Pub Date : 2024-07-01DOI: 10.1016/j.mattod.2024.05.002
Rosalynn Nankya , Ahmad Elgazzar , Peng Zhu , Feng-Yang Chen , Haotian Wang
The potential for directly converting CO2 to valuable liquid fuels utilizing green and renewable electricity has sparked significant interest in CO2 electroreduction (CO2RR). In recent years, CO2 conversion to formate/formic acid (HCOO−/HCOOH) has witnessed fast growth due to its economic and technological viability combined with the development of highly selective catalysts and practical electrolyzes. In this review, we summarize and discuss recent advances in HCOOH generation from CO2 reduction in terms of (1) the rationale behind choosing HCOOH as a CO2 electroreduction product, (2) mechanistic pathways to form HCOOH, (3) novel electrocatalyst developments for enhanced HCOOH production, and (4) electrolyzer designs that tackle practical challenges in scalability, reaction rate, and product impurities. Finally, a brief outlook on future opportunities in this field is offered to accelerate the industrialization of CO2RR to HCOOH.
{"title":"Catalyst design and reactor engineering for electrochemical CO2 reduction to formate and formic acid","authors":"Rosalynn Nankya , Ahmad Elgazzar , Peng Zhu , Feng-Yang Chen , Haotian Wang","doi":"10.1016/j.mattod.2024.05.002","DOIUrl":"10.1016/j.mattod.2024.05.002","url":null,"abstract":"<div><p>The potential for directly converting CO<sub>2</sub> to valuable liquid fuels utilizing green and renewable electricity has sparked significant interest in CO<sub>2</sub> electroreduction (CO<sub>2</sub>RR). In recent years, CO<sub>2</sub> conversion to formate/formic acid (HCOO<sup>−</sup>/HCOOH) has witnessed fast growth due to its economic and technological viability combined with the development of highly selective catalysts and practical electrolyzes. In this review, we summarize and discuss recent advances in HCOOH generation from CO<sub>2</sub> reduction in terms of (1) the rationale behind choosing HCOOH as a CO<sub>2</sub> electroreduction product, (2) mechanistic pathways to form HCOOH, (3) novel electrocatalyst developments for enhanced HCOOH production, and (4) electrolyzer designs that tackle practical challenges in scalability, reaction rate, and product impurities. Finally, a brief outlook on future opportunities in this field is offered to accelerate the industrialization of CO<sub>2</sub>RR to HCOOH.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"76 ","pages":"Pages 94-109"},"PeriodicalIF":21.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141410571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Few- to hundred-atom-composed metal nanoclusters (NCs) lie in the transition regime between molecular- and nanometer-scales and have attracted intensive attention for their emerging molecule-like properties that energetically serve various sectors of applications. We here deploy this review in a novel viewpoint, namely the emphasis on the diverse molecule-like properties of metal NCs. We start to clarify the uniqueness in size, precision in total structure, and diversity in species of the molecularly pure metal NCs. This poses the origin of their molecule-like performances. Specifically, it in sequence involves the reminiscent concepts coined in molecular science (i.e., chirality, isomerization, and total synthesis); the most impressive molecule-like optical properties; the emergence of DNA-like helical ensembles mimicking biomolecules and their assemblies. We also provide our perspectives on future molecule-like NCs research, focusing on their fundamental importance and practical value. This review is expected to provide a brand-new viewpoint to revisit the science of metal NCs, by deepening the concept of the metallic molecule and admiring the molecule-like features of metal NCs, which may feed the new vitality and flavors to the various sections of fundamentals and applications in the future.
从几个原子到上百个原子组成的金属纳米团簇(NCs)处于分子尺度和纳米尺度之间的过渡阶段,因其新兴的类分子特性而备受关注,这些特性有力地服务于各行各业的应用。在此,我们以一种新颖的视角对这一综述进行部署,即强调金属 NCs 的各种类分子特性。我们首先阐明了分子纯金属 NCs 在尺寸上的独特性、总体结构上的精确性以及种类上的多样性。这就提出了其分子样性能的起源。具体来说,它依次涉及分子科学中的相关概念(即手性、异构化和全合成);最令人印象深刻的分子样光学特性;模仿生物大分子及其组装的 DNA 样螺旋组合的出现。我们还对未来的类分子数控系统研究提出了展望,重点关注其基本重要性和实用价值。通过深化金属分子的概念和欣赏金属数控的类分子特征,这篇综述有望为重新审视金属数控科学提供一个全新的视角,从而为未来的基础和应用等各个领域注入新的活力和生机。
{"title":"Viewing inorganic metal nanoclusters through the lens of molecular chemistry","authors":"Yuan Zhong , Zhennan Wu , Xue Bai , Yu Zhang , Jianping Xie","doi":"10.1016/j.mattod.2024.04.010","DOIUrl":"https://doi.org/10.1016/j.mattod.2024.04.010","url":null,"abstract":"<div><p>Few- to hundred-atom-composed metal nanoclusters (NCs) lie in the transition regime between molecular- and nanometer-scales and have attracted intensive attention for their emerging molecule-like properties that energetically serve various sectors of applications. We here deploy this review in a novel viewpoint, namely the emphasis on the diverse molecule-like properties of metal NCs. We start to clarify the uniqueness in size, precision in total structure, and diversity in species of the molecularly pure metal NCs. This poses the origin of their molecule-like performances. Specifically, it in sequence involves the reminiscent concepts coined in molecular science (i.e., chirality, isomerization, and total synthesis); the most impressive molecule-like optical properties; the emergence of DNA-like helical ensembles mimicking biomolecules and their assemblies. We also provide our perspectives on future molecule-like NCs research, focusing on their fundamental importance and practical value. This review is expected to provide a brand-new viewpoint to revisit the science of metal NCs, by deepening the concept of the metallic molecule and admiring the molecule-like features of metal NCs, which may feed the new vitality and flavors to the various sections of fundamentals and applications in the future.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"76 ","pages":"Pages 72-93"},"PeriodicalIF":21.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141595138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hypoxia induces the generation of immunosuppressive adenosine within the tumor microenvironment (TME) and further impedes the activation of antitumor immunity triggered by photothermal therapy (PTT). In this study, a photothermal microalgae system (PTA) based on Chlorella sorokiniana (C. soro) is developed to boost antitumor immune responses by targeting the hypoxia-adenosine axis. PTA is constructed by coating polydopamine (PDA), a promising photothermal agent with good biocompatibility, on the surface of C. soro. Due to the inherent photosynthetic capability of microalgae, PTA in situ generates O2 within the tumor under irradiation at 660 nm for hypoxia alleviation, thereby downregulating the level of adenosine to reverse the immunosuppression in TME. Subsequently, this reshaped TME promotes the activation of antitumor immunity induced by PTT, which is realized by the coated PDA layer on C. soro under irradiation at 808 nm. In a mouse model of 4T1 tumors, PTA significantly weakens the immunosuppression in the TME, elicits robust antitumor immune responses, and suppresses tumor growth. Together, this strategy highlights the potential of leveraging living photosynthetic microalgae as an oxygenerator to boost cancer photothermal immunotherapy.
{"title":"Polydopamine-armed microalgal oxygenerator targeting the hypoxia-adenosine axis to boost cancer photothermal immunotherapy","authors":"Cheng Zhang , Zi-Yi Han , Ke-Wei Chen, Yu-Zhang Wang, Xiao Yan, Xian-Zheng Zhang","doi":"10.1016/j.mattod.2024.04.001","DOIUrl":"https://doi.org/10.1016/j.mattod.2024.04.001","url":null,"abstract":"<div><p>Hypoxia induces the generation of immunosuppressive adenosine within the tumor microenvironment (TME) and further impedes the activation of antitumor immunity triggered by photothermal therapy (PTT). In this study, a photothermal microalgae system (PTA) based on <em>Chlorella sorokiniana</em> (<em>C. soro</em>) is developed to boost antitumor immune responses by targeting the hypoxia-adenosine axis. PTA is constructed by coating polydopamine (PDA), a promising photothermal agent with good biocompatibility, on the surface of <em>C. soro</em>. Due to the inherent photosynthetic capability of microalgae, PTA in situ generates O<sub>2</sub> within the tumor under irradiation at 660 nm for hypoxia alleviation, thereby downregulating the level of adenosine to reverse the immunosuppression in TME. Subsequently, this reshaped TME promotes the activation of antitumor immunity induced by PTT, which is realized by the coated PDA layer on <em>C. soro</em> under irradiation at 808 nm. In a mouse model of 4T1 tumors, PTA significantly weakens the immunosuppression in the TME, elicits robust antitumor immune responses, and suppresses tumor growth. Together, this strategy highlights the potential of leveraging living photosynthetic microalgae as an oxygenerator to boost cancer photothermal immunotherapy.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"75 ","pages":"Pages 71-84"},"PeriodicalIF":24.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.mattod.2024.03.008
Kyunghoon Lee , Yunho Kim , Eonhyoung Ahn , Jong Ik Kwon , Hyeonjong Ma , Jae Hong Jang , Shi Li , Hyo Cheol Lee , Gwang Heon Lee , Soyeon Lee , Kiwook Kim , Nak Jun Sung , Dongeun Kim , Myoung Hoon Song , Moon Kee Choi , Jiwoong Yang
Metal halide perovskites, known for their outstanding optical properties such as high photoluminescence quantum yield, exceptional color purity, and tunable bandgap, have emerged as promising semiconductor materials for next-generation display technologies. Nonetheless, producing pure red emissions from ∼ 10 nm-sized CsPbI3 perovskite nanocrystals (PeNCs) remains a significant challenge for perovskite light-emitting didoes (PeLEDs). Here, we present the facile surface bromination strategy of CsPbI3 PeNCs for pure red PeLEDs. The mild post-ligand treatment on CsPbI3 PeNCs produces surface-brominated PeNCs, denoted as CsPbI3:Br, while preserving the original CsPbI3 crystal structure intact. The resulting CsPbI3:Br PeNCs exhibit bright pure red luminescence and significant improvements in electrical properties. The PeLEDs, fabricated with these PeNCs, achieve a remarkable external quantum efficiency (EQE) of 19.8 %, comparable to those of the best reported pure red PeLEDs. Finally, we have showcased the application of these PeLEDs as skin-attachable PeLEDs, showing stable operations under various mechanical deformations. This study not only provides a straightforward method for producing pure red PeNCs, but also highlights their potential in wearable electronic applications.
{"title":"Highly efficient pure red light-emitting diodes through surface bromination of CsPbI3 perovskite nanocrystals for skin-attachable displays","authors":"Kyunghoon Lee , Yunho Kim , Eonhyoung Ahn , Jong Ik Kwon , Hyeonjong Ma , Jae Hong Jang , Shi Li , Hyo Cheol Lee , Gwang Heon Lee , Soyeon Lee , Kiwook Kim , Nak Jun Sung , Dongeun Kim , Myoung Hoon Song , Moon Kee Choi , Jiwoong Yang","doi":"10.1016/j.mattod.2024.03.008","DOIUrl":"10.1016/j.mattod.2024.03.008","url":null,"abstract":"<div><p>Metal halide perovskites, known for their outstanding optical properties such as high photoluminescence quantum yield, exceptional color purity, and tunable bandgap, have emerged as promising semiconductor materials for next-generation display technologies. Nonetheless, producing pure red emissions from ∼ 10 nm-sized CsPbI<sub>3</sub> perovskite nanocrystals (PeNCs) remains a significant challenge for perovskite light-emitting didoes (PeLEDs). Here, we present the facile surface bromination strategy of CsPbI<sub>3</sub> PeNCs for pure red PeLEDs. The mild post-ligand treatment on CsPbI<sub>3</sub> PeNCs produces surface-brominated PeNCs, denoted as CsPbI<sub>3</sub>:Br, while preserving the original CsPbI<sub>3</sub> crystal structure intact. The resulting CsPbI<sub>3</sub>:Br PeNCs exhibit bright pure red luminescence and significant improvements in electrical properties. The PeLEDs, fabricated with these PeNCs, achieve a remarkable external quantum efficiency (EQE) of 19.8 %, comparable to those of the best reported pure red PeLEDs. Finally, we have showcased the application of these PeLEDs as skin-attachable PeLEDs, showing stable operations under various mechanical deformations. This study not only provides a straightforward method for producing pure red PeNCs, but also highlights their potential in wearable electronic applications.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"75 ","pages":"Pages 2-10"},"PeriodicalIF":24.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140785872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.mattod.2024.04.007
Siyuan Ma , Wengang Yan , Yu Dong , Yuefeng Su , Liang Ma , Yongjian Li , Youyou Fang , Bin Wang , Shaobo Wu , Cai Liu , Sheng Chen , Lai Chen , Qing Huang , Jionghui Wang , Ning Li , Feng Wu
Lithium-ion batteries (LIBs) are insufficient for large-scale energy storage due to limited lithium resources. Sodium-ion batteries (SIBs) are considered the most promising alternative to LIBs due to their abundant resources and potential for broad industrialization. However, the rapid development of SIBs is hindered by the availability of suitable anode materials. Most reported anode materials for SIBs are either expensive or have inherent flaws, making them unsuitable for large-scale production. Carbon materials have gained significant attention due to their sample resources, low cost, and diverse structures. However, the lack of a systematic discussion on the various structural configurations of carbon materials is a challenging issue. This review comprehensively investigated the preparation processes for nearly all carbon-based materials, including graphite, soft carbon, and hard carbon. It also proposed optimization strategies by thoroughly exploring the sodium storage mechanism of various carbon materials. In addition, based on advanced in-situ characterization technology, the solid electrolyte interface and structural changes of carbon materials during the electrochemical process were summarized. A creative analysis was conducted to establish a correlation relationship between the long-range and short-range ordered structure of carbon materials and their impact on important performance metrics such as initial coulombic efficiency, capacity, rate, cycle stability, and other relevant factors. Finally, this review presented personal insights into the challenges and issues faced by carbon materials, aiming to drive the advancement of SIBs.
{"title":"Recent advances in carbon-based anodes for high-performance sodium-ion batteries: Mechanism, modification and characterizations","authors":"Siyuan Ma , Wengang Yan , Yu Dong , Yuefeng Su , Liang Ma , Yongjian Li , Youyou Fang , Bin Wang , Shaobo Wu , Cai Liu , Sheng Chen , Lai Chen , Qing Huang , Jionghui Wang , Ning Li , Feng Wu","doi":"10.1016/j.mattod.2024.04.007","DOIUrl":"10.1016/j.mattod.2024.04.007","url":null,"abstract":"<div><p>Lithium-ion batteries (LIBs) are insufficient for large-scale energy storage due to limited lithium resources. Sodium-ion batteries (SIBs) are considered the most promising alternative to LIBs due to their abundant resources and potential for broad industrialization. However, the rapid development of SIBs is hindered by the availability of suitable anode materials. Most reported anode materials for SIBs are either expensive or have inherent flaws, making them unsuitable for large-scale production. Carbon materials have gained significant attention due to their sample resources, low cost, and diverse structures. However, the lack of a systematic discussion on the various structural configurations of carbon materials is a challenging issue. This review comprehensively investigated the preparation processes for nearly all carbon-based materials, including graphite, soft carbon, and hard carbon. It also proposed optimization strategies by thoroughly exploring the sodium storage mechanism of various carbon materials. In addition, based on advanced <em>in-situ</em> characterization technology, the solid electrolyte interface and structural changes of carbon materials during the electrochemical process were summarized. A creative analysis was conducted to establish a correlation relationship between the long-range and short-range ordered structure of carbon materials and their impact on important performance metrics such as initial coulombic efficiency, capacity, rate, cycle stability, and other relevant factors. Finally, this review presented personal insights into the challenges and issues faced by carbon materials, aiming to drive the advancement of SIBs.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"75 ","pages":"Pages 334-358"},"PeriodicalIF":24.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141037489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.mattod.2024.03.003
Binod Paudel , Jeffrey A. Dhas , Yadong Zhou , Min-Ju Choi , David J. Senor , Chih-Hung Chang , Yingge Du , Zihua Zhu
Hydrogen in materials has attracted tremendous interest as its incorporation leads to significant alterations in nanoscale structure, composition, and chemistry, impacting functional properties. It has also been integral to nuclear fusion reactors and is considered a future clean energy source. However, nanoscale characterization and manipulation of hydrogen in materials are challenging as only a selected few analytical techniques can readily detect hydrogen, among which time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a unique and powerful one due to its excellent detection limit along with decent depth and lateral resolutions. In this review, we discuss, using selected examples, how to detect and quantify hydrogen in materials by ToF-SIMS and its impact on revealing the hydrogenation/protonation-induced novel functional states in different classes of materials. In addition, we present our protocols on sample preparation and experimental conditions optimization, allowing us to achieve the best possible results. Finally, we highlight future research directions that can lead to the discovery of novel functional states and ultimately provide a deeper understanding of scientific questions in materials science.
{"title":"ToF-SIMS in material research: A view from nanoscale hydrogen detection","authors":"Binod Paudel , Jeffrey A. Dhas , Yadong Zhou , Min-Ju Choi , David J. Senor , Chih-Hung Chang , Yingge Du , Zihua Zhu","doi":"10.1016/j.mattod.2024.03.003","DOIUrl":"https://doi.org/10.1016/j.mattod.2024.03.003","url":null,"abstract":"<div><p>Hydrogen in materials has attracted tremendous interest as its incorporation leads to significant alterations in nanoscale structure, composition, and chemistry, impacting functional properties. It has also been integral to nuclear fusion reactors and is considered a future clean energy source. However, nanoscale characterization and manipulation of hydrogen in materials are challenging as only a selected few analytical techniques can readily detect hydrogen, among which time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a unique and powerful one due to its excellent detection limit along with decent depth and lateral resolutions. In this review, we discuss, using selected examples, how to detect and quantify hydrogen in materials by ToF-SIMS and its impact on revealing the hydrogenation/protonation-induced novel functional states in different classes of materials. In addition, we present our protocols on sample preparation and experimental conditions optimization, allowing us to achieve the best possible results. Finally, we highlight future research directions that can lead to the discovery of novel functional states and ultimately provide a deeper understanding of scientific questions in materials science.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"75 ","pages":"Pages 149-165"},"PeriodicalIF":24.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.mattod.2024.04.003
Chongle Zhang, Xuanzhe Li, Suzhi Li, Jinyu Zhang, Jiao Li, Gang Liu, Jun Sun
High specific-strength lightweight titanium (Ti) alloys, in the absence of interstitial strengthening of oxygen (O) atoms to avoid O-embrittlement, are mainly strengthened via densely semi-coherent nanoprecipitates in the β-matrix that act as dislocation obstacles and often result in high-stress concentrations, contributing to their strength-ductility trade-off. Here, using a low cost Ti-2.8Cr-4.5Zr-5.2Al duplex alloy as a model material, we present a counterintuitive O-doping strategy to create topologically coherent, interstitial-O α′ nanotwinned nanomartensites (NTNMs) with good interfacial strain compatibilities. The interstitial atoms tailor the stress field of edge dislocation cores from planar to non-planar, facilitating multiple variants nucleate simultaneously along O-rich edge dislocations to construct interstitial-O NTNMs. The interstitial-O NTNMs endow our duplex Ti alloys with superior strength of 1.64 gigapascals and large uniform elongation of 11.5%, surpassing all previously reported bulk Ti alloys. This unprecedented combination of mechanical properties is conferred mainly by the interstitial NTNMs, which serve as a sustainable ductility source via a self-hardening deformation mechanism and utilize the pronounced interstitial strengthening of concentrated O atoms. As such, the coherent interstitial NTNMs engineering strategy efficiently combines interstitial solid solution strengthening, and coherent interface strengthening mechanisms, that provides new insights into designing high-strength and large ductility O-tolerant alloys for cost-effective and lightweight applications.
高比强度轻质钛(Ti)合金在缺乏氧(O)原子间隙强化以避免 O 原子脆化的情况下,主要通过 β 基体中密集的半致密纳米沉淀物进行强化,这些沉淀物起着位错障碍的作用,通常会导致高应力集中,从而造成强度-电导率权衡。在这里,我们使用一种低成本的钛-2.8Cr-4.5Zr-5.2Al 双相合金作为模型材料,提出了一种反直觉的 O 掺杂策略,以创建具有良好界面应变相容性的拓扑相干、间隙-O α′纳米孪晶纳米马氏体 (NTNM)。间隙原子可将边缘位错核心的应力场从平面调整为非平面,从而促进多个变体沿着富含 O 的边缘位错同时成核,构建出间隙-O NTNMs。间隙-O NTNMs 使我们的双相钛合金具有 1.64 千兆帕的超强强度和 11.5% 的超大均匀伸长率,超过了之前报道的所有块状钛合金。这种前所未有的机械性能组合主要是由间隙 NTNMs 赋予的,NTNMs 通过自硬化变形机制成为可持续的延展性源,并利用了浓集 O 原子的明显间隙强化作用。因此,相干间隙非晶态氮化钕工程策略有效地结合了间隙固溶强化和相干界面强化机制,为设计高强度和大延展性的耐 O 合金提供了新的见解,从而实现了成本效益和轻质应用。
{"title":"Oxygen-dislocation interaction-mediated nanotwinned nanomartensites in ultra-strong and ductile titanium alloys","authors":"Chongle Zhang, Xuanzhe Li, Suzhi Li, Jinyu Zhang, Jiao Li, Gang Liu, Jun Sun","doi":"10.1016/j.mattod.2024.04.003","DOIUrl":"10.1016/j.mattod.2024.04.003","url":null,"abstract":"<div><p>High specific-strength lightweight titanium (Ti) alloys, in the absence of interstitial strengthening of oxygen (O) atoms to avoid O-embrittlement, are mainly strengthened via densely semi-coherent nanoprecipitates in the β-matrix that act as dislocation obstacles and often result in high-stress concentrations, contributing to their strength-ductility trade-off. Here, using a low cost Ti-2.8Cr-4.5Zr-5.2Al duplex alloy as a model material, we present a counterintuitive O-doping strategy to create topologically coherent, interstitial-O α′ nanotwinned nanomartensites (NTNMs) with good interfacial strain compatibilities. The interstitial atoms tailor the stress field of edge dislocation cores from planar to non-planar, facilitating multiple variants nucleate simultaneously along O-rich edge dislocations to construct interstitial-O NTNMs. The interstitial-O NTNMs endow our duplex Ti alloys with superior strength of 1.64 gigapascals and large uniform elongation of 11.5%, surpassing all previously reported bulk Ti alloys. This unprecedented combination of mechanical properties is conferred mainly by the interstitial NTNMs, which serve as a sustainable ductility source via a self-hardening deformation mechanism and utilize the pronounced interstitial strengthening of concentrated O atoms. As such, the coherent interstitial NTNMs engineering strategy efficiently combines interstitial solid solution strengthening, and coherent interface strengthening mechanisms, that provides new insights into designing high-strength and large ductility O-tolerant alloys for cost-effective and lightweight applications.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"75 ","pages":"Pages 85-96"},"PeriodicalIF":24.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141028976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Constructing artificial solid electrolyte interfaces (SEIs) to shape dendrite-free lithium (Li)-metal anodes remains challenges. Herein, we designed dynamic physical network (DPN) with abundant lithiophilic/anionphilic groups through tripartite hydrogen bonds (H-bonds), serving as artificial SEIs in high-loading NCM811-Li metal batteries. The formation and dissociation of DPN endowed by tripartite H-bonds under tension release during Li plating/stripping cycling skillfully balance the contradiction between mechanical robustness and deformability. LiO bonds between lithiophilic sites and Li ions, and extra H-bonds between hydroxyl and electrolyte anions, endow DPN with functions of homogenizing Li-ion flux and accelerating its desolvation, synergistically achieving the uniform Li-ion deposition and weakening the charge shielding. The artificial SEI enhanced Li-anode (DPN@Li) withstood repeated Li ions plating/stripping processes for over 1000 h, which is 5 times longer than pure Li-anodes, and maintained low overpotential at a high current density of 10 mA cm−2. DPN@Li-based NCM811 full cells deliver high specific capacities and outstanding cycle life over 3000 cycles. Further, DPN@Li possesses excellent electrochemical performance in the high active material loading (7.84 mg cm−2) and foldable pouch cells. This work provides a conceptual framework of DPN constructed by multiple weak intermolecular interaction for artificial SEI to shape anode performance, and achieves the idea with a facile manner and simple chemical substances to promote practical applications of LMBs.
构建人工固体电解质界面(SEIs)以形成无树枝状晶粒的锂(Li)金属阳极仍然是一项挑战。在此,我们通过三方氢键(H-bonds)设计了具有丰富亲锂/亲阴离子基团的动态物理网络(DPN),作为高负载 NCM811 锂金属电池中的人工 SEI。在锂电镀/剥离循环过程中,三方氢键所赋予的 DPN 在张力释放下的形成和解离巧妙地平衡了机械坚固性和变形性之间的矛盾。亲锂位点与锂离子之间的 LiO 键以及羟基与电解质阴离子之间的额外 H 键赋予了 DPN 均化锂离子通量和加速其脱溶的功能,协同实现了锂离子的均匀沉积并削弱了电荷屏蔽。人工 SEI 增强锂阳极(DPN@Li)经受住了超过 1000 小时的反复锂离子电镀/剥离过程,是纯锂离子阳极的 5 倍,并且在 10 mA cm-2 的高电流密度下保持了较低的过电位。基于 DPN@Li 的 NCM811 全电池具有高比容量和超过 3000 次循环的出色循环寿命。此外,DPN@Li 在高活性材料负载(7.84 毫克 cm-2)和可折叠袋状电池中具有优异的电化学性能。这项工作提供了一个通过多重弱分子间相互作用构建 DPN 的概念框架,用于人工 SEI 以塑造阳极性能,并以简便的方式和简单的化学物质实现了这一想法,从而促进了 LMB 的实际应用。
{"title":"Dynamic physical network constructed by tripartite H-bonds in artificial SEI to shape ultra-long life dendrite-free lithium-metal anodes","authors":"Qingping Wu, Yuhan Mei, Haicai Huang, Feixiang Zhou, Huan Li, Houyang Chen","doi":"10.1016/j.mattod.2024.04.011","DOIUrl":"10.1016/j.mattod.2024.04.011","url":null,"abstract":"<div><p>Constructing artificial solid electrolyte interfaces (SEIs) to shape dendrite-free lithium (Li)-metal anodes remains challenges. Herein, we designed dynamic physical network (DPN) with abundant lithiophilic/anionphilic groups through tripartite hydrogen bonds (H-bonds), serving as artificial SEIs in high-loading NCM811-Li metal batteries. The formation and dissociation of DPN endowed by tripartite H-bonds under tension release during Li plating/stripping cycling skillfully balance the contradiction between mechanical robustness and deformability. Li<img>O bonds between lithiophilic sites and Li ions, and extra H-bonds between hydroxyl and electrolyte anions, endow DPN with functions of homogenizing Li-ion flux and accelerating its desolvation, synergistically achieving the uniform Li-ion deposition and weakening the charge shielding. The artificial SEI enhanced Li-anode (DPN@Li) withstood repeated Li ions plating/stripping processes for over 1000 h, which is 5 times longer than pure Li-anodes, and maintained low overpotential at a high current density of 10 mA cm<sup>−2</sup>. DPN@Li-based NCM811 full cells deliver high specific capacities and outstanding cycle life over 3000 cycles. Further, DPN@Li possesses excellent electrochemical performance in the high active material loading (7.84 mg cm<sup>−2</sup>) and foldable pouch cells. This work provides a conceptual framework of DPN constructed by multiple weak intermolecular interaction for artificial SEI to shape anode performance, and achieves the idea with a facile manner and simple chemical substances to promote practical applications of LMBs.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"75 ","pages":"Pages 112-124"},"PeriodicalIF":24.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141137647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.mattod.2024.03.017
Yawen You , Jiawei Zhu , Fang Pu , Wenjie Wang , Minhao Jiang , Jinsong Ren , Xiaogang Qu
Chemo-immunotherapy, in which chemotherapeutic drugs activate immune system to suppress tumor growth and metastases, has great potential for clinical application. However, insufficient immunogenic cell death and serious side effects caused by tumor multidrug resistance and non-specific drug distribution, as well as inadequate and dysfunctional immune cells, greatly impair the effectiveness of chemo-immunotherapy. Herein, taking advantage of the functional diversity and structural programmability of nucleic acids, a DNA-based bioorthogonal nanoagonist is constructed to initiate and augment immune responses for robust chemo-immunotherapy. Benefiting from polyvalent targeting and template effects of DNA, the tailor-made nanoagonist shows prior bioorthogonal catalytic performance. Chemotherapeutic drug is bioorthogonally synthesized in situ under the catalysis of the nanoagonist, maximizing immunogenic cell death and minimizing systemic toxicity. The large amount of antigen and damage-associated molecular patterns released from dying tumor cells effectively initiates antitumor immunity. Meanwhile, the integration of high density of immunologic adjuvant can more effectively stimulate immune cells. The combination of bioorthogonal catalytic drug synthesis and immunostimulatory effect of DNA adjuvant not only destroys local primary tumors, but also eliminates distal metastasis. Moreover, the nanoagonist triggered the immune memory effect. The work extends the application of bioorthogonal chemistry to immunotherapy and provides a safe and powerful strategy for cancer chemo-immunotherapy.
化疗免疫疗法通过化疗药物激活免疫系统来抑制肿瘤的生长和转移,具有巨大的临床应用潜力。然而,肿瘤多药耐药性和药物非特异性分布导致的免疫原性细胞死亡不足和严重的副作用,以及免疫细胞不足和功能失调,极大地影响了化疗免疫疗法的效果。在此,我们利用核酸的功能多样性和结构可编程性,构建了一种基于 DNA 的生物正交纳米激动剂,以启动和增强免疫反应,从而实现强有力的化疗免疫疗法。得益于 DNA 的多价靶向性和模板效应,这种量身定制的纳米拮抗剂显示出先前的生物正交催化性能。在纳米拮抗剂的催化下,化疗药物在原位进行生物正交合成,最大限度地增加了免疫原性细胞死亡,并将全身毒性降至最低。肿瘤细胞死亡后释放的大量抗原和损伤相关分子模式可有效启动抗肿瘤免疫。同时,高密度免疫佐剂的整合能更有效地刺激免疫细胞。生物正交催化药物合成与 DNA 佐剂的免疫刺激作用相结合,不仅能摧毁局部原发肿瘤,还能消除远端转移。此外,纳米拮抗剂还引发了免疫记忆效应。这项工作将生物正交化学应用扩展到免疫疗法,为癌症化疗免疫疗法提供了一种安全而强大的策略。
{"title":"Polyvalent DNA-based bioorthogonal nano-agonist for robust chemo-immunotherapy","authors":"Yawen You , Jiawei Zhu , Fang Pu , Wenjie Wang , Minhao Jiang , Jinsong Ren , Xiaogang Qu","doi":"10.1016/j.mattod.2024.03.017","DOIUrl":"10.1016/j.mattod.2024.03.017","url":null,"abstract":"<div><p>Chemo-immunotherapy, in which chemotherapeutic drugs activate immune system to suppress tumor growth and metastases, has great potential for clinical application. However, insufficient immunogenic cell death and serious side effects caused by tumor multidrug resistance and non-specific drug distribution, as well as inadequate and dysfunctional immune cells, greatly impair the effectiveness of chemo-immunotherapy. Herein, taking advantage of the functional diversity and structural programmability of nucleic acids, a DNA-based bioorthogonal nanoagonist is constructed to initiate and augment immune responses for robust chemo-immunotherapy. Benefiting from polyvalent targeting and template effects of DNA, the tailor-made nanoagonist shows prior bioorthogonal catalytic performance. Chemotherapeutic drug is bioorthogonally synthesized in situ under the catalysis of the nanoagonist, maximizing immunogenic cell death and minimizing systemic toxicity. The large amount of antigen and damage-associated molecular patterns released from dying tumor cells effectively initiates antitumor immunity. Meanwhile, the integration of high density of immunologic adjuvant can more effectively stimulate immune cells. The combination of bioorthogonal catalytic drug synthesis and immunostimulatory effect of DNA adjuvant not only destroys local primary tumors, but also eliminates distal metastasis. Moreover, the nanoagonist triggered the immune memory effect. The work extends the application of bioorthogonal chemistry to immunotherapy and provides a safe and powerful strategy for cancer chemo-immunotherapy.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"75 ","pages":"Pages 57-70"},"PeriodicalIF":24.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140766975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.mattod.2024.03.011
Sen Feng , Junjie Zhang , Junli Xu , Mouhamadou Aziz Diop , Aimin Liu , Fengguo Liu , Xianwei Hu , Zhaowen Wang , Miroslav Boča , Zhongning Shi
Blast furnace ironmaking produces abundant CO2, and molten oxide electrolysis (MOE) attracts great interest in ironmaking due to its carbon-free emissions. However, the anodes are the key limiting factor, making them very challenging due to high temperature and the intensive oxidation atmosphere. In this respect, a non-consumable argon plasma anode for iron electrolysis is proposed as a new technological process. During electrolysis, argon ionizes anodically and forms Ar+, which will jet into the molten oxide electrolyte and react with the O2– complex anion from the electrolyte. Metallic iron is obtained by cathodic reduction, while oxygen evolution and argon regeneration occur in the electrolyte through 2O2–(complex) + 4Ar+ = O2 + 4Ar, demonstrating the workability of the argon plasma as a non-consumable anode for molten oxide electrolysis.
{"title":"A non-consumable argon plasma anode for carbon-free electrochemical ironmaking","authors":"Sen Feng , Junjie Zhang , Junli Xu , Mouhamadou Aziz Diop , Aimin Liu , Fengguo Liu , Xianwei Hu , Zhaowen Wang , Miroslav Boča , Zhongning Shi","doi":"10.1016/j.mattod.2024.03.011","DOIUrl":"10.1016/j.mattod.2024.03.011","url":null,"abstract":"<div><p>Blast furnace ironmaking produces abundant CO<sub>2</sub>, and molten oxide electrolysis (MOE) attracts great interest in ironmaking due to its carbon-free emissions. However, the anodes are the key limiting factor, making them very challenging due to high temperature and the intensive oxidation atmosphere. In this respect, a non-consumable argon plasma anode for iron electrolysis is proposed as a new technological process. During electrolysis, argon ionizes anodically and forms Ar<sup>+</sup>, which will jet into the molten oxide electrolyte and react with the O<sup>2–</sup> complex anion from the electrolyte. Metallic iron is obtained by cathodic reduction, while oxygen evolution and argon regeneration occur in the electrolyte through 2O<sup>2–</sup><sub>(complex)</sub> + 4Ar<sup>+</sup> = O<sub>2</sub> + 4Ar, demonstrating the workability of the argon plasma as a non-consumable anode for molten oxide electrolysis.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"75 ","pages":"Pages 11-19"},"PeriodicalIF":24.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140795966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}