present in agricultural environments. Our results showed a small negative bias with increasing humidity on nitrous oxide and minor interferences of ammonia on nitrous oxide and methane. None of the tested volatile organic compounds interfered with ammonia, methane, or nitrous oxide measurements. Overall, concentration measurements of ammonia, nitrous oxide, and methane with cavity ring-down spectrometry have proven reliable under typical agricultural conditions. Minor interferences were only observed under exceptional conditions.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259016212400025X/pdfft?md5=e7a4646785bf2edef0ed02d5f2a9dc30&pid=1-s2.0-S259016212400025X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140552653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial, temporal features and influence of meteorology on PM2.5 and O3 association across urban and rural environments of India 印度城市和农村环境中 PM2.5 和 O3 关联的时空特征和气象影响
IF 4.6 Q1 Environmental Science Pub Date : 2024-04-01 DOI: 10.1016/j.aeaoa.2024.100265
A. Sai Krishnaveni, B.L. Madhavan, Chaithanya D. Jain, M. Venkat Ratnam

This study provides an extensive analysis of the spatio-temporal association between particulate matter of 2.5 μm or less (PM2.5) and ground-level Ozone (O3) across four selected urban settlements (Delhi, Bengaluru, Ahmedabad, and Kolkata), and a rural (Gadanki) area in India. Utilizing 4 years (2019–2022) data from multiple sites in India, the study employed the robust linear regression, and deweathering techniques to elucidate the dynamics of PM2.5 and O3 under varying environmental conditions. Key findings include, in urban areas like Kolkata and Bengaluru, PM2.5 and O3 exhibited a consistent year-round positive relationship pre- and post-deweathering. This implies that within these cities, emission sources, and atmospheric chemistry are crucial in shaping the association between PM2.5, and O3 than meteorological conditions. In contrast, negative correlations were more dominant over Delhi and Ahmedabad, which were unaffected by meteorology except in a few seasons. Typically, in Ahmedabad, this relationship differed from the general trend, displaying a positive correlation in winter and a negative in the pre-monsoon season. The rural area of Gadanki presents a unique case where deweathering alters the observed correlations significantly (shifted from positive to negative association), highlighting the dominant role of meteorological factors in driving PM2.5 and O3 relationship in rural settings. Relative humidity (RH), temperature (T), and wind direction (WD) were the key factors influencing PM2.5 and O3 relationship, although their impact varied seasonally and by location. However, the analysis during COVID-19 lockdown highlights the combined impact of meteorology and anthropogenic emissions on PM2.5 and O3 association, rather than the effect of each factor individually. These outcomes emphasize the need to account for both meteorological and non-meteorological factors in the air quality analysis. The findings offer valuable insights into coordinating the control of these pollutants, suggesting that effective air quality control strategies should be tailored to the specific needs and conditions of each region. This approach is crucial for developing more effective and targeted air quality management policies, especially in a diverse and rapidly developing country like India.

本研究广泛分析了印度四个选定城市住区(德里、班加罗尔、艾哈迈达巴德和加尔各答)和一个农村地区(Gadanki)的 2.5 μm 或以下颗粒物(PM2.5)与地面臭氧(O3)之间的时空关联。利用来自印度多个地点的 4 年(2019-2022 年)数据,该研究采用了稳健线性回归和去重技术来阐明不同环境条件下 PM2.5 和 O3 的动态变化。主要发现包括:在加尔各答和班加罗尔等城市地区,PM2.5 和 O3 在风化前后呈现出一致的全年正相关关系。这意味着,在这些城市中,与气象条件相比,排放源和大气化学对形成 PM2.5 和 O3 之间的关联至关重要。相比之下,负相关在德里和艾哈迈达巴德更为突出,这两个城市除少数季节外不受气象条件的影响。在艾哈迈达巴德,这种关系通常与总体趋势不同,在冬季呈正相关,而在季风前季节呈负相关。Gadanki 的农村地区是一个独特的案例,在这里,风化显著改变了观察到的相关性(从正相关转为负相关),突出了气象因素在推动农村地区 PM2.5 和 O3 关系中的主导作用。相对湿度(RH)、温度(T)和风向(WD)是影响 PM2.5 和 O3 关系的关键因素,尽管它们的影响因季节和地点而异。然而,COVID-19锁定期间的分析突出了气象和人为排放对PM2.5和O3关系的综合影响,而不是每个因素的单独影响。这些结果强调了在空气质量分析中考虑气象和非气象因素的必要性。研究结果为协调控制这些污染物提供了宝贵的见解,表明有效的空气质量控制策略应适合每个地区的具体需求和条件。这种方法对于制定更有效、更有针对性的空气质量管理政策至关重要,尤其是在印度这样一个多样化和快速发展的国家。
{"title":"Spatial, temporal features and influence of meteorology on PM2.5 and O3 association across urban and rural environments of India","authors":"A. Sai Krishnaveni,&nbsp;B.L. Madhavan,&nbsp;Chaithanya D. Jain,&nbsp;M. Venkat Ratnam","doi":"10.1016/j.aeaoa.2024.100265","DOIUrl":"https://doi.org/10.1016/j.aeaoa.2024.100265","url":null,"abstract":"<div><p>This study provides an extensive analysis of the spatio-temporal association between particulate matter of 2.5 μm or less (PM<sub>2.5</sub>) and ground-level Ozone (O<sub>3</sub>) across four selected urban settlements (Delhi, Bengaluru, Ahmedabad, and Kolkata), and a rural (Gadanki) area in India. Utilizing 4 years (2019–2022) data from multiple sites in India, the study employed the robust linear regression, and deweathering techniques to elucidate the dynamics of PM<sub>2.5</sub> and O<sub>3</sub> under varying environmental conditions. Key findings include, in urban areas like Kolkata and Bengaluru, PM<sub>2.5</sub> and O<sub>3</sub> exhibited a consistent year-round positive relationship pre- and post-deweathering. This implies that within these cities, emission sources, and atmospheric chemistry are crucial in shaping the association between PM<sub>2.5</sub>, and O<sub>3</sub> than meteorological conditions. In contrast, negative correlations were more dominant over Delhi and Ahmedabad, which were unaffected by meteorology except in a few seasons. Typically, in Ahmedabad, this relationship differed from the general trend, displaying a positive correlation in winter and a negative in the pre-monsoon season. The rural area of Gadanki presents a unique case where deweathering alters the observed correlations significantly (shifted from positive to negative association), highlighting the dominant role of meteorological factors in driving PM<sub>2.5</sub> and O<sub>3</sub> relationship in rural settings. Relative humidity (RH), temperature (T), and wind direction (WD) were the key factors influencing PM<sub>2.5</sub> and O<sub>3</sub> relationship, although their impact varied seasonally and by location. However, the analysis during COVID-19 lockdown highlights the combined impact of meteorology and anthropogenic emissions on PM<sub>2.5</sub> and O<sub>3</sub> association, rather than the effect of each factor individually. These outcomes emphasize the need to account for both meteorological and non-meteorological factors in the air quality analysis. The findings offer valuable insights into coordinating the control of these pollutants, suggesting that effective air quality control strategies should be tailored to the specific needs and conditions of each region. This approach is crucial for developing more effective and targeted air quality management policies, especially in a diverse and rapidly developing country like India.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000327/pdfft?md5=23356889a1508935544e72426bd2555d&pid=1-s2.0-S2590162124000327-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141090962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of the effect of remanufacturing diesel particulate filters to minimize environmental impacts 评估柴油微粒滤清器再制造对环境影响最小化的效果
IF 4.6 Q1 Environmental Science Pub Date : 2024-04-01 DOI: 10.1016/j.aeaoa.2024.100269
Akihiro Yoshimura , Kensuke Mori , Vinas Dan , Tomohisa Kanazawa , Mitsuhiro Yoshimoto , Yasunari Matsuno

Exhaust gas purification is required for the operation of heavy machinery, e.g., construction machinery which mainly uses diesel engines. Precious metals such as the platinum group are used in catalysts for this purpose, which heavily impacts the environment. In this study, the authors evaluated the potential of remanufacturing diesel particulate filters (DPF) to reduce these impacts. Climate change indicators, i.e., global warming potential (GWP), and resource consumption were evaluated.

As a result, the environmental impacts of new product manufacturing, particularly resource production and the manufacturing process, were quantitatively estimated to be significant, while the environmental impacts of the remanufacturing process, product delivery, and disposal of the used products were significantly lower. In addition, 47% of the GWP and 50% of the resource consumption were reduced using remanufactured diesel particulate filters compared with using only new diesel particulate filters.

重型机械(如主要使用柴油发动机的建筑机械)的运行需要进行废气净化。为此,催化剂中使用了铂族等贵金属,这对环境造成了严重影响。在这项研究中,作者评估了再制造柴油微粒过滤器(DPF)以减少这些影响的潜力。对气候变化指标,即全球升温潜能值(GWP)和资源消耗进行了评估。结果表明,新产品制造,特别是资源生产和制造过程,对环境的定量影响很大,而再制造过程、产品交付和废旧产品处置对环境的影响则明显较低。此外,与只使用新的柴油微粒过滤器相比,使用再制造柴油微粒过滤器可减少 47% 的全球升温潜能值和 50% 的资源消耗。
{"title":"Evaluation of the effect of remanufacturing diesel particulate filters to minimize environmental impacts","authors":"Akihiro Yoshimura ,&nbsp;Kensuke Mori ,&nbsp;Vinas Dan ,&nbsp;Tomohisa Kanazawa ,&nbsp;Mitsuhiro Yoshimoto ,&nbsp;Yasunari Matsuno","doi":"10.1016/j.aeaoa.2024.100269","DOIUrl":"https://doi.org/10.1016/j.aeaoa.2024.100269","url":null,"abstract":"<div><p>Exhaust gas purification is required for the operation of heavy machinery, e.g., construction machinery which mainly uses diesel engines. Precious metals such as the platinum group are used in catalysts for this purpose, which heavily impacts the environment. In this study, the authors evaluated the potential of remanufacturing diesel particulate filters (DPF) to reduce these impacts. Climate change indicators, i.e., global warming potential (GWP), and resource consumption were evaluated.</p><p>As a result, the environmental impacts of new product manufacturing, particularly resource production and the manufacturing process, were quantitatively estimated to be significant, while the environmental impacts of the remanufacturing process, product delivery, and disposal of the used products were significantly lower. In addition, 47% of the GWP and 50% of the resource consumption were reduced using remanufactured diesel particulate filters compared with using only new diesel particulate filters.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000364/pdfft?md5=0351b12a1a7b34cde9876e085542f833&pid=1-s2.0-S2590162124000364-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141243646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerosol sources characterization and apportionment from low-cost particle sensors in an urban environment 利用城市环境中的低成本粒子传感器确定气溶胶源的特征和比例
IF 4.6 Q1 Environmental Science Pub Date : 2024-04-01 DOI: 10.1016/j.aeaoa.2024.100271
Vikas Kumar , Vasudev Malyan , Manoranjan Sahu , Basudev Biswal

Low-cost sensors (LCS) have the potential to provide accurate and reliable measurements of air quality in real-time. This improves our ability to monitor, identify sources of pollution and develop mitigation strategies for effective air quality management. However, recent research on LCS has primarily focused on monitoring, exposure assessment, and calibration. In this study, we investigate the applicability of LCS data collected at ambient sites for characterizing and apportioning aerosol sources. Non-negative matrix factorization (NMF) was applied to the size-resolved data collected across five sites within the Indian Institute of Technology Bombay (IITB) campus in Mumbai using the LCS Alphasense OPC-N2. The sampling was done for 15 days at 5 locations in IITB, and each site only had 3 days of data. NMF resolved two factors for three sites, namely aromas (S2), hostel hub (S3) and central library (S4), while three factors were resolved for two sites, namely construction site (S1) and main gate (S5). Two common sources were determined for all the sites: (i) dust and marine source and (ii) traffic and combustion sources, which agree with the sources identified by studies in the literature. The third factor resolved at sites S1 and S5 is representative of heavy-duty diesel vehicles (HDDVs), which is present for a very short period and is captured because of the capability of high temporal resolution of the LCS. This offers a unique, cost-effective advantage of LCS for capturing episodic activities. The study suggests that in low- and middle-income countries with limited air quality monitoring capabilities, the size-time-resolved PM concentration data obtained from a network of low-cost sensors can estimate the pollution sources. This study provided evidence that despite their inherent limitations, LCS can be useful in attaining interpretable information about pollution sources and recommends extensive use of LCS for source characterization in the future.

低成本传感器(LCS)具有实时提供准确可靠的空气质量测量值的潜力。这提高了我们监测、识别污染源和制定有效空气质量管理的缓解策略的能力。然而,最近关于 LCS 的研究主要集中在监测、暴露评估和校准方面。在本研究中,我们研究了在环境站点收集的 LCS 数据在确定气溶胶源的特征和分布方面的适用性。使用 LCS Alphasense OPC-N2 将非负矩阵因式分解 (NMF) 应用于在孟买印度理工学院(IITB)校园内五个地点收集的粒度分辨数据。在印度理工学院孟买校区的 5 个地点进行了为期 15 天的采样,每个地点只有 3 天的数据。NMF 分解了三个地点的两个因子,即香气(S2)、宿舍中心(S3)和中央图书馆(S4),同时分解了两个地点的三个因子,即建筑工地(S1)和正门(S5)。所有场地都确定了两个共同来源:(i) 灰尘和海洋来源;(ii) 交通和燃烧来源,这与文献研究确定的来源一致。在站点 S1 和 S5 解决的第三个因素是重型柴油车 (HDDV),其存在时间很短,由于 LCS 具有高时间分辨率的能力,因此可以捕捉到。这使 LCS 在捕捉偶发活动方面具有独特的成本效益优势。该研究表明,在空气质量监测能力有限的中低收入国家,从低成本传感器网络获得的粒径-时间分辨率可吸入颗粒物浓度数据可以估算污染源。这项研究提供的证据表明,尽管有其固有的局限性,低成本传感器在获得可解释的污染源信息方面还是很有用的,并建议今后在污染源特征描述方面广泛使用低成本传感器。
{"title":"Aerosol sources characterization and apportionment from low-cost particle sensors in an urban environment","authors":"Vikas Kumar ,&nbsp;Vasudev Malyan ,&nbsp;Manoranjan Sahu ,&nbsp;Basudev Biswal","doi":"10.1016/j.aeaoa.2024.100271","DOIUrl":"https://doi.org/10.1016/j.aeaoa.2024.100271","url":null,"abstract":"<div><p>Low-cost sensors (LCS) have the potential to provide accurate and reliable measurements of air quality in real-time. This improves our ability to monitor, identify sources of pollution and develop mitigation strategies for effective air quality management. However, recent research on LCS has primarily focused on monitoring, exposure assessment, and calibration. In this study, we investigate the applicability of LCS data collected at ambient sites for characterizing and apportioning aerosol sources. Non-negative matrix factorization (NMF) was applied to the size-resolved data collected across five sites within the Indian Institute of Technology Bombay (IITB) campus in Mumbai using the LCS Alphasense OPC-N2. The sampling was done for 15 days at 5 locations in IITB, and each site only had 3 days of data. NMF resolved two factors for three sites, namely aromas (S2), hostel hub (S3) and central library (S4), while three factors were resolved for two sites, namely construction site (S1) and main gate (S5). Two common sources were determined for all the sites: (i) dust and marine source and (ii) traffic and combustion sources, which agree with the sources identified by studies in the literature. The third factor resolved at sites S1 and S5 is representative of heavy-duty diesel vehicles (HDDVs), which is present for a very short period and is captured because of the capability of high temporal resolution of the LCS. This offers a unique, cost-effective advantage of LCS for capturing episodic activities. The study suggests that in low- and middle-income countries with limited air quality monitoring capabilities, the size-time-resolved PM concentration data obtained from a network of low-cost sensors can estimate the pollution sources. This study provided evidence that despite their inherent limitations, LCS can be useful in attaining interpretable information about pollution sources and recommends extensive use of LCS for source characterization in the future.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000388/pdfft?md5=736bbd269c945f9ae2bb9469c901cc28&pid=1-s2.0-S2590162124000388-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141243648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near-source dispersion and coagulation parameterization: Application to biomass burning emissions 近源扩散和混凝参数化:生物质燃烧排放的应用
IF 4.6 Q1 Environmental Science Pub Date : 2024-04-01 DOI: 10.1016/j.aeaoa.2024.100266
Tanmay Sarkar , Taveen Singh Kapoor , Y.S. Mayya , Chandra Venkataraman , S. Anand

Aerosol size distributions near biomass-burning sources undergo rapid evolution, primarily due to coagulation, which significantly alters the particle number size distribution. Existing long-range aerosol transport and climate prediction models often overlook near-source dynamics involving simultaneous coagulation and dispersion. To bridge this gap, the present study introduces a coagulation-dispersion model and provides semi-analytical solutions for the effective size distribution parameters. The precise solution for a diffusion-less coagulating plume with spatially varying particle concentration supports the conceptual accuracy of the semi-analytical parameterization for dispersion-coagulation model. These solutions form the basis for a parameterization scheme that considers input parameters such as source dimensions, particle mass flux, particle size, and atmospheric conditions. Utilizing this parameterization for case-specific biomass burning emissions shows a decrease in number emission rate by approximately a factor of 600, while the count median diameter of the initial size distribution increases by around 7 times. Additionally, we estimate the optical properties of aerosols both before and after the introduction of the near-source parameterization scheme. Results indicate an increase by a factor of 4 in the aerosol extinction coefficient and by a factor of ∼20 in the scattering coefficient, which will significantly influence the calculation of aerosol optical properties in global models. These changes in optical properties primarily stem from modifications in aerosol size distribution resulting from near-source aerosol dynamics. The results are further discussed.

生物质燃烧源附近的气溶胶粒径分布会发生快速变化,这主要是由于凝结作用,凝结作用会显著改变粒数粒径分布。现有的长程气溶胶传输和气候预测模型往往忽略了同时涉及凝结和扩散的近源动力学。为了弥补这一缺陷,本研究引入了混凝-弥散模型,并提供了有效粒度分布参数的半解析解。对于空间颗粒浓度变化的无扩散混凝羽流的精确解支持了分散-混凝模型半解析参数化的概念准确性。这些解法构成了参数化方案的基础,该方案考虑了源尺寸、颗粒质量通量、颗粒大小和大气条件等输入参数。利用这种参数化方法处理特定情况下的生物质燃烧排放,结果表明数量排放率降低了约 600 倍,而初始粒度分布的计数中值直径则增加了约 7 倍。此外,我们还估算了引入近源参数化方案前后气溶胶的光学特性。结果表明,气溶胶消光系数增加了 4 倍,散射系数增加了 20 倍,这将极大地影响全球模式中气溶胶光学特性的计算。这些光学特性的变化主要源于近源气溶胶动力学对气溶胶粒径分布的改变。本文将进一步讨论这些结果。
{"title":"Near-source dispersion and coagulation parameterization: Application to biomass burning emissions","authors":"Tanmay Sarkar ,&nbsp;Taveen Singh Kapoor ,&nbsp;Y.S. Mayya ,&nbsp;Chandra Venkataraman ,&nbsp;S. Anand","doi":"10.1016/j.aeaoa.2024.100266","DOIUrl":"10.1016/j.aeaoa.2024.100266","url":null,"abstract":"<div><p>Aerosol size distributions near biomass-burning sources undergo rapid evolution, primarily due to coagulation, which significantly alters the particle number size distribution. Existing long-range aerosol transport and climate prediction models often overlook near-source dynamics involving simultaneous coagulation and dispersion. To bridge this gap, the present study introduces a coagulation-dispersion model and provides semi-analytical solutions for the effective size distribution parameters. The precise solution for a diffusion-less coagulating plume with spatially varying particle concentration supports the conceptual accuracy of the semi-analytical parameterization for dispersion-coagulation model. These solutions form the basis for a parameterization scheme that considers input parameters such as source dimensions, particle mass flux, particle size, and atmospheric conditions. Utilizing this parameterization for case-specific biomass burning emissions shows a decrease in number emission rate by approximately a factor of 600, while the count median diameter of the initial size distribution increases by around 7 times. Additionally, we estimate the optical properties of aerosols both before and after the introduction of the near-source parameterization scheme. Results indicate an increase by a factor of 4 in the aerosol extinction coefficient and by a factor of ∼20 in the scattering coefficient, which will significantly influence the calculation of aerosol optical properties in global models. These changes in optical properties primarily stem from modifications in aerosol size distribution resulting from near-source aerosol dynamics. The results are further discussed.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000339/pdfft?md5=f47907f02ef8c7b5fbd275d2a796187a&pid=1-s2.0-S2590162124000339-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141132807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term meteorology-adjusted and unadjusted trends of PM2.5 using the AirGAM model over Delhi, 2007–2022 2007-2022 年使用 AirGAM 模型计算的德里 PM2.5 经气象学调整和未经调整的长期趋势
IF 4.6 Q1 Environmental Science Pub Date : 2024-04-01 DOI: 10.1016/j.aeaoa.2024.100255
Chetna , Surendra K. Dhaka , Sam-Erik Walker , Vikas Rawat , Narendra Singh

This study investigates the impact of meteorological variations on the long-term patterns of PM2.5 in Delhi from 2007 to 2022 using the AirGAM 2022r1 model. Generalized Additive Modeling was employed to analyze meteorology-adjusted (removing the influence of inter-annual variations in meteorology) and unadjusted trends (trends without considering meteorology) while addressing auto-correlation. PM2.5 levels showed a modest decline of 14 μg m−3 unadjusted and 18 μg m−3 meteorology-adjusted over the study period. Meteorological conditions and time factors significantly influenced trends. Temperature, wind speed, wind direction, humidity, boundary layer height, medium-height cloud cover, precipitation, and time variables including day-of-week, day-of-year, and overall time, were used as GAM model inputs. The model accounted for 55% of PM2.5 variability (adjusted R-squared = 0.55). Day-of-week and medium-height cloud cover were non-significant, while other covariates were significant (p < 0.05), except for precipitation (p < 0.1). Wind speed (F-value: 98) showed the strongest correlation, followed by day-of-year (61), years (41.8), planetary boundary layer height (13.7), and temperature (13). Meteorological parameters exhibited significant long-term trends, except for temperature. Inter-annual meteorological variations minimally affected PM2.5 trends. The model had a Pearson correlation of 0.72 with observed PM2.5, underestimating episodic peaks due to long-range transport. Partial dependencies revealed a non-linear PM2.5 relationship with meteorology. Break-point detection identified two potential breakpoints in PM2.5 time series. The first, on October 1, 2010, saw a significant increase from 103.4 to 162.6 μg m−3, potentially due to long-range transport. Comparing meteorology-adjusted and unadjusted trends can aid policymakers in understanding pollution change causes.

本研究使用 AirGAM 2022r1 模型研究了气象变化对 2007 年至 2022 年德里 PM2.5 长期模式的影响。研究采用了广义相加模型来分析气象调整趋势(消除气象年际变化的影响)和未调整趋势(不考虑气象的趋势),同时解决了自相关性问题。在研究期间,PM2.5 水平略有下降,未调整为 14 μg m-3,气象调整为 18 μg m-3。气象条件和时间因素对趋势有显著影响。气温、风速、风向、湿度、边界层高度、中高云层、降水以及时间变量(包括周日、年日和总体时间)被用作 GAM 模型的输入。该模型解释了 55% 的 PM2.5 变异性(调整后的 R 方 = 0.55)。周日和中高云层不显著,而其他协变量显著(p < 0.05),降水除外(p < 0.1)。风速(F 值:98)显示出最强的相关性,其次是年月日(61)、年份(41.8)、行星边界层高度(13.7)和温度(13)。除温度外,其他气象参数都呈现出明显的长期趋势。年际气象变化对 PM2.5 趋势的影响很小。模型与观测到的 PM2.5 的皮尔逊相关性为 0.72,低估了长程飘移导致的偶发峰值。局部相关性表明,PM2.5 与气象存在非线性关系。断点检测确定了 PM2.5 时间序列中的两个潜在断点。第一个是 2010 年 10 月 1 日,从 103.4 μg m-3 显著增加到 162.6 μg m-3,这可能是由于长程飘移造成的。比较气象调整趋势和未调整趋势有助于决策者了解污染变化的原因。
{"title":"Long-term meteorology-adjusted and unadjusted trends of PM2.5 using the AirGAM model over Delhi, 2007–2022","authors":"Chetna ,&nbsp;Surendra K. Dhaka ,&nbsp;Sam-Erik Walker ,&nbsp;Vikas Rawat ,&nbsp;Narendra Singh","doi":"10.1016/j.aeaoa.2024.100255","DOIUrl":"https://doi.org/10.1016/j.aeaoa.2024.100255","url":null,"abstract":"<div><p>This study investigates the impact of meteorological variations on the long-term patterns of PM<sub>2.5</sub> in Delhi from 2007 to 2022 using the AirGAM 2022r1 model. Generalized Additive Modeling was employed to analyze meteorology-adjusted (removing the influence of inter-annual variations in meteorology) and unadjusted trends (trends without considering meteorology) while addressing auto-correlation. PM<sub>2.5</sub> levels showed a modest decline of 14 μg m<sup>−3</sup> unadjusted and 18 μg m<sup>−3</sup> meteorology-adjusted over the study period. Meteorological conditions and time factors significantly influenced trends. Temperature, wind speed, wind direction, humidity, boundary layer height, medium-height cloud cover, precipitation, and time variables including day-of-week, day-of-year, and overall time, were used as GAM model inputs. The model accounted for 55% of PM<sub>2.5</sub> variability (adjusted R-squared = 0.55). Day-of-week and medium-height cloud cover were non-significant, while other covariates were significant (p &lt; 0.05), except for precipitation (p &lt; 0.1). Wind speed (F-value: 98) showed the strongest correlation, followed by day-of-year (61), years (41.8), planetary boundary layer height (13.7), and temperature (13). Meteorological parameters exhibited significant long-term trends, except for temperature. Inter-annual meteorological variations minimally affected PM<sub>2.5</sub> trends. The model had a Pearson correlation of 0.72 with observed PM<sub>2.5</sub>, underestimating episodic peaks due to long-range transport. Partial dependencies revealed a non-linear PM<sub>2.5</sub> relationship with meteorology. Break-point detection identified two potential breakpoints in PM<sub>2.5</sub> time series. The first, on October 1, 2010, saw a significant increase from 103.4 to 162.6 μg m<sup>−3</sup>, potentially due to long-range transport. Comparing meteorology-adjusted and unadjusted trends can aid policymakers in understanding pollution change causes.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000224/pdfft?md5=e3269e49dafa2df5d0e802ea71b8e898&pid=1-s2.0-S2590162124000224-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140343724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Atmospheric Environment: X
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1