The oxide dispersion strengthened (ODS) ferritic steels are one of the most important in fuel cladding materials for 4th Generation nuclear reactors because of their excellent mechanical properties such as irradiation resistance, swelling resistance, and elevated temperature tensile/compressive strength. Mechanical alloying (MA) is one of the most promising routes for developing nanocrystalline ferritic ODS steel materials. For the production of nanocrystalline ferritic ODS steel powders, the most influencing factor is the milling speed and milling time during the mechanical alloying process. With the improper selection of milling time and speed, the final milled powders become an amorphous structure consisting of high impurity inclusions in the microstructure, and strength was also affected. In order to overcome these drawbacks, the present investigation was taken into account for the selection of appropriate mechanical milling speed and time, which was optimized through Taguchi analysis followed by the MA process. The optimized mechanical milling speed and time of milled powders were characterized through X-Ray Diffraction Analysis (XRD) and Scanning Electron Microscope (SEM).
{"title":"Optimization of milling speed and time in mechanical alloying of ferritic ODS steel through taguchi technique","authors":"Ganesan Dharmalingam, M. A. Prasad, S. Salunkhe","doi":"10.1051/smdo/2021029","DOIUrl":"https://doi.org/10.1051/smdo/2021029","url":null,"abstract":"The oxide dispersion strengthened (ODS) ferritic steels are one of the most important in fuel cladding materials for 4th Generation nuclear reactors because of their excellent mechanical properties such as irradiation resistance, swelling resistance, and elevated temperature tensile/compressive strength. Mechanical alloying (MA) is one of the most promising routes for developing nanocrystalline ferritic ODS steel materials. For the production of nanocrystalline ferritic ODS steel powders, the most influencing factor is the milling speed and milling time during the mechanical alloying process. With the improper selection of milling time and speed, the final milled powders become an amorphous structure consisting of high impurity inclusions in the microstructure, and strength was also affected. In order to overcome these drawbacks, the present investigation was taken into account for the selection of appropriate mechanical milling speed and time, which was optimized through Taguchi analysis followed by the MA process. The optimized mechanical milling speed and time of milled powders were characterized through X-Ray Diffraction Analysis (XRD) and Scanning Electron Microscope (SEM).","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58005110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashraf Mahmud Rayed, B. Esakki, A. Ponnambalam, S. C. Banik, Karim Aly
Unmanned Aerial Vehicles (UAV) is generic air vehicles that are significantly developed for military and civil purposes. In recent times, advancements in the field of UAVs are exceptional and tremendous. Nevertheless, numerous researches have been performed mainly to reduce the weight of the UAV structure. The flight time and allowable payload rely on the UAV structure's weight, which is considered a significant factor. Hence, in this paper, the UAV model's static structural behavior is cultivated utilizing the morals of Finite Element Analysis (FEA) to determine the total deformation and Von-mises stress. Three different polymer materials, namely Poly Lactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS), and Polyamide (PA), are chosen for FEA analysis of 3D printed UAV structure. The thrust generated from the motors varies from 2 kg to 5 kg, and an evaluation of structural strength characteristics is performed. The FEA study has shown that maximum deformation and maximum stress are obtained at the propeller casings and the basement of the structure, respectively. After comparing the details on deformation and stress from all three materials, the research also reveals that PLA is the best material for conception. Furthermore, topological optimization is performed on the UAV structure to reduce mass and minimize stress without compromising mechanical strength. The vibrational and fatigue characteristics of optimized UAV structure is examined. The unified body of the UAV frame will reduce the assembly time and make manufacturing much more effortless.
{"title":"Optimization of UAV structure and evaluation of vibrational and fatigue characteristics through simulation studies","authors":"Ashraf Mahmud Rayed, B. Esakki, A. Ponnambalam, S. C. Banik, Karim Aly","doi":"10.1051/smdo/2021020","DOIUrl":"https://doi.org/10.1051/smdo/2021020","url":null,"abstract":"Unmanned Aerial Vehicles (UAV) is generic air vehicles that are significantly developed for military and civil purposes. In recent times, advancements in the field of UAVs are exceptional and tremendous. Nevertheless, numerous researches have been performed mainly to reduce the weight of the UAV structure. The flight time and allowable payload rely on the UAV structure's weight, which is considered a significant factor. Hence, in this paper, the UAV model's static structural behavior is cultivated utilizing the morals of Finite Element Analysis (FEA) to determine the total deformation and Von-mises stress. Three different polymer materials, namely Poly Lactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS), and Polyamide (PA), are chosen for FEA analysis of 3D printed UAV structure. The thrust generated from the motors varies from 2 kg to 5 kg, and an evaluation of structural strength characteristics is performed. The FEA study has shown that maximum deformation and maximum stress are obtained at the propeller casings and the basement of the structure, respectively. After comparing the details on deformation and stress from all three materials, the research also reveals that PLA is the best material for conception. Furthermore, topological optimization is performed on the UAV structure to reduce mass and minimize stress without compromising mechanical strength. The vibrational and fatigue characteristics of optimized UAV structure is examined. The unified body of the UAV frame will reduce the assembly time and make manufacturing much more effortless.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58004528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brakes are the most important component of any automobile. Brakes provide the ability to reduce or bring automobile to a complete stop. The process of braking is usually achieved by applying pressure to the brake discs. The main objective of this research paper is to propose an appropriate design and to perform analysis of a suitable brake rotor to enhance the performance of the high-speed car. The design of the brake disc is modelled using Solid works and the analysis is carried out using Ansys software. The analysis has been conducted by considering stainless steel and grey cast iron using same brake rotor design so that optimal choice of brake disc can be considered. The analysis considered involves static structural analysis and steady state thermal analysis considering specific parameters on brake rotor to increase the life of brake rotor. From the analysis it is found that the performance and life of disc brake depends upon heat dissipation. From the analysis results it can be concluded that grey cast iron has performed better as compared to stainless steel as this material has anti-fade properties which improves the life of the brake rotor.
{"title":"Design and analysis of disc brake system in high speed vehicles","authors":"Anil Babu Seelam, Nabil Hussain, S. Krishanmurthy","doi":"10.1051/SMDO/2021019","DOIUrl":"https://doi.org/10.1051/SMDO/2021019","url":null,"abstract":"Brakes are the most important component of any automobile. Brakes provide the ability to reduce or bring automobile to a complete stop. The process of braking is usually achieved by applying pressure to the brake discs. The main objective of this research paper is to propose an appropriate design and to perform analysis of a suitable brake rotor to enhance the performance of the high-speed car. The design of the brake disc is modelled using Solid works and the analysis is carried out using Ansys software. The analysis has been conducted by considering stainless steel and grey cast iron using same brake rotor design so that optimal choice of brake disc can be considered. The analysis considered involves static structural analysis and steady state thermal analysis considering specific parameters on brake rotor to increase the life of brake rotor. From the analysis it is found that the performance and life of disc brake depends upon heat dissipation. From the analysis results it can be concluded that grey cast iron has performed better as compared to stainless steel as this material has anti-fade properties which improves the life of the brake rotor.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"12 1","pages":"19"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58004912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Posada, I. Barandiaran, Jairo R. Sánchez, Daniel Mejia-Parra, A. Moreno, M. Ojer, O. Ruiz-Salguero
In the context of smart manufacturing, the concept of Visual Computing is a key enabling technology for Industry 4.0. Visual Computing and Physically-based simulation enables the implementation of interactive, visual and (in most cases) non-disruptive solutions within the context of (a) the production process (off-line or in-line) the shop floor, (b) the interaction with customers and clients in the whole value chain, and/or (c) the product-service schemas. Technologies such as Industrial Big Data, Human-Robot Collaboration, IIOT & 5G, Cybersecurity, Cyber-Physical Systems, Semantic Technologies, Visual Computing and other related technologies have a strong impact in the new ways smart manufacturing is reconfiguring the production. This article presents a theoretical framework for the incorporation of Visual Computing and Physically-based Simulation technologies to Industry 4.0 and Operator 4.0 scenarios. This framework has been already implemented and supports different smart manufacturing scenarios, already running in many SME. Three practical study case scenarios (already deployed into SMEs) are presented and discussed.
{"title":"Computer graphics and visual computing use cases for Industry 4.0 and Operator 4.0","authors":"J. Posada, I. Barandiaran, Jairo R. Sánchez, Daniel Mejia-Parra, A. Moreno, M. Ojer, O. Ruiz-Salguero","doi":"10.1051/smdo/2021026","DOIUrl":"https://doi.org/10.1051/smdo/2021026","url":null,"abstract":"In the context of smart manufacturing, the concept of Visual Computing is a key enabling technology for Industry 4.0. Visual Computing and Physically-based simulation enables the implementation of interactive, visual and (in most cases) non-disruptive solutions within the context of (a) the production process (off-line or in-line) the shop floor, (b) the interaction with customers and clients in the whole value chain, and/or (c) the product-service schemas. Technologies such as Industrial Big Data, Human-Robot Collaboration, IIOT & 5G, Cybersecurity, Cyber-Physical Systems, Semantic Technologies, Visual Computing and other related technologies have a strong impact in the new ways smart manufacturing is reconfiguring the production. This article presents a theoretical framework for the incorporation of Visual Computing and Physically-based Simulation technologies to Industry 4.0 and Operator 4.0 scenarios. This framework has been already implemented and supports different smart manufacturing scenarios, already running in many SME. Three practical study case scenarios (already deployed into SMEs) are presented and discussed.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58005007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A nurse rostering problem is an NP-Hard problem that is difficult to solve during the complexity of the problem. Since good scheduling is the schedule that fulfilled the hard constraint and minimizes the violation of soft constraint, a lot of approaches is implemented to improve the quality of the schedule. This research proposed an improvement on ant colony optimization with semi-random initialization for nurse rostering problems. Semi-random initialization is applied to avoid violation of the hard constraint, and then the violation of soft constraint will be minimized using ant colony optimization. Semi-random initialization will improve the construction solution phase by assigning nurses directly to the shift that is related to the hard constraint, so the violation of hard constraint will be avoided from the beginning part. The scheduling process will complete by pheromone value by giving weight to the rest available shift during the ant colony optimization process. This proposed method is tested using a real-world problem taken from St. General Hospital Elisabeth. The objective function is formulated to minimize the violation of the constraints and balance nurse workload. The performance of the proposed method is examined by using different dimension problems, with the same number of ant and iteration. The proposed method is also compared to conventional ant colony optimization and genetic algorithm for performance comparison. The experiment result shows that the proposed method performs better with small to medium dimension problems. The semi-random initialization is a success to avoid violation of the hard constraint and minimize the objective value by about 24%. The proposed method gets the lowest objective value with 0,76 compared to conventional ant colony optimization with 124 and genetic algorithm with 1.
{"title":"Ant colony optimization with semi random initialization for nurse rostering problem","authors":"Said Achmad, Antoni Wibowo, Diana Diana","doi":"10.1051/smdo/2021030","DOIUrl":"https://doi.org/10.1051/smdo/2021030","url":null,"abstract":"A nurse rostering problem is an NP-Hard problem that is difficult to solve during the complexity of the problem. Since good scheduling is the schedule that fulfilled the hard constraint and minimizes the violation of soft constraint, a lot of approaches is implemented to improve the quality of the schedule. This research proposed an improvement on ant colony optimization with semi-random initialization for nurse rostering problems. Semi-random initialization is applied to avoid violation of the hard constraint, and then the violation of soft constraint will be minimized using ant colony optimization. Semi-random initialization will improve the construction solution phase by assigning nurses directly to the shift that is related to the hard constraint, so the violation of hard constraint will be avoided from the beginning part. The scheduling process will complete by pheromone value by giving weight to the rest available shift during the ant colony optimization process. This proposed method is tested using a real-world problem taken from St. General Hospital Elisabeth. The objective function is formulated to minimize the violation of the constraints and balance nurse workload. The performance of the proposed method is examined by using different dimension problems, with the same number of ant and iteration. The proposed method is also compared to conventional ant colony optimization and genetic algorithm for performance comparison. The experiment result shows that the proposed method performs better with small to medium dimension problems. The semi-random initialization is a success to avoid violation of the hard constraint and minimize the objective value by about 24%. The proposed method gets the lowest objective value with 0,76 compared to conventional ant colony optimization with 124 and genetic algorithm with 1.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58005128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meta-heuristic PSO has limits, such as premature convergence and high running time, especially for complex optimization problems. In this paper, a description of three parallel models based on the PSO algorithm is developed, on the basis of combining two concepts: parallelism and neighborhood, which are designed according to three different approaches in order to avoid the two disadvantages of the PSO algorithm. The third model, SPM (Spherical-neighborhood Parallel Model), is designed to improve the obtained results from the two parallel NPM (Neighborhood Parallel Model) and MPM (Multi-PSO Parallel Model) models. The experimental results presented in this paper show that SPM model performed much better than both NPM and MPM models in terms of computing time and solution quality.
{"title":"A comparative study of three new parallel models based on the PSO algorithm","authors":"M. Zemzami, Norelislam El Hami, M. Itmi, N. Hmina","doi":"10.1051/smdo/2019022","DOIUrl":"https://doi.org/10.1051/smdo/2019022","url":null,"abstract":"Meta-heuristic PSO has limits, such as premature convergence and high running time, especially for complex optimization problems. In this paper, a description of three parallel models based on the PSO algorithm is developed, on the basis of combining two concepts: parallelism and neighborhood, which are designed according to three different approaches in order to avoid the two disadvantages of the PSO algorithm. The third model, SPM (Spherical-neighborhood Parallel Model), is designed to improve the obtained results from the two parallel NPM (Neighborhood Parallel Model) and MPM (Multi-PSO Parallel Model) models. The experimental results presented in this paper show that SPM model performed much better than both NPM and MPM models in terms of computing time and solution quality.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/smdo/2019022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49191430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Resistance spot welding gun is generally used to bond parts in the automotive and consumer electronics industries. In the automotive industry, chassis assembly operations use resistance spot welding. High production speeds allow for mass production and automation, resulting in diverse uses of resistance spot welding. To automate the welding process, it is mounted on a multi-joint robot and the welding gun is designed considering the specifications of the robot. High-strength structural design is needed to prevent deformation during pressurization, but the weight of the weld gun affects the efficiency of the robot. For this reason, it is necessary to design a welding gun with high stiffness and light weight. In this study, the analysis is carried out to measure the stress and deformation amount of weld gun. Optimization for weight reduction is performed by genetic algorithm method and topology optimization. The optimization of the resistance spot weld gun frame is performed, and the optimized model is verified through experimental verification. The production cost of industry has been reduced through the high stiffness and light weight of welding gun.
{"title":"The frame optimization and validation of resistance spot welding gun","authors":"Ji Hong, Kwang-Hee Lee, Chul-Hee Lee","doi":"10.1051/smdo/2020016","DOIUrl":"https://doi.org/10.1051/smdo/2020016","url":null,"abstract":"Resistance spot welding gun is generally used to bond parts in the automotive and consumer electronics industries. In the automotive industry, chassis assembly operations use resistance spot welding. High production speeds allow for mass production and automation, resulting in diverse uses of resistance spot welding. To automate the welding process, it is mounted on a multi-joint robot and the welding gun is designed considering the specifications of the robot. High-strength structural design is needed to prevent deformation during pressurization, but the weight of the weld gun affects the efficiency of the robot. For this reason, it is necessary to design a welding gun with high stiffness and light weight. In this study, the analysis is carried out to measure the stress and deformation amount of weld gun. Optimization for weight reduction is performed by genetic algorithm method and topology optimization. The optimization of the resistance spot weld gun frame is performed, and the optimized model is verified through experimental verification. The production cost of industry has been reduced through the high stiffness and light weight of welding gun.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44990111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Ramadhan, A. Imran, A. F. Rizana, Liane Okdinawati
Loading and unloading activities generate nearly fifty per cent of the total cost in port. The loading and unloading process of the container at the port is considered as a complex process since it involves several interrelated components, such as ships, cranes, and trucks. The uncertainty of these component activities might impact the loading and unloading time and cost. Agent-based modelling and simulation (ABMS) approach is a method for analyzing and modelling a complex system. This study aims to simulate the unloading process to determine a strategy to reduces unloading process time in the largest port in Indonesian using ABMS approach. The results show that the agent-based simulation approach is feasible to be applied in port activities. This approach can assist decision-makers in predicting the number of facilities that must be used to minimize processing time.
{"title":"Agent-based modelling and simulation for ship unloading processes: determining the number of trucks and container cranes","authors":"F. Ramadhan, A. Imran, A. F. Rizana, Liane Okdinawati","doi":"10.1051/smdo/2020009","DOIUrl":"https://doi.org/10.1051/smdo/2020009","url":null,"abstract":"Loading and unloading activities generate nearly fifty per cent of the total cost in port. The loading and unloading process of the container at the port is considered as a complex process since it involves several interrelated components, such as ships, cranes, and trucks. The uncertainty of these component activities might impact the loading and unloading time and cost. Agent-based modelling and simulation (ABMS) approach is a method for analyzing and modelling a complex system. This study aims to simulate the unloading process to determine a strategy to reduces unloading process time in the largest port in Indonesian using ABMS approach. The results show that the agent-based simulation approach is feasible to be applied in port activities. This approach can assist decision-makers in predicting the number of facilities that must be used to minimize processing time.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45964302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gear system optimization is currently topical amongst researchers. To this end, problem formulation is key and therefore knowledge of parameter influence and variation behaviour is indispensable. In this research work, four gear volume models were investigated for volume minimization while considering six variables viz. face width, module, pinion tooth, hardness, and pinion and gear shaft diameters. Three algorithms viz. teaching learning-based optimization (TLBO), particle swarm optimization (PSO) and firefly algorithm (FA) are employed to obtain the optimal volume and design parameter variation study. The convergence rate of each algorithm for each gear model is contrasted against other algorithms applied in the study. Experimental runs have also been conducted to determine standard deviation and mean values. Variation studies on the volume objective reflect relevant observations noted for parameter setting and optimization. The results obtained can assist the designer in setting designer preferences with minimal resources expended thereby improving the problem-solving exercise.
{"title":"Influence of geometric variables on spur gear volume","authors":"Edmund S. Maputi, R. Arora","doi":"10.1051/smdo/2020003","DOIUrl":"https://doi.org/10.1051/smdo/2020003","url":null,"abstract":"Gear system optimization is currently topical amongst researchers. To this end, problem formulation is key and therefore knowledge of parameter influence and variation behaviour is indispensable. In this research work, four gear volume models were investigated for volume minimization while considering six variables viz. face width, module, pinion tooth, hardness, and pinion and gear shaft diameters. Three algorithms viz. teaching learning-based optimization (TLBO), particle swarm optimization (PSO) and firefly algorithm (FA) are employed to obtain the optimal volume and design parameter variation study. The convergence rate of each algorithm for each gear model is contrasted against other algorithms applied in the study. Experimental runs have also been conducted to determine standard deviation and mean values. Variation studies on the volume objective reflect relevant observations noted for parameter setting and optimization. The results obtained can assist the designer in setting designer preferences with minimal resources expended thereby improving the problem-solving exercise.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/smdo/2020003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41863880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we study a nonsmooth semi-infinite multi-objective E-convex programming problem involving support functions. We derive sufficient optimality conditions for the primal problem. We formulate Mond-Weir type dual for the primal problem and establish weak and strong duality theorems under various generalized E-convexity assumptions.
{"title":"Optimality and duality for nonsmooth semi-infinite E-convex multi-objective programming with support functions","authors":"Tarek Emam","doi":"10.1051/smdo/2020011","DOIUrl":"https://doi.org/10.1051/smdo/2020011","url":null,"abstract":"In this paper, we study a nonsmooth semi-infinite multi-objective E-convex programming problem involving support functions. We derive sufficient optimality conditions for the primal problem. We formulate Mond-Weir type dual for the primal problem and establish weak and strong duality theorems under various generalized E-convexity assumptions.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/smdo/2020011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44748587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}