Pub Date : 2024-09-01DOI: 10.1016/j.ohx.2024.e00575
Anggie P. Echeverry , Carlos F. López
Environmental protection has gained greater importance over time due to the negative impact and irreversible consequences that have occurred worldwide and stem from pollution. One of the great challenges faced in different parts of the world is the inadequate management and classification of solid waste. In order to contribute to tackling this issue, this paper proposes an automated sorting system based on artificial vision which allows recognition and separation of recyclable materials (Plastic, Glass, Cardboard and Metal) through a webcam connected in real time to the Nvidia® Jetson Nano™ 2 GB programming board, which has a convolutional neural network (CNN) trained for the proper classification of waste. The system had a 95 % accuracy in separating plastic, 96 % in glass and metal, and 94 % in cardboard. With this in mind, we conclude it contributes to the recycling effort, which has an impact on the reduction of environmental pollution worldwide.
{"title":"AUTORECYCLER: Prototype based on artificial vision to automate the material classification process (Plastic, Glass, Cardboard and Metal)","authors":"Anggie P. Echeverry , Carlos F. López","doi":"10.1016/j.ohx.2024.e00575","DOIUrl":"10.1016/j.ohx.2024.e00575","url":null,"abstract":"<div><p>Environmental protection has gained greater importance over time due to the negative impact and irreversible consequences that have occurred worldwide and stem from pollution. One of the great challenges faced in different parts of the world is the inadequate management and classification of solid waste. In order to contribute to tackling this issue, this paper proposes an automated sorting system based on artificial vision which allows recognition and separation of recyclable materials (Plastic, Glass, Cardboard and Metal) through a webcam connected in real time to the Nvidia® Jetson Nano™ 2 GB programming board, which has a convolutional neural network (CNN) trained for the proper classification of waste. The system had a 95 % accuracy in separating plastic, 96 % in glass and metal, and 94 % in cardboard. With this in mind, we conclude it contributes to the recycling effort, which has an impact on the reduction of environmental pollution worldwide.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"19 ","pages":"Article e00575"},"PeriodicalIF":2.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000695/pdfft?md5=4afa327ad0be22153064f4735719a2d9&pid=1-s2.0-S2468067224000695-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.ohx.2024.e00579
Wei Yang Tay , Christopher Yew Shuen Ang , Yeong Shiong Chiew , J. Geoffrey Chase
A mechanical test lung is a crucial tool in accurately simulating patient-specific physiological responses of patients undergoing mechanical ventilation (MV), which, in turn, offer clinicians insight into lung mechanics during MV. In particular, it can be used to facilitate better methods to identify optimal ventilator settings, modes for individual patients by providing a platform to experiment with different MV settings. This addresses the challenge of optimising MV settings caused by variability in pathological conditions and the progression of respiratory disease over time within patients. However, the accessibility and cost of versatile test lungs limit widespread adoption in clinical settings, underscoring the need for affordable alternatives. This paper presents detailed instructions for the design and construction of a replicable, cost-effective mechanical test lung. The design features 3 subsystems: 1) the lung compartment; 2) the airway; and 3) a spontaneous breathing system. A detailed tests series shows its ability to replicate clinically realistic lung elastance values ranging from 25 to 85 cmH2O/L and airway resistance values from 10 to 45 cmH2O·s/L. It can also simulate a range of clinically realistic spontaneous breathing patterns. These capabilities yield pressure and flow ventilation data comparable to certified clinical test lungs across diverse scenarios, as well as matching clinically observed behaviours and dynamics. This accessible and versatile test lung offers valuable opportunities for optimising MV settings and advancing patient care, as well as its use in developing a range of physiological models for model-based decision support.
{"title":"CARETestLung: A mechanical test lung with Configurable airway Resistance, lung Elastance, and breathing efforts","authors":"Wei Yang Tay , Christopher Yew Shuen Ang , Yeong Shiong Chiew , J. Geoffrey Chase","doi":"10.1016/j.ohx.2024.e00579","DOIUrl":"10.1016/j.ohx.2024.e00579","url":null,"abstract":"<div><p>A mechanical test lung is a crucial tool in accurately simulating patient-specific physiological responses of patients undergoing mechanical ventilation (MV), which, in turn, offer clinicians insight into lung mechanics during MV. In particular, it can be used to facilitate better methods to identify optimal ventilator settings, modes for individual patients by providing a platform to experiment with different MV settings. This addresses the challenge of optimising MV settings caused by variability in pathological conditions and the progression of respiratory disease over time within patients. However, the accessibility and cost of versatile test lungs limit widespread adoption in clinical settings, underscoring the need for affordable alternatives. This paper presents detailed instructions for the design and construction of a replicable, cost-effective mechanical test lung. The design features 3 subsystems: 1) the lung compartment; 2) the airway; and 3) a spontaneous breathing system. A detailed tests series shows its ability to replicate clinically realistic lung elastance values ranging from 25 to 85 cmH<sub>2</sub>O/L and airway resistance values from 10 to 45 cmH<sub>2</sub>O·s/L. It can also simulate a range of clinically realistic spontaneous breathing patterns. These capabilities yield pressure and flow ventilation data comparable to certified clinical test lungs across diverse scenarios, as well as matching clinically observed behaviours and dynamics. This accessible and versatile test lung offers valuable opportunities for optimising MV settings and advancing patient care, as well as its use in developing a range of physiological models for model-based decision support.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"19 ","pages":"Article e00579"},"PeriodicalIF":2.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000737/pdfft?md5=78a49d0c8a769a23258c39415bf8eb2a&pid=1-s2.0-S2468067224000737-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142117683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1016/j.ohx.2024.e00577
Yannic Toschke , Jan Klenen , Mirco Imlau
In the context of experimental optics- and photonics-research, motorized, high-precision rotation stages are an integral part of almost every laboratory setup. Nevertheless, their availability in the laboratory is limited due to the relatively high acquisition costs in the range of several 1000€ and is often supplemented by manual rotation stages. If only a single sample is to be analyzed repeatedly at two different angles or the polarization of a laser source is to be rotated, this approach is understandable. Yet, in the context of automation and the associated gain in measurement time, cost-effective and precise rotation stages designed for the use of optics are lacking.
We present a low-cost alternative of a motorized high precision rotation stage system. The design is based on a combination of 3D-printed components, which form the monolithic mechanical framework, and a stepper motor controlled by an ESP32 based microcontroller. By coupling the motor and rotation unit via a toothed belt, backlash is minimized and at the same time high positioning accuracy can be achieved. Finally, the implementation of remote procedure calls for serial communication and the utilization of a physical home switch and incremental encoder complete the desired feature set of an integrated system for laboratory setups. The total costs can thus be reduced to less than 100€ without significantly restricting the performance criteria.
在光学和光子学的实验研究中,电动高精度旋转平台几乎是每个实验室设备不可或缺的一部分。然而,由于其购置成本相对较高,大约在几千欧元左右,因此在实验室中的应用非常有限,通常只能通过手动旋转平台进行补充。如果只是在两个不同的角度反复分析一个样品或旋转激光源的偏振,这种方法是可以理解的。然而,为了实现自动化并缩短测量时间,目前还缺乏专为光学仪器设计的高性价比、高精度旋转平台。该设计基于 3D 打印组件(构成整体机械框架)和由基于 ESP32 的微控制器控制的步进电机的组合。通过齿形带将电机和旋转装置耦合在一起,可以最大限度地减少反向间隙,同时实现高定位精度。最后,串行通信远程程序调用的实施以及物理原点开关和增量式编码器的使用,完善了实验室设置集成系统所需的功能集。因此,总成本可降至 100 欧元以下,而性能标准不会受到明显限制。
{"title":"Open Photonics: An integrated approach for building a 3D-printed motorized rotation stage system","authors":"Yannic Toschke , Jan Klenen , Mirco Imlau","doi":"10.1016/j.ohx.2024.e00577","DOIUrl":"10.1016/j.ohx.2024.e00577","url":null,"abstract":"<div><p>In the context of experimental optics- and photonics-research, motorized, high-precision rotation stages are an integral part of almost every laboratory setup. Nevertheless, their availability in the laboratory is limited due to the relatively high acquisition costs in the range of several 1000€ and is often supplemented by manual rotation stages. If only a single sample is to be analyzed repeatedly at two different angles or the polarization of a laser source is to be rotated, this approach is understandable. Yet, in the context of automation and the associated gain in measurement time, cost-effective and precise rotation stages designed for the use of optics are lacking.</p><p>We present a low-cost alternative of a motorized high precision rotation stage system. The design is based on a combination of 3D-printed components, which form the monolithic mechanical framework, and a stepper motor controlled by an ESP32 based microcontroller. By coupling the motor and rotation unit via a toothed belt, backlash is minimized and at the same time high positioning accuracy can be achieved. Finally, the implementation of remote procedure calls for serial communication and the utilization of a physical home switch and incremental encoder complete the desired feature set of an integrated system for laboratory setups. The total costs can thus be reduced to less than 100€ without significantly restricting the performance criteria.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"20 ","pages":"Article e00577"},"PeriodicalIF":2.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000713/pdfft?md5=61cd481c35a35949d76e0620bb7be30a&pid=1-s2.0-S2468067224000713-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.ohx.2024.e00572
Nils Lindner , Andres Mejia-Wille , Anna Fritschen , Andreas Blaeser
Organs-on-a-chip (OoCs) have proven to mimic the basic physiological behavior of organs and the influence of therapeutics on them in greater detail than conventional models, resulting in enormous projected market growth rates. However, the breakthrough to profitable commercialization of that technology has not yet been achieved, partly because the production process chain is characterized by a high proportion of manual laboratory work. The present work addresses this point. Utilizing affordable components, a demonstrator was developed that can be integrated into an existing 3D-bioprinting system and enables the automated production of perfusion-ready OoC devices starting from pre-fabricated injection-molded microfluidic chips. To this end, a corresponding process chain was first defined, and an expandable, configurable algorithm was developed and validated in the form of a finite state machine (FSM). This algorithm controls a modified 4-axis robot arm that covers the steps upstream and downstream of the printing process in the manufacturing process and achieves success rates of up to 100 %. A virtual interface between the robot and printer enables mutual communication and full integration of the algorithm into the process chain. Steps that pose a challenge for the automation of the process chain and appropriate countermeasures and optimizations were identified. This lays the foundation for scaling and standardizing the automated production of OoCs.
{"title":"Development of a robotic-assisted handling and manipulation system for the high-scale bioproduction of 3D-bioprinted organ-on-a-chip devices","authors":"Nils Lindner , Andres Mejia-Wille , Anna Fritschen , Andreas Blaeser","doi":"10.1016/j.ohx.2024.e00572","DOIUrl":"10.1016/j.ohx.2024.e00572","url":null,"abstract":"<div><p>Organs-on-a-chip (OoCs) have proven to mimic the basic physiological behavior of organs and the influence of therapeutics on them in greater detail than conventional models, resulting in enormous projected market growth rates. However, the breakthrough to profitable commercialization of that technology has not yet been achieved, partly because the production process chain is characterized by a high proportion of manual laboratory work. The present work addresses this point. Utilizing affordable components, a demonstrator was developed that can be integrated into an existing 3D-bioprinting system and enables the automated production of perfusion-ready OoC devices starting from pre-fabricated injection-molded microfluidic chips. To this end, a corresponding process chain was first defined, and an expandable, configurable algorithm was developed and validated in the form of a finite state machine (FSM). This algorithm controls a modified 4-axis robot arm that covers the steps upstream and downstream of the printing process in the manufacturing process and achieves success rates of up to 100 %. A virtual interface between the robot and printer enables mutual communication and full integration of the algorithm into the process chain. Steps that pose a challenge for the automation of the process chain and appropriate countermeasures and optimizations were identified. This lays the foundation for scaling and standardizing the automated production of OoCs.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"19 ","pages":"Article e00572"},"PeriodicalIF":2.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S246806722400066X/pdfft?md5=9cc74006f150a61876809147fee64423&pid=1-s2.0-S246806722400066X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1016/j.ohx.2024.e00569
Claudia Ravasio , Luca Teruzzi , Mirko Siano , Llorenç Cremonesi , Bruno Paroli , Marco A.C. Potenza
We propose a compact, portable, and low-cost holographic microscope designed for the characterization of micrometric particles suspended in a liquid. This system is built around a commercial optical microscope by substituting its illumination source (a light-emitting diode) with a collimated laser beam. Similarly, a quartz flow cell replaces the microscope glass slide using a 3D-printed custom mount. With the hardware presented in this paper, the holographic imaging of the electromagnetic fields emitted by the particles that intercept the laser beam achieves a resolution close to that of optical microscopes but with a greater depth of field. Several morphological and optical features can be extracted from the holograms, including particle projected section, aspect ratio, and extinction cross-section. Additionally, we introduce a remote system control that enables users to process the acquired holograms on a remote computational device. This work provides a comprehensive description of the methodology of image processing in holographic microscopy and a series of validation measurements conducted using calibrated particles. This technique is suitable for the characterization of airborne particles found in snow, firn, and ice; here we report experimental results obtained from Alpine ice cores.
我们提出了一种结构紧凑、便于携带且成本低廉的全息显微镜,专门用于表征悬浮在液体中的微米级颗粒。该系统以商用光学显微镜为基础,用准直激光束取代其照明源(发光二极管)。同样,石英流动池使用 3D 打印的定制支架取代了显微镜玻璃载玻片。利用本文介绍的硬件,对拦截激光束的粒子发出的电磁场进行全息成像,可获得接近光学显微镜的分辨率,但景深更大。我们可以从全息图中提取多种形态和光学特征,包括粒子投影截面、长宽比和消光截面。此外,我们还引入了远程系统控制,使用户能够在远程计算设备上处理获取的全息图。这项工作全面描述了全息显微镜的图像处理方法,并使用校准粒子进行了一系列验证测量。这项技术适用于表征雪、枞树和冰中的气载颗粒;在此,我们报告了从阿尔卑斯冰芯中获得的实验结果。
{"title":"A customizable digital holographic microscope","authors":"Claudia Ravasio , Luca Teruzzi , Mirko Siano , Llorenç Cremonesi , Bruno Paroli , Marco A.C. Potenza","doi":"10.1016/j.ohx.2024.e00569","DOIUrl":"10.1016/j.ohx.2024.e00569","url":null,"abstract":"<div><p>We propose a compact, portable, and low-cost holographic microscope designed for the characterization of micrometric particles suspended in a liquid. This system is built around a commercial optical microscope by substituting its illumination source (a light-emitting diode) with a collimated laser beam. Similarly, a quartz flow cell replaces the microscope glass slide using a 3D-printed custom mount. With the hardware presented in this paper, the holographic imaging of the electromagnetic fields emitted by the particles that intercept the laser beam achieves a resolution close to that of optical microscopes but with a greater depth of field. Several morphological and optical features can be extracted from the holograms, including particle projected section, aspect ratio, and extinction cross-section. Additionally, we introduce a remote system control that enables users to process the acquired holograms on a remote computational device. This work provides a comprehensive description of the methodology of image processing in holographic microscopy and a series of validation measurements conducted using calibrated particles. This technique is suitable for the characterization of airborne particles found in snow, firn, and ice; here we report experimental results obtained from Alpine ice cores.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"19 ","pages":"Article e00569"},"PeriodicalIF":2.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000634/pdfft?md5=32242a7fc54507f92b0df2177c6c2c1f&pid=1-s2.0-S2468067224000634-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1016/j.ohx.2024.e00570
Matthew Hollingham, Yi Xiang, Titus Reed, Juan Pablo Gevaudan
The current lack of standardized testing methods to assess the binding isotherms of ions in cement and concrete research leads to uncontrolled variability in these results. In this study, an open-source and low-cost apparatus, named OpenHW3, is proposed to accurately measure the binding isotherms of ions in various cementitious material systems. OpenHW3 provides two main options, a temperature-controlled orbital shaker, as well as an option to retrofit a commercial orbital shaker for temperature control. The effectiveness of these device options is validated via comparison with conventional binding isotherms experiments. The binding isotherm results were comparable to conventional Waterbath shakers, while providing more reliable results compared to horizontal commercial shakers. It also provided accurate temperature control between 25 °C and 75 °C. The results here are critical for allowing open access to scientific equipment, and providing high-quality binding isotherm data for reliable service life models of urban infrastructure assets throughout the world.
由于目前在水泥和混凝土研究中缺乏评估离子结合等温线的标准化测试方法,导致了这些结果的不可控变异性。本研究提出了一种名为 OpenHW3 的开源低成本仪器,用于精确测量各种胶凝材料体系中的离子结合等温线。OpenHW3 提供两个主要选项,一个是温控轨道振动器,另一个是改装商用轨道振动器进行温控的选项。通过与传统的结合等温线实验进行比较,验证了这些设备选项的有效性。结合等温线实验结果与传统的水浴摇床相当,而与水平商用摇床相比,结合等温线实验结果更可靠。它还能在 25 °C 至 75 °C 之间提供精确的温度控制。这些结果对于允许开放科学设备以及为全球城市基础设施资产的可靠使用寿命模型提供高质量的结合等温线数据至关重要。
{"title":"OpenHW3 – An open-source, low-cost temperature-controlled orbital shaker","authors":"Matthew Hollingham, Yi Xiang, Titus Reed, Juan Pablo Gevaudan","doi":"10.1016/j.ohx.2024.e00570","DOIUrl":"10.1016/j.ohx.2024.e00570","url":null,"abstract":"<div><p>The current lack of standardized testing methods to assess the binding isotherms of ions in cement and concrete research leads to uncontrolled variability in these results. In this study, an open-source and low-cost apparatus, named OpenHW3, is proposed to accurately measure the binding isotherms of ions in various cementitious material systems. OpenHW3 provides two main options, a temperature-controlled orbital shaker, as well as an option to retrofit a commercial orbital shaker for temperature control. The effectiveness of these device options is validated via comparison with conventional binding isotherms experiments. The binding isotherm results were comparable to conventional Waterbath shakers, while providing more reliable results compared to horizontal commercial shakers. It also provided accurate temperature control between 25 °C and 75 °C. The results here are critical for allowing open access to scientific equipment, and providing high-quality binding isotherm data for reliable service life models of urban infrastructure assets throughout the world.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"19 ","pages":"Article e00570"},"PeriodicalIF":2.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000646/pdfft?md5=a9e5ffd97c71660aaf2bf133dcfc7023&pid=1-s2.0-S2468067224000646-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142021406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1016/j.ohx.2024.e00567
M. Kancaoğlu, M. Kuntalp
The global shortage of integrated circuits due to the COVID-19 pandemic has made it challenging to build biopotential acquisition devices like electroencephalography (EEG) hardware. To address this issue, a new hardware system using common ICs has been designed, which is cost-effective, precise, and easily accessible from global distributors. The hardware system comprises 8-channel inputs EEG hardware with a mobile headset capable of acquiring 5-30Hz EEG signals. First two channels of the design is enabled for steady-state visual evoked potential (SSVEP) operations, and the remaining channels can be powered up as needed. A small 3D-printable enclosure is also designed for the hardware board, which is attached to protective glasses to be used as a head-mounted device. The board includes an additional green LED, 4 pulse width modulation (PWM) outputs for general-purpose input/output (GPIO), 2 buttons for input, and exposed programming pins and digital-to-analog converter (DAC) output from the microcontroller unit (MCU). The proposed hardware system is expected to enable students and young researchers to experiment with EEG signals, especially SSVEP, before investing in professional equipment with the availability of programming codes.
{"title":"Low-cost, mobile EEG hardware for SSVEP applications","authors":"M. Kancaoğlu, M. Kuntalp","doi":"10.1016/j.ohx.2024.e00567","DOIUrl":"10.1016/j.ohx.2024.e00567","url":null,"abstract":"<div><p>The global shortage of integrated circuits due to the COVID-19 pandemic has made it challenging to build biopotential acquisition devices like electroencephalography (EEG) hardware. To address this issue, a new hardware system using common ICs has been designed, which is cost-effective, precise, and easily accessible from global distributors. The hardware system comprises 8-channel inputs EEG hardware with a mobile headset capable of acquiring 5-30Hz EEG signals. First two channels of the design is enabled for steady-state visual evoked potential (SSVEP) operations, and the remaining channels can be powered up as needed. A small 3D-printable enclosure is also designed for the hardware board, which is attached to protective glasses to be used as a head-mounted device. The board includes an additional green LED, 4 pulse width modulation (PWM) outputs for general-purpose input/output (GPIO), 2 buttons for input, and exposed programming pins and digital-to-analog converter (DAC) output from the microcontroller unit (MCU). The proposed hardware system is expected to enable students and young researchers to experiment with EEG signals, especially SSVEP, before investing in professional equipment with the availability of programming codes.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"19 ","pages":"Article e00567"},"PeriodicalIF":2.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000610/pdfft?md5=b46ca8b5f6ff44237844514be70a75d3&pid=1-s2.0-S2468067224000610-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142011865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1016/j.ohx.2024.e00566
Morgan C. Woods , Cameron K. Brooks , Joshua M. Pearce
To produce samples for both material testing and molded sheets/parts, this article details an open-source scientific cold and hot press design. It consists of two independent and modular upper and lower plate (929 cm2) assemblies each containing four 125 W insulated steel strip heaters. The steel housing for these heaters is entirely modular and designed for ease of manufacture, assembly, and customization. This system allows a researcher with access to a hydraulic press to repurpose existing equipment into a multipurpose hot and cold press, or if an independent machine is warranted, an additional welded support frame and commercially available bottle jack offer standalone operation. By utilizing this small-scale hot press either in conjunction with a hydraulic press or on its own, samples can be produced to determine the critical material properties of any polymer, composite, or polymer blend. A series of modular molds allow for the rapid production of flat sheet stock and solid testing samples adhering to the ASTM D695 standard for rigid plastics tested in compression and ASTM D638 standard for testing plastics in tension. The sheet mold offers the user the ability to produce stock sheets that can be cut and assembled into 2.5-D applications with post processing.
{"title":"Open-source cold and hot scientific sheet press for investigating polymer-based material properties","authors":"Morgan C. Woods , Cameron K. Brooks , Joshua M. Pearce","doi":"10.1016/j.ohx.2024.e00566","DOIUrl":"10.1016/j.ohx.2024.e00566","url":null,"abstract":"<div><p>To produce samples for both material testing and molded sheets/parts, this article details an open-source scientific cold and hot press design. It consists of two independent and modular upper and lower plate (929 cm<sup>2</sup>) assemblies each containing four 125 W insulated steel strip heaters. The steel housing for these heaters is entirely modular and designed for ease of manufacture, assembly, and customization. This system allows a researcher with access to a hydraulic press to repurpose existing equipment into a multipurpose hot and cold press, or if an independent machine is warranted, an additional welded support frame and commercially available bottle jack offer standalone operation. By utilizing this small-scale hot press either in conjunction with a hydraulic press or on its own, samples can be produced to determine the critical material properties of any polymer, composite, or polymer blend. A series of modular molds allow for the rapid production of flat sheet stock and solid testing samples adhering to the ASTM D695 standard for rigid plastics tested in compression and ASTM D638 standard for testing plastics in tension. The sheet mold offers the user the ability to produce stock sheets that can be cut and assembled into 2.5-D applications with post processing.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"19 ","pages":"Article e00566"},"PeriodicalIF":2.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000609/pdfft?md5=fcdc3df69632c08ca4f761cf1e1b9b39&pid=1-s2.0-S2468067224000609-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1016/j.ohx.2024.e00565
Alexis Graham , Charlotte Thompson , Darrock Flynn , Honor Elchos , Jaydon Gibson , Lauren B. Priddy , Matthew W. Priddy
This article reports the design and construction of an open-source compressive loading and perfusion flow bioreactor for under $4000, as well as validation of the device and an example use-application. The bioreactor is capable of recording applied force and displacement as well as regulating media flow rate. This bioreactor was built to be user friendly, widely adaptable for modular changes, and made of readily available materials.
{"title":"Design and construction of a low-cost compressive loading and perfusion flow bioreactor","authors":"Alexis Graham , Charlotte Thompson , Darrock Flynn , Honor Elchos , Jaydon Gibson , Lauren B. Priddy , Matthew W. Priddy","doi":"10.1016/j.ohx.2024.e00565","DOIUrl":"10.1016/j.ohx.2024.e00565","url":null,"abstract":"<div><p>This article reports the design and construction of an open-source compressive loading and perfusion flow bioreactor for under $4000, as well as validation of the device and an example use-application. The bioreactor is capable of recording applied force and displacement as well as regulating media flow rate. This bioreactor was built to be user friendly, widely adaptable for modular changes, and made of readily available materials.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"19 ","pages":"Article e00565"},"PeriodicalIF":2.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000592/pdfft?md5=f2cfe0b9fac6f1f3ec69c31621f6c7e1&pid=1-s2.0-S2468067224000592-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141849305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1016/j.ohx.2024.e00562
Jakob Rørbæk Saugbjerg, Thorbjørn Bøgh Jensen, Martin Lahn Henriksen
Syringe pumps are used in applications such as chemistry, medicine, or microbiology offering high-precision dosing or a way to ease the workload of tedious tasks. Further, high-performance syringe pumps are crucial to automating laboratory tasks. The Perry Pump is demonstrated with syringe sizes ranging from 1–20 mL and includes a reservoir, which enables larger volumes to be used. The lowest volume demonstrated is 20 L at 5.5 L/s, while the largest is 20 mL at 0.145 mL/s. The Perry Pump is designed with the intention of easy to 3D-print, limited metal parts, and a high versatility and tolerance to chemicals.
{"title":"The Perry project: A versatile low-cost syringe pump for dispensing in automated synthesis systems","authors":"Jakob Rørbæk Saugbjerg, Thorbjørn Bøgh Jensen, Martin Lahn Henriksen","doi":"10.1016/j.ohx.2024.e00562","DOIUrl":"10.1016/j.ohx.2024.e00562","url":null,"abstract":"<div><p>Syringe pumps are used in applications such as chemistry, medicine, or microbiology offering high-precision dosing or a way to ease the workload of tedious tasks. Further, high-performance syringe pumps are crucial to automating laboratory tasks. The Perry Pump is demonstrated with syringe sizes ranging from 1–20 mL and includes a reservoir, which enables larger volumes to be used. The lowest volume demonstrated is 20 <span><math><mi>μ</mi></math></span>L at 5.5 <span><math><mi>μ</mi></math></span>L/s, while the largest is 20 mL at 0.145 mL/s. The Perry Pump is designed with the intention of easy to 3D-print, limited metal parts, and a high versatility and tolerance to chemicals.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"19 ","pages":"Article e00562"},"PeriodicalIF":2.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000567/pdfft?md5=a257ec7558c04b19e274692213b3698a&pid=1-s2.0-S2468067224000567-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141840564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}