Pub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.09.006
Emre Tekoglu , Jong-Soo Bae , Ho-A Kim , Kwang-Hyeok Lim , Jian Liu , Tyler D. Doležal , So Yeon Kim , Mohammed A. Alrizqi , Aubrey Penn , Wen Chen , A. John Hart , Joo-Hee Kang , Chang-Seok Oh , Jiwon Park , Fan Sun , Sangtae Kim , Gi-Dong Sim , Ju Li
The growing demands for high-temperature materials, especially in aerospace and energy production, compel thorough explorations of innovative materials. Here, we demonstrate significantly enhanced high-temperature mechanical properties of Inconel 625 (In625) based metal matrix composites (MMCs) fabricated by laser powder bed fusion (LPBF) additive manufacturing. The MMC feedstocks for LPBF were fabricated with fine ceramic particles (i.e., titanium diboride (TiB2), titanium carbide (TiC), zirconium diboride (ZrB2) and zirconium carbide (ZrC)) separately mixed with In625 powders. Among the printed specimens, the In625 + TiB2 showed an exceptional strength-ductility combination at 800 °C as well as an outstanding creep resistance at 800 °C under 150 MPa tensile stress. The detailed microstructural characterization, along with thermodynamic calculation and atomic simulations, reveal that the addition of TiB2 results in the formation of serrated grain boundaries, (Cr, Mo)-boride phases near the grain boundaries, and nano-dispersed (Ti, Al, Nb)-oxide phases within the matrix. These features effectively suppress the formation of detrimental high-temperature phases and enhance the material’s high-temperature properties. Beyond amplifying the inherent thermal attributes of In625 superalloy, the research highlights the transformative potential of boride doping and the composition design of MMCs specifically for the LPBF process.
{"title":"Superior high-temperature mechanical properties and microstructural features of LPBF-printed In625-based metal matrix composites","authors":"Emre Tekoglu , Jong-Soo Bae , Ho-A Kim , Kwang-Hyeok Lim , Jian Liu , Tyler D. Doležal , So Yeon Kim , Mohammed A. Alrizqi , Aubrey Penn , Wen Chen , A. John Hart , Joo-Hee Kang , Chang-Seok Oh , Jiwon Park , Fan Sun , Sangtae Kim , Gi-Dong Sim , Ju Li","doi":"10.1016/j.mattod.2024.09.006","DOIUrl":"10.1016/j.mattod.2024.09.006","url":null,"abstract":"<div><div>The growing demands for high-temperature materials, especially in aerospace and energy production, compel thorough explorations of innovative materials. Here, we demonstrate significantly enhanced high-temperature mechanical properties of Inconel 625 (In625) based metal matrix composites (MMCs) fabricated by laser powder bed fusion (LPBF) additive manufacturing. The MMC feedstocks for LPBF were fabricated with fine ceramic particles (i.e., titanium diboride (TiB<sub>2</sub>), titanium carbide (TiC), zirconium diboride (ZrB<sub>2</sub>) and zirconium carbide (ZrC)) separately mixed with In625 powders. Among the printed specimens, the In625 + TiB<sub>2</sub> showed an exceptional strength-ductility combination at 800 °C as well as an outstanding creep resistance at 800 °C under 150 MPa tensile stress. The detailed microstructural characterization, along with thermodynamic calculation and atomic simulations, reveal that the addition of TiB<sub>2</sub> results in the formation of serrated grain boundaries, (Cr, Mo)-boride phases near the grain boundaries, and nano-dispersed (Ti, Al, Nb)-oxide phases within the matrix. These features effectively suppress the formation of detrimental high-temperature phases and enhance the material’s high-temperature properties. Beyond amplifying the inherent thermal attributes of In625 superalloy, the research highlights the transformative potential of boride doping and the composition design of MMCs specifically for the LPBF process.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 297-307"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.09.010
Yilin Wang , Ran Wei , Xijing Yang , Jiahao Liang , Xianda Liu , Shengjun Cheng , Shifan Chen , Ziyue Ling , Yujie Xiao , Yuanting Xu , Weifeng Zhao , Changsheng Zhao
Massive loss of proteins is common in patients on long-term blood purification therapy, there is a strong inverse association between the risk of death and serum albumin concentration. Removing toxins and leaving behind albumin is an arduous task in the field of blood purification. Inspired by the dissociation-transportation process of protein-bound toxins in renal tubule, we propose multi-point photodecomposition accompany with adsorption strategy as a novel treatment modality in hemoperfusion. As a proof of concept, bilirubin is chosen as the research object since it is a typical protein-bound toxin that needs to be transported by strong binding to albumin in blood environment. Interestingly, blue light can efficiently break bilirubin into some highly polar water soluble diazo compounds, the decomposed products of bilirubin are water-soluble and loosely bound to albumin. Herein, graphene quantum dots (GQDs) and polymer science are combined in the nanoarchitectonics processes. The “photodecomposition-adsorption” platform is designed by embedding GQDs in poly (diallyldimethylammonium chloride-acrylamide) (poly (DDAC-AAm) hydrogel (PDMG) microspheres. In order to reduce the influence of cationic polymer on blood component, hyaluronic acid (HA) are coated on the surface of the PDMG (PDMG@HA) microspheres by electrostatic interaction. Owing to the luminescence property of GQDs, the PDMG@HA microspheres emit blue light under ultraviolet activation and decompose bilirubin into water soluble diazo compounds, just like numerous “blue bulbs”. The water-soluble bilirubin debris could be dissociated from albumin and adsorbed by “blue bulbs”, which greatly reduce the metabolic burden on the body. In vitro biocompatibility results demonstrate that the PDMG@HA microspheres show lower protein adsorption and blood cell toxicity than the PDMG microspheres. The photodecomposition and adsorption amount of bilirubin is 187.8 mg/g in vitro. In hyperbilirubinemia rabbit hemoperfusion, the “blue bulbs” remove 70.9 % total bilirubin (TBIL) from plasma and defer the liver damage of biliary obstruction. Notably, the bilirubin photodecomposition is persisted to the end of the treatment, and some of the bilirubin debris have been adsorbed by the “blue bulbs”. The strategy combining both photodecomposition and adsorption opens a new route for the treatment of blood-related diseases.
{"title":"UV-activated “blue bulbs” for photodecomposition and adsorption of bilirubin: Strategic nanoarchitectonics to remove protein-bound toxins","authors":"Yilin Wang , Ran Wei , Xijing Yang , Jiahao Liang , Xianda Liu , Shengjun Cheng , Shifan Chen , Ziyue Ling , Yujie Xiao , Yuanting Xu , Weifeng Zhao , Changsheng Zhao","doi":"10.1016/j.mattod.2024.09.010","DOIUrl":"10.1016/j.mattod.2024.09.010","url":null,"abstract":"<div><div>Massive loss of proteins is common in patients on long-term blood purification therapy, there is a strong inverse association between the risk of death and serum albumin concentration. Removing toxins and leaving behind albumin is an arduous task in the field of blood purification. Inspired by the dissociation-transportation process of protein-bound toxins in renal tubule, we propose multi-point photodecomposition accompany with adsorption strategy as a novel treatment modality in hemoperfusion. As a proof of concept, bilirubin is chosen as the research object since it is a typical protein-bound toxin that needs to be transported by strong binding to albumin in blood environment. Interestingly, blue light can efficiently break bilirubin into some highly polar water soluble diazo compounds, the decomposed products of bilirubin are water-soluble and loosely bound to albumin. Herein, graphene quantum dots (GQDs) and polymer science are combined in the nanoarchitectonics processes. The “photodecomposition-adsorption” platform is designed by embedding GQDs in poly (diallyldimethylammonium chloride-acrylamide) (poly (DDAC-AAm) hydrogel (PDMG) microspheres. In order to reduce the influence of cationic polymer on blood component, hyaluronic acid (HA) are coated on the surface of the PDMG (PDMG@HA) microspheres by electrostatic interaction. Owing to the luminescence property of GQDs, the PDMG@HA microspheres emit blue light under ultraviolet activation and decompose bilirubin into water soluble diazo compounds, just like numerous “blue bulbs”. The water-soluble bilirubin debris could be dissociated from albumin and adsorbed by “blue bulbs”, which greatly reduce the metabolic burden on the body. In vitro biocompatibility results demonstrate that the PDMG@HA microspheres show lower protein adsorption and blood cell toxicity than the PDMG microspheres. The photodecomposition and adsorption amount of bilirubin is 187.8 mg/g <em>in vitro</em>. In hyperbilirubinemia rabbit hemoperfusion, the “blue bulbs” remove 70.9 % total bilirubin (TBIL) from plasma and defer the liver damage of biliary obstruction. Notably, the bilirubin photodecomposition is persisted to the end of the treatment, and some of the bilirubin debris have been adsorbed by the “blue bulbs”. The strategy combining both photodecomposition and adsorption opens a new route for the treatment of blood-related diseases.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 327-341"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.07.013
Zifan Pei , Nan Jiang , Fei Gong , Weihao Yang , Jiachen Xu , Bin Yu , Nailin Yang , Jie Wu , Huali Lei , Shumin Sun , Longxiao Li , Zhicheng Liu , Caifang Ni , Liang Cheng
Growing evidence has demonstrated the positive role of bioactive metal ions in enhancing pyroptosis-mediated cancer immunotherapy. However, further amplification of the sustained immune response remains challenging. Herein, by selecting from typical metal anions, we confirmed the significant cytotoxicity and pyroptosis induction potency of vanadate anions, owing to the inhibition of ATPases and disruption of intracellular ion homeostasis. Then, PEGylated bimetallic manganese vanadate nanoparticles (MnVOx) were synthesized for stimulator of interferon genes (STING) pathway-boosted pyroptosis therapy. The vanadate produced from MnVOx degradation inhibited membrane ATPases and induced potassium efflux and calcium overload, resulting in inflammasome activation, mitochondrial damage, and endoplasmic reticulum stress, as well as subsequent robust pyroptotic cell death. The released manganese ions stimulated STING pathway through dendritic cells maturation and type I interferon secretion. This dual strategy triggered strong anti-tumor immunity and promoted immune cell infiltration into the tumor, which further defeated distant tumors in combination with immune checkpoint blockade (ICB) therapy. Moreover, by dispersing MnVOx with lipiodol for interventional transarterial embolization (TAE) therapy, an enhanced therapeutic efficacy was achieved in orthotopic rabbit liver cancer compared to that of lipiodol alone. Our work highlights the biological effect of metal anions in inducing pyroptosis, as well as the synergistic immunotherapy involving pyroptosis induction and STING activation.
越来越多的证据表明,生物活性金属离子在增强热蛋白沉积介导的癌症免疫疗法方面发挥着积极作用。然而,进一步扩大持续免疫反应仍具有挑战性。在本文中,我们从典型的金属阴离子中筛选出了钒酸阴离子,证实了钒酸阴离子由于抑制 ATP 酶和破坏细胞内离子平衡而具有显著的细胞毒性和诱导发热作用。然后,合成了 PEG 化双金属钒酸锰纳米粒子(MnVO),用于干扰素基因刺激器(STING)通路的热毒症治疗。MnVO 降解产生的钒酸盐抑制膜 ATP 酶,诱导钾离子外流和钙离子超载,导致炎症小体激活、线粒体损伤和内质网应激,以及随后细胞的强热休克死亡。释放的锰离子通过树突状细胞成熟和 I 型干扰素分泌刺激 STING 通路。这种双重策略引发了强大的抗肿瘤免疫力,并促进了免疫细胞向肿瘤的浸润,与免疫检查点阻断疗法(ICB)相结合,进一步战胜了远处的肿瘤。此外,通过将 MnVO 与脂碘醇一起分散用于介入性经动脉栓塞(TAE)治疗,与单独使用脂碘醇相比,在正位兔肝癌中取得了更好的疗效。我们的研究工作凸显了金属阴离子在诱导化脓过程中的生物效应,以及化脓诱导和 STING 激活的协同免疫疗法。
{"title":"A metal anion strategy to induce pyroptosis combined with STING activation to synergistically amplify anti-tumor immunity","authors":"Zifan Pei , Nan Jiang , Fei Gong , Weihao Yang , Jiachen Xu , Bin Yu , Nailin Yang , Jie Wu , Huali Lei , Shumin Sun , Longxiao Li , Zhicheng Liu , Caifang Ni , Liang Cheng","doi":"10.1016/j.mattod.2024.07.013","DOIUrl":"10.1016/j.mattod.2024.07.013","url":null,"abstract":"<div><div>Growing evidence has demonstrated the positive role of bioactive metal ions in enhancing pyroptosis-mediated cancer immunotherapy. However, further amplification of the sustained immune response remains challenging. Herein, by selecting from typical metal anions, we confirmed the significant cytotoxicity and pyroptosis induction potency of vanadate anions, owing to the inhibition of ATPases and disruption of intracellular ion homeostasis. Then, PEGylated bimetallic manganese vanadate nanoparticles (MnVO<sub>x</sub>) were synthesized for stimulator of interferon genes (STING) pathway-boosted pyroptosis therapy. The vanadate produced from MnVO<sub>x</sub> degradation inhibited membrane ATPases and induced potassium efflux and calcium overload, resulting in inflammasome activation, mitochondrial damage, and endoplasmic reticulum stress, as well as subsequent robust pyroptotic cell death. The released manganese ions stimulated STING pathway through dendritic cells maturation and type I interferon secretion. This dual strategy triggered strong anti-tumor immunity and promoted immune cell infiltration into the tumor, which further defeated distant tumors in combination with immune checkpoint blockade (ICB) therapy. Moreover, by dispersing MnVO<sub>x</sub> with lipiodol for interventional transarterial embolization (TAE) therapy, an enhanced therapeutic efficacy was achieved in orthotopic rabbit liver cancer compared to that of lipiodol alone. Our work highlights the biological effect of metal anions in inducing pyroptosis, as well as the synergistic immunotherapy involving pyroptosis induction and STING activation.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 23-39"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.09.012
Hao-Wen Dong , Chen Shen , Ze Liu , Sheng-Dong Zhao , Zhiwen Ren , Chen-Xu Liu , Xudong He , Steven A. Cummer , Yue-Sheng Wang , Daining Fang , Li Cheng
Flexible manipulation of elastic and acoustic waves through phononic meta-structured materials (PMSMs) has attracted a lot of attention in the last three decades and shows a bright future for potential applications in many fields. Conventional engineering design methods for PMSMs rely on changing the material composition and empirical structural configurations, which often result in limited performance due to the limited design space. Recent advances in the fields of additive manufacturing, optimization, and artificial intelligence have given rise to a plethora of creative meta-structured materials that offer superior functionality on demand. In this Review, we provide an overview of inverse design of phononic crystals, phononic-crystal devices, phononic metamaterials, phononic-metamaterial devices, phononic metasurfaces, and phononic topological insulators. We first introduce fundamental wave quantities including dispersion relations, scattering characterizations, and dynamic effective parameters, and then discuss how these wave quantities can be leveraged for systematic inverse design of PMSMs to achieve a variety of customized phononic functionalities with highly customizable full-wave responses, intrinsic physical parameters, and hybrid local–global responses. Furthermore, we show representative applications of some inverse-designed PMSMs and look at future directions. We outline the concept of phononic structures genome engineering (PSGE) through key developments in PMSM inverse design. Finally, we discuss the new possibilities that PSGE brings to wave engineering.
{"title":"Inverse design of phononic meta-structured materials","authors":"Hao-Wen Dong , Chen Shen , Ze Liu , Sheng-Dong Zhao , Zhiwen Ren , Chen-Xu Liu , Xudong He , Steven A. Cummer , Yue-Sheng Wang , Daining Fang , Li Cheng","doi":"10.1016/j.mattod.2024.09.012","DOIUrl":"10.1016/j.mattod.2024.09.012","url":null,"abstract":"<div><div>Flexible manipulation of elastic and acoustic waves through phononic meta-structured materials (PMSMs) has attracted a lot of attention in the last three decades and shows a bright future for potential applications in many fields. Conventional engineering design methods for PMSMs rely on changing the material composition and empirical structural configurations, which often result in limited performance due to the limited design space. Recent advances in the fields of additive manufacturing, optimization, and artificial intelligence have given rise to a plethora of creative meta-structured materials that offer superior functionality on demand. In this Review, we provide an overview of inverse design of phononic crystals, phononic-crystal devices, phononic metamaterials, phononic-metamaterial devices, phononic metasurfaces, and phononic topological insulators. We first introduce fundamental wave quantities including dispersion relations, scattering characterizations, and dynamic effective parameters, and then discuss how these wave quantities can be leveraged for systematic inverse design of PMSMs to achieve a variety of customized phononic functionalities with highly customizable full-wave responses, intrinsic physical parameters, and hybrid local–global responses. Furthermore, we show representative applications of some inverse-designed PMSMs and look at future directions. We outline the concept of phononic structures genome engineering (PSGE) through key developments in PMSM inverse design. Finally, we discuss the new possibilities that PSGE brings to wave engineering.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 824-855"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.08.024
Zhou Lu , Dandan Yu , Yinhua Hong , Guiyou Ma , Fei Ru , Tianqi Ge , Guangcheng Xi , Laishun Qin , Mukhammadjon Adilov , Rustam Ashurov , Khatam Ashurov , Da Chen
Bismuthene, an emerging two-dimensional monoelemental material as a good candidate of the room-temperature topological insulator, has attracted considerable attention due to its layer-dependent narrow band gap, high carrier mobility, high stability, tunable electronic and optical properties, and easy transferability. Here, we give a comprehensive overview of bismuthene from synthesis to applications. First, the structures and properties of bismuthene are summarized based on the theoretical simulation and experimental results. Then, the synthesis methods of bismuthene, mainly including liquid phase exfoliation, wet-chemical method and epitaxial growth are shown along with the pros and cons of each. The wide applications of bismuthene in electro/photo-catalysis, sensors, biomedicine, batteries, supercapacitors, optoelectronics, and nonlinear optical devices are further discussed. Finally, we conclude the current status, remaining challenges, and possible research directions to advance this exciting field.
{"title":"Recent advances and future perspectives of bismuthene: From preparation to applications","authors":"Zhou Lu , Dandan Yu , Yinhua Hong , Guiyou Ma , Fei Ru , Tianqi Ge , Guangcheng Xi , Laishun Qin , Mukhammadjon Adilov , Rustam Ashurov , Khatam Ashurov , Da Chen","doi":"10.1016/j.mattod.2024.08.024","DOIUrl":"10.1016/j.mattod.2024.08.024","url":null,"abstract":"<div><div>Bismuthene, an emerging two-dimensional monoelemental material as a good candidate of the room-temperature topological insulator, has attracted considerable attention due to its layer-dependent narrow band gap, high carrier mobility, high stability, tunable electronic and optical properties, and easy transferability. Here, we give a comprehensive overview of bismuthene from synthesis to applications. First, the structures and properties of bismuthene are summarized based on the theoretical simulation and experimental results. Then, the synthesis methods of bismuthene, mainly including liquid phase exfoliation, wet-chemical method and epitaxial growth are shown along with the pros and cons of each. The wide applications of bismuthene in electro/photo-catalysis, sensors, biomedicine, batteries, supercapacitors, optoelectronics, and nonlinear optical devices are further discussed. Finally, we conclude the current status, remaining challenges, and possible research directions to advance this exciting field.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 565-593"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.09.014
Wenyi Lu , Jian Tan , Yongshuai Liu , Longli Ma , Pengshu Yi , Shaochong Cao , Qianming He , Zhan Fang , Zhu Liu , Mingxin Ye , Jianfeng Shen
Carbon dots (CDs), as emerging members of the carbon nanomaterial family with ultra-small sizes and unique physicochemical properties, which has attracted a great deal of attention in energy conversion and storage, especially in rechargeable batteries in recent years. Although CDs have shown remarkable potential in different batteries, the mechanism of its role for solving common problems in batteries is lacking. In this review, we first clarify the constitutive relationship between the preparation, modification and electrochemical properties of CDs and provide strategies for structural design. Notably, we categorize the role of CDs in batteries from a new perspective, detailing the mechanism that CDs function in different electrochemical properties. Finally, we provide several issues facing CDs in battery applications and directions for further research. This review is expected to serve as an insightful guidance for scientists who work with the fascinating material of CDs and to stimulate further exploration in energy storage.
碳点(CD)作为碳纳米材料家族中的新兴成员,具有超小尺寸和独特的物理化学特性,近年来在能量转换和储存领域,尤其是充电电池领域引起了广泛关注。虽然 CD 在不同的电池中都显示出了巨大的潜力,但其在解决电池中常见问题方面的作用机理还缺乏研究。在这篇综述中,我们首先阐明了 CD 的制备、改性和电化学性能之间的构成关系,并提供了结构设计策略。值得注意的是,我们从一个新的角度对光盘在电池中的作用进行了分类,详细介绍了光盘在不同电化学特性中的作用机制。最后,我们提出了 CD 在电池应用中面临的几个问题以及进一步研究的方向。希望这篇综述能为研究 CD 这种神奇材料的科学家提供有见地的指导,并激励他们在储能领域进行进一步的探索。
{"title":"Deciphering carbon dots in a new perspective from structural engineering to mechanisms in batteries","authors":"Wenyi Lu , Jian Tan , Yongshuai Liu , Longli Ma , Pengshu Yi , Shaochong Cao , Qianming He , Zhan Fang , Zhu Liu , Mingxin Ye , Jianfeng Shen","doi":"10.1016/j.mattod.2024.09.014","DOIUrl":"10.1016/j.mattod.2024.09.014","url":null,"abstract":"<div><div>Carbon dots (CDs), as emerging members of the carbon nanomaterial family with ultra-small sizes and unique physicochemical properties, which has attracted a great deal of attention in energy conversion and storage, especially in rechargeable batteries in recent years. Although CDs have shown remarkable potential in different batteries, the mechanism of its role for solving common problems in batteries is lacking. In this review, we first clarify the constitutive relationship between the preparation, modification and electrochemical properties of CDs and provide strategies for structural design. Notably, we categorize the role of CDs in batteries from a new perspective, detailing the mechanism that CDs function in different electrochemical properties. Finally, we provide several issues facing CDs in battery applications and directions for further research. This review is expected to serve as an insightful guidance for scientists who work with the fascinating material of CDs and to stimulate further exploration in energy storage.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 856-885"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.08.010
Junping Ma , Sihua Li , Long Zhang , Bo Lei
Rapid repair of complex skin injuries caused by multidrug-resistant bacterial infections or burn is still a challenge, due to the sustained bacterial colonization, high oxidative stress and severe inflammation. The development of efficient biomaterials strategy with precise bioactive functions is urgent in overcoming clinical challenge. In this study, we introduce a bioactive, multifunctional MXene (transition metal carbides and/or nitrides)-based hydrogel. This hydrogel, formed through the self-assembly of Ti3C2TX MXene and poly(salicylic acid)-Pluronic F127-poly(salicylic acid) (FPSa@M), exhibited the precise capabilities for regulating thermo-antioxidation and anti-inflammatory environments. FPSa@M exhibited the injectability, rapid gelation, electrical conductivity, and beneficial antioxidant and photothermal effects. The photothermal temperature-adjustable FPSa@M hydrogel effectively achieved complete photothermal eradication of high concentrations of multidrug-resistant bacteria. Additionally, FPSa@M hydrogel significantly impacted the multiple cellular behaviors, stimulating proliferation, scavenging reactive oxygen species (ROS), reducing inflammatory factor expression, promoting human umbilical vein endothelial cells (HUVECs) migration and tubule-forming activity of HUVECs. In the methicillin-resistant Staphylococcus aureus (MRSA)-infected or burn wound model, FPSa@M could efficiently eradicate bacterial infection, remodel the microenvironment of oxidative stress and inflammation in wound healing through activating the heat shock protein 90 and angiogenesis, thus significantly promote the wound repair. This work suggests that thermo-antioxidation activated biomaterials probably hold significant promise for addressing extensive complex tissue defects resulting from multidrug-resistant bacterial infections or burns.
{"title":"Oxidativestress-scavenging thermo-activated MXene hydrogel for rapid repair of MRSA impaired wounds and burn wounds","authors":"Junping Ma , Sihua Li , Long Zhang , Bo Lei","doi":"10.1016/j.mattod.2024.08.010","DOIUrl":"10.1016/j.mattod.2024.08.010","url":null,"abstract":"<div><div>Rapid repair of complex skin injuries caused by multidrug-resistant bacterial infections or burn is still a challenge, due to the sustained bacterial colonization, high oxidative stress and severe inflammation. The development of efficient biomaterials strategy with precise bioactive functions is urgent in overcoming clinical challenge. In this study, we introduce a bioactive, multifunctional MXene (transition metal carbides and/or nitrides)-based hydrogel. This hydrogel, formed through the self-assembly of Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> MXene and poly(salicylic acid)-Pluronic F127-poly(salicylic acid) (FPSa@M), exhibited the precise capabilities for regulating thermo-antioxidation and anti-inflammatory environments. FPSa@M exhibited the injectability, rapid gelation, electrical conductivity, and beneficial antioxidant and photothermal effects. The photothermal temperature-adjustable FPSa@M hydrogel effectively achieved complete photothermal eradication of high concentrations of multidrug-resistant bacteria. Additionally, FPSa@M hydrogel significantly impacted the multiple cellular behaviors, stimulating proliferation, scavenging reactive oxygen species (ROS), reducing inflammatory factor expression, promoting human umbilical vein endothelial cells (HUVECs) migration and tubule-forming activity of HUVECs. In the methicillin-resistant <em>Staphylococcus aureus</em> (MRSA)-infected or burn wound model, FPSa@M could efficiently eradicate bacterial infection, remodel the microenvironment of oxidative stress and inflammation in wound healing through activating the heat shock protein 90 and angiogenesis, thus significantly promote the wound repair. This work suggests that thermo-antioxidation activated biomaterials probably hold significant promise for addressing extensive complex tissue defects resulting from multidrug-resistant bacterial infections or burns.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 139-155"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.08.029
Jieling Tan , Hanyi Zhang , Xiaozhe Wang , Yuecun Wang , Jiang-Jing Wang , Hangming Zhang , En Ma , Wei Zhang
Mechanical deformability becomes a new facet of van der Waals (vdW) semiconductors, which opens up a new avenue to develop flexible and wearable electronics. The screening for deformable semiconductors is so far limited to high-symmetric crystalline structures. Here, we extend the realm towards low-symmetric semiconductors with in-plane anisotropy. We focus on gallium telluride, which is comprised of highly distorted quadruple-layer slabs and zigzag-shaped vdW gaps. By carrying out continuous rolling experiments, we prove that gallium telluride exhibits excellent deformability with high fracture resistance. The plastic deformation in this monoclinic crystal is mediated by both inter-layer slips and cross-layer slips, where the non-negligible interactions between Te atoms across vdW gaps play a major role. The structural integrity of the distorted quadruple-layer slabs is sustained by short and strong covalent bonds, and the key ingredient to keep the high in-plane anisotropy is the robust horizontal homopolar Ga–Ga bonds. In severely deformed samples, amorphization and the formation of micro-cracks help release the internal stresses. The formation of amorphous GaTe could help prevent catastrophic failures of crack coalescence and development. Our work paves the way for integration of deformable and flexible devices with anisotropic functionalities.
{"title":"Deformable monoclinic gallium telluride with high in-plane structural anisotropy","authors":"Jieling Tan , Hanyi Zhang , Xiaozhe Wang , Yuecun Wang , Jiang-Jing Wang , Hangming Zhang , En Ma , Wei Zhang","doi":"10.1016/j.mattod.2024.08.029","DOIUrl":"10.1016/j.mattod.2024.08.029","url":null,"abstract":"<div><div>Mechanical deformability becomes a new facet of van der Waals (vdW) semiconductors, which opens up a new avenue to develop flexible and wearable electronics. The screening for deformable semiconductors is so far limited to high-symmetric crystalline structures. Here, we extend the realm towards low-symmetric semiconductors with in-plane anisotropy. We focus on gallium telluride, which is comprised of highly distorted quadruple-layer slabs and zigzag-shaped vdW gaps. By carrying out continuous rolling experiments, we prove that gallium telluride exhibits excellent deformability with high fracture resistance. The plastic deformation in this monoclinic crystal is mediated by both inter-layer slips and cross-layer slips, where the non-negligible interactions between Te atoms across vdW gaps play a major role. The structural integrity of the distorted quadruple-layer slabs is sustained by short and strong covalent bonds, and the key ingredient to keep the high in-plane anisotropy is the robust horizontal homopolar Ga–Ga bonds. In severely deformed samples, amorphization and the formation of micro-cracks help release the internal stresses. The formation of amorphous GaTe could help prevent catastrophic failures of crack coalescence and development. Our work paves the way for integration of deformable and flexible devices with anisotropic functionalities.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 250-261"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.08.016
Wilson K.S. Chiu , Salvatore De Angelis , Peter Stanley Jørgensen , Luise Theil Kuhn
The article presents an overview on the progress of X-ray imaging of solid oxide cells (SOC) during the past decade. X-ray imaging has enabled significant advances in solid oxide cells. Laboratory-based X-ray sources allowed researchers to investigate the electrode porosity, different material phases, and its crystallography and grain boundaries. Synchrotron-based X-ray sources enable a more detailed understanding of the chemistry under in situ and operando conditions due to the significantly brighter source. Recent breakthroughs using synchrotron X-ray sources have allowed researchers to understand SOC performance and degradation at unprecedented spatial, chemical and temporal resolution using novel absorption contrast and XANES tomography, ptychographic and holographic X-ray tomography and 3-D X-ray diffraction imaging. Three-dimensional images have been used to advance numerical modeling and simulations, e.g., phase field models, lumped element models, and artificial structure generation. Machine learning and deep neural network algorithms are being explored for automated image segmentation. X-ray imaging has also been used to advance the creation of hierarchical electrode structures. Even though the theory and methods for X-ray imaging and analysis now exist, most studies still don’t take full advantage of this. Typical studies only use direct interpretation of images. As structures get more complicated, e.g., hierarchical structures, the quantitative interpretation of images will be needed to correlate structure to performance.
文章概述了过去十年固体氧化物电池(SOC)X 射线成像的进展。X 射线成像使固体氧化物电池取得了重大进展。基于实验室的 X 射线源让研究人员能够研究电极孔隙率、不同材料相、结晶学和晶界。由于同步辐射 X 射线源的亮度更高,因此可以更详细地了解原位和操作条件下的化学反应。利用同步辐射 X 射线源的最新突破,研究人员可以利用新型吸收对比和 XANES 层析成像、层析成像和全息 X 射线层析成像以及三维 X 射线衍射成像,以前所未有的空间、化学和时间分辨率了解 SOC 的性能和降解情况。三维图像已被用于推进数值建模和模拟,例如相场模型、叠加元素模型和人工结构生成。目前正在探索用于自动图像分割的机器学习和深度神经网络算法。X 射线成像还被用于推动分层电极结构的创建。尽管现在已经有了 X 射线成像和分析的理论和方法,但大多数研究仍未充分利用这一优势。典型的研究仅采用直接解读图像的方法。随着结构变得越来越复杂,例如分层结构,就需要对图像进行定量解读,以便将结构与性能联系起来。
{"title":"Three-dimensional X-ray imaging and quantitative analysis of solid oxide cells","authors":"Wilson K.S. Chiu , Salvatore De Angelis , Peter Stanley Jørgensen , Luise Theil Kuhn","doi":"10.1016/j.mattod.2024.08.016","DOIUrl":"10.1016/j.mattod.2024.08.016","url":null,"abstract":"<div><div>The article presents an overview on the progress of X-ray imaging of solid oxide cells (SOC) during the past decade. X-ray imaging has enabled significant advances in solid oxide cells. Laboratory-based X-ray sources allowed researchers to investigate the electrode porosity, different material phases, and its crystallography and grain boundaries. Synchrotron-based X-ray sources enable a more detailed understanding of the chemistry under in situ and operando conditions due to the significantly brighter source. Recent breakthroughs using synchrotron X-ray sources have allowed researchers to understand SOC performance and degradation at unprecedented spatial, chemical and temporal resolution using novel absorption contrast and XANES tomography, ptychographic and holographic X-ray tomography and 3-D X-ray diffraction imaging. Three-dimensional images have been used to advance numerical modeling and simulations, e.g., phase field models, lumped element models, and artificial structure generation. Machine learning and deep neural network algorithms are being explored for automated image segmentation. X-ray imaging has also been used to advance the creation of hierarchical electrode structures. Even though the theory and methods for X-ray imaging and analysis now exist, most studies still don’t take full advantage of this. Typical studies only use direct interpretation of images. As structures get more complicated, e.g., hierarchical structures, the quantitative interpretation of images will be needed to correlate structure to performance.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 481-496"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Room temperature phosphorescent (RTP) materials have attracted much attention due to their potential applications to anti-counterfeiting encryption, optoelectronic devices and biological imaging. While the development of long lifetime afterglow materials is being promoted, the construction of multi-color afterglow materials by modulating the excited state energy through different means is also important. However, the sensitivity of the excited state and the transition mechanism of T1 result in the limitation of afterglow colors. Therefore, the methods of constructing multi-color RTP materials are summarized into six categories: push–pull electron effect, π-conjugation, molecular aggregation state, multi-component doping, supramolecular self-assembly and multi-mode emission. Based on methodological guidance, the potential applications of multi-color RTP in the fields of optical information storage, bioimaging and intelligent response systems are also discussed. Finally, the construction of multi-color RTP materials is prospected to provide valuable references for the further development of multi-color afterglow regulation methodologies.
{"title":"Methodologies for constructing multi-color room temperature phosphorescent systems","authors":"Zhizheng Li , Qian Yue , Huacheng Zhang , Yanli Zhao","doi":"10.1016/j.mattod.2024.07.002","DOIUrl":"10.1016/j.mattod.2024.07.002","url":null,"abstract":"<div><p>Room temperature phosphorescent (RTP) materials have attracted much attention due to their potential applications to anti-counterfeiting encryption, optoelectronic devices and biological imaging. While the development of long lifetime afterglow materials is being promoted, the construction of multi-color afterglow materials by modulating the excited state energy through different means is also important. However, the sensitivity of the excited state and the transition mechanism of T<sub>1</sub> result in the limitation of afterglow colors. Therefore, the methods of constructing multi-color RTP materials are summarized into six categories: push–pull electron effect, π-conjugation, molecular aggregation state, multi-component doping, supramolecular self-assembly and multi-mode emission. Based on methodological guidance, the potential applications of multi-color RTP in the fields of optical information storage, bioimaging and intelligent response systems are also discussed. Finally, the construction of multi-color RTP materials is prospected to provide valuable references for the further development of multi-color afterglow regulation methodologies.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"78 ","pages":"Pages 209-230"},"PeriodicalIF":21.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141852899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}