Pub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.08.023
Mateen Mirza , Wenjia Du , Lara Rasha , Francesco Iacoviello , Tobias P. Neville , Steven Wilcock , Arfon H. Jones , Rhodri Jervis , Paul R. Shearing , Dan J.L. Brett
The creation of a circular economy is seen as one of the key challenges in recycling spent Li-ion batteries and would vastly diminish pressures faced in the initial extraction stage of the life cycle. Molten salts (MS) possess a set of excellent electrochemical properties and have been used to recycle metals and non-metals in the battery, metallurgical, nuclear and planetary science sectors. However, an in-depth and clear visual understanding of the electrochemical reduction process is still lacking. Here, we have overcome this challenge by developing a bespoke, miniaturised electrochemical cell enabling real-time X-ray imaging studies. A combination of X-ray radiography and tomography provide an opportunity to non-destructively reveal detailed microstructural evaluation of the electrochemical cell during the pyro-chemical process. Moreover, we have found that significant amounts of CO/CO2 accumulated at the anode surface may lead to undesired operational consequences.
创建循环经济被视为回收废旧锂离子电池的关键挑战之一,并将大大减轻生命周期初始提取阶段所面临的压力。熔盐(MS)具有一系列优异的电化学特性,已被用于电池、冶金、核能和行星科学领域的金属和非金属回收。然而,人们对电化学还原过程仍缺乏深入而清晰的直观了解。在这里,我们开发了一种定制的微型电化学电池,可以进行实时 X 射线成像研究,从而克服了这一挑战。X 射线射线照相术和断层摄影术相结合,为非破坏性地揭示电化学电池在热化学过程中的详细微观结构评估提供了机会。此外,我们还发现,阳极表面积聚的大量 CO/CO2 可能会导致不良的运行后果。
{"title":"Following the electrochemical recovery of lithium-ion battery materials from molten salts using operando X-ray imaging","authors":"Mateen Mirza , Wenjia Du , Lara Rasha , Francesco Iacoviello , Tobias P. Neville , Steven Wilcock , Arfon H. Jones , Rhodri Jervis , Paul R. Shearing , Dan J.L. Brett","doi":"10.1016/j.mattod.2024.08.023","DOIUrl":"10.1016/j.mattod.2024.08.023","url":null,"abstract":"<div><div>The creation of a circular economy is seen as one of the key challenges in recycling spent Li-ion batteries and would vastly diminish pressures faced in the initial extraction stage of the life cycle. Molten salts (MS) possess a set of excellent electrochemical properties and have been used to recycle metals and non-metals in the battery, metallurgical, nuclear and planetary science sectors. However, an in-depth and clear visual understanding of the electrochemical reduction process is still lacking. Here, we have overcome this challenge by developing a bespoke, miniaturised electrochemical cell enabling real-time X-ray imaging studies. A combination of X-ray radiography and tomography provide an opportunity to non-destructively reveal detailed microstructural evaluation of the electrochemical cell during the pyro-chemical process. Moreover, we have found that significant amounts of CO/CO<sub>2</sub> accumulated at the anode surface may lead to undesired operational consequences.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 226-239"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.08.021
M. Petrov , D. Canena , N. Kulachenkov , N. Kumar , Pierre Nickmilder , Philippe Leclère , Igor Sokolov
Here, we present a novel mechano-spectroscopic atomic force microscopy (AFM-MS) technique that overcomes the limitations of current spectroscopic methods by combining the high-resolution imaging capabilities of AFM with machine learning (ML) classification. AFM-MS employs AFM operating in sub-resonance tapping imaging mode, which enables the collection of multiple physical and mechanical property maps of a sample with sub-nanometer lateral resolution in a highly repeatable manner. By comparing these properties to a database of known materials, the technique identifies the location of constituent materials at each image pixel with the assistance of ML algorithms. We demonstrate AFM-MS on various material mixtures, achieving an unprecedented lateral spectroscopic resolution of 1.6 nm. This powerful approach opens new avenues for nanoscale material study, including the material identification and correlation of nanostructure with macroscopic material properties. The ability to map material composition with such high resolution will significantly advance the understanding and design of complex, nanostructured materials.
{"title":"Mechanical spectroscopy of materials using atomic force microscopy (AFM-MS)","authors":"M. Petrov , D. Canena , N. Kulachenkov , N. Kumar , Pierre Nickmilder , Philippe Leclère , Igor Sokolov","doi":"10.1016/j.mattod.2024.08.021","DOIUrl":"10.1016/j.mattod.2024.08.021","url":null,"abstract":"<div><div>Here, we present a novel mechano-spectroscopic atomic force microscopy (AFM-MS) technique that overcomes the limitations of current spectroscopic methods by combining the high-resolution imaging capabilities of AFM with machine learning (ML) classification. AFM-MS employs AFM operating in sub-resonance tapping imaging mode, which enables the collection of multiple physical and mechanical property maps of a sample with sub-nanometer lateral resolution in a highly repeatable manner. By comparing these properties to a database of known materials, the technique identifies the location of constituent materials at each image pixel with the assistance of ML algorithms. We demonstrate AFM-MS on various material mixtures, achieving an unprecedented lateral spectroscopic resolution of 1.6 nm. This powerful approach opens new avenues for nanoscale material study, including the material identification and correlation of nanostructure with macroscopic material properties. The ability to map material composition with such high resolution will significantly advance the understanding and design of complex, nanostructured materials.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 218-225"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Topological transitions in various materials are actively being studied, including topological quantum phase transitions, going beyond the Landau theory and the concept of the order parameter. Here we propose the concept of a transition between two structures with different topology using the example of the transition between a flat dielectric ring and a split ring and its further unbending into a rectangular Fabry-Pérot resonator. Experimentally and theoretically, we discovered the lifting of the degeneracy of the CW-CCW photonic modes of the ring and the formation of two families: topological, which acquire an additional phase , equal to the Berry phase in a thin Möbius strip, and ordinary ones, which do not acquire an additional phase. Topological modes arise due to the gradual “cutting” of one antinode of the field by a gap into two antinodes as the angular size of the gap increases from zero to one degree. Thus, using a topological Fabry-Pérot resonator with variable curvature and fixed length, resonant modes with an arbitrary non-integer number of waves are realized and a new generation of resonators is created with the prospect of unique classical and quantum applications.
{"title":"Topology and curvature effects in the photonics of ring – split ring – cuboid transitions","authors":"Mikhail Bochkarev , Nikolay Solodovchenko , Kirill Samusev , Mikhail Limonov","doi":"10.1016/j.mattod.2024.08.015","DOIUrl":"10.1016/j.mattod.2024.08.015","url":null,"abstract":"<div><div>Topological transitions in various materials are actively being studied, including topological quantum phase transitions, going beyond the Landau theory and the concept of the order parameter. Here we propose the concept of a transition between two structures with different topology using the example of the transition between a flat dielectric ring and a split ring and its further unbending into a rectangular Fabry-Pérot resonator. Experimentally and theoretically, we discovered the lifting of the degeneracy of the CW-CCW photonic modes of the ring and the formation of two families: topological, which acquire an additional phase <span><math><mi>π</mi></math></span>, equal to the Berry phase in a thin Möbius strip, and ordinary ones, which do not acquire an additional phase. Topological modes arise due to the gradual “cutting” of one antinode of the field by a gap into two antinodes as the angular size of the gap increases from zero to one degree. Thus, using a topological Fabry-Pérot resonator with variable curvature and fixed length, resonant modes with an arbitrary non-integer number of waves are realized and a new generation of resonators is created with the prospect of unique classical and quantum applications.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 179-186"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.09.011
Jinxu Qiu , Hongliang Li , Yu Zhao , Rongrui Xu , Kaiyuan Wei , Yixiu Cui , Jie Shu , Yanhua Cui
Developing high-voltage LiCoO2 cathode film is a promising approach to meet high-energy density demands for intelligent microdevices. However, the electrochemical performance of bare LiCoO2 is compromised beyond 4.55 V due to irreversible phase transitions, cobalt dissolution, and intergranular cracking. Meanwhile, vacuum physical deposition technology and interface compatibility pose challenges to achieving higher capacity integrated into a narrow space. Herein we proposed an in-situ reconstructed surface/inner-structure synergistic modification prototype strategy to achieve a superior high-voltage LiCoO2 through a facile in-situ magnetron sputtering. This sandwich structure design enables a synergistic effect of internal titanium body-doping and external LiCoPO4 compact layer to strengthen stability under high voltage. Consequently, the triggered defects and strong PO coordination are substantially beneficial for stabilizing Li+ channels, inhibiting Co migration, as well as enhancing diffusion kinetics. Strain field analysis reveals that the mitigated lattice deformation along (104) preferential orientation is beneficial for alleviating volumetric strain even at an operating voltage of up to 4.6 V. Additionally, the induced body and surface atom rearrangement regulates the band structure and reduces oxygen redox activity. Therefore, the as-designed high-voltage LiCoO2-based all-solid-state thin-film battery achieves superior cycle stability with 75 % capacity retention after 500 cycles at 1 C under 10 °C.
开发高电压钴酸锂阴极薄膜是满足智能微型设备高能量密度需求的一种可行方法。然而,由于不可逆相变、钴溶解和晶间裂纹等原因,裸钴酸锂的电化学性能在 4.55 V 以上会受到影响。同时,真空物理沉积技术和界面兼容性也为在狭窄空间内实现更高的集成容量带来了挑战。在此,我们提出了一种原位重构表面/内部结构协同改性原型策略,以通过简便的原位磁控溅射技术实现卓越的高压钴酸锂。这种三明治结构设计使内部钛体掺杂和外部钴酸锂致密层产生协同效应,从而增强了高压下的稳定性。因此,引发的缺陷和强 PO 配位对稳定 Li+ 通道、抑制 Co 迁移以及增强扩散动力学大有裨益。应变场分析表明,即使在高达 4.6 V 的工作电压下,沿(104)优先取向的晶格变形也能得到缓解,从而有利于减轻体积应变。此外,诱导的体原子和表面原子重排调节了带状结构,降低了氧氧化还原活性。因此,按设计制造的基于钴酸锂的高电压全固态薄膜电池实现了卓越的循环稳定性,在 10 °C、1 C 条件下循环 500 次后容量保持率为 75%。
{"title":"In-situ reconstructed surface/inner-structure synergistic design enabling 4.6 V LiCoO2 cathode for all-solid-state thin-film battery","authors":"Jinxu Qiu , Hongliang Li , Yu Zhao , Rongrui Xu , Kaiyuan Wei , Yixiu Cui , Jie Shu , Yanhua Cui","doi":"10.1016/j.mattod.2024.09.011","DOIUrl":"10.1016/j.mattod.2024.09.011","url":null,"abstract":"<div><div>Developing high-voltage LiCoO<sub>2</sub> cathode film is a promising approach to meet high-energy density demands for intelligent microdevices. However, the electrochemical performance of bare LiCoO<sub>2</sub> is compromised beyond 4.55 V due to irreversible phase transitions, cobalt dissolution, and intergranular cracking. Meanwhile, vacuum physical deposition technology and interface compatibility pose challenges to achieving higher capacity integrated into a narrow space. Herein we proposed an in-situ reconstructed surface/inner-structure synergistic modification prototype strategy to achieve a superior high-voltage LiCoO<sub>2</sub> through a facile in-situ magnetron sputtering. This sandwich structure design enables a synergistic effect of internal titanium body-doping and external LiCoPO<sub>4</sub> compact layer to strengthen stability under high voltage. Consequently, the triggered defects and strong P<img>O coordination are substantially beneficial for stabilizing Li<sup>+</sup> channels, inhibiting Co migration, as well as enhancing diffusion kinetics. Strain field analysis reveals that the mitigated lattice deformation along (104) preferential orientation is beneficial for alleviating volumetric strain even at an operating voltage of up to 4.6 V. Additionally, the induced body and surface atom rearrangement regulates the band structure and reduces oxygen redox activity. Therefore, the as-designed high-voltage LiCoO<sub>2</sub>-based all-solid-state thin-film battery achieves superior cycle stability with 75 % capacity retention after 500 cycles at 1 C under 10 °C.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 342-352"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Graphitic carbon nitride (g-C3N4) has emerged as a promising metal-free photocatalyst. However, it continues to face significant challenges in achieving competitive activities both in laboratories and practical applications. Defect engineering is a versatile strategy to refine the intrinsic properties of semiconductor photocatalysts, modulating their electronic structure, charge dynamics and active surface sites. Given rapid advancements in this field, there is an urgent need to overview the progress in engineering of defects in g-C3N4, which is essential for a deeper understanding of the activity of this photocatalyst. This review focuses on the synthesis, characterization, and physiochemical properties of defect-engineered g-C3N4, including g-C3N4 with substitutional dopants, interstitial dopants, vacancies, functional groups and/or structural disorder. It also explores various applications of g-C3N4 materials with introduced defects for photocatalytic H2 evolution, CO2 reduction, N2 fixation and organic transformations, along with the mechanisms underlying their performance at the molecular level. Finally, this review article presents a perspective on the design, synthesis and properties of defect-modified g-C3N4 photocatalysts.
{"title":"Engineering defects in graphitic carbon nitride photocatalysts","authors":"Qi Li , Siyu Zhao , Baojiang Jiang , Mietek Jaroniec , Liping Zhang","doi":"10.1016/j.mattod.2024.09.019","DOIUrl":"10.1016/j.mattod.2024.09.019","url":null,"abstract":"<div><div>Graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) has emerged as a promising metal-free photocatalyst. However, it continues to face significant challenges in achieving competitive activities both in laboratories and practical applications. Defect engineering is a versatile strategy to refine the intrinsic properties of semiconductor photocatalysts, modulating their electronic structure, charge dynamics and active surface sites. Given rapid advancements in this field, there is an urgent need to overview the progress in engineering of defects in g-C<sub>3</sub>N<sub>4</sub>, which is essential for a deeper understanding of the activity of this photocatalyst. This review focuses on the synthesis, characterization, and physiochemical properties of defect-engineered g-C<sub>3</sub>N<sub>4</sub>, including g-C<sub>3</sub>N<sub>4</sub> with substitutional dopants, interstitial dopants, vacancies, functional groups and/or structural disorder. It also explores various applications of g-C<sub>3</sub>N<sub>4</sub> materials with introduced defects for photocatalytic H<sub>2</sub> evolution, CO<sub>2</sub> reduction, N<sub>2</sub> fixation and organic transformations, along with the mechanisms underlying their performance at the molecular level. Finally, this review article presents a perspective on the design, synthesis and properties of defect-modified g-C<sub>3</sub>N<sub>4</sub> photocatalysts.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 886-904"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.08.011
Zhendong Yang , Bin Tang , Dehang Ren , Xinyu Yu , Yirong Gao , Yifan Wu , Yongan Yang , Zhongfang Chen , Zhen Zhou
Solid-state sodium batteries are among the most promising candidates for replacing conventional lithium-ion batteries for next-generation electrochemical energy storage systems. Their advantages include abundant Na resources, lower cost, enhanced safety, and high energy density. Central to the development of these batteries is the use of all-solid-state sodium electrolytes, with sulfide-based solid electrolytes emerging as particularly viable due to their high ionic conductivity (on par with liquid electrolytes), favorable interfacial contact with electrodes, and mild preparation conditions. Despite these benefits, several crucial challenges limit the development of sulfide-based solid electrolytes, including a narrow electrochemical stability window, unstable interface between sulfide-based solid electrolytes and electrodes, and the growth of detrimental sodium dendrites. This review examines the fundamental ion transport mechanism in sulfide-based solid electrolytes, discusses the primary challenges and strategic solutions, and separately addresses the critical interfacial issues at the cathode and anode. It also highlights the importance of scaling up these techniques for industrial applications. Finally, this review offers key recommendations for advancing the industrialization and enhancing the energy density of sulfide-based solid-state sodium batteries. Hopefully, solid-state sodium batteries based on sulfide-based solid electrolytes will achieve significant breakthroughs in energy density and industrial scalability in the very near future.
{"title":"Advancing solid-state sodium batteries: Status quo of sulfide-based solid electrolytes","authors":"Zhendong Yang , Bin Tang , Dehang Ren , Xinyu Yu , Yirong Gao , Yifan Wu , Yongan Yang , Zhongfang Chen , Zhen Zhou","doi":"10.1016/j.mattod.2024.08.011","DOIUrl":"10.1016/j.mattod.2024.08.011","url":null,"abstract":"<div><div>Solid-state sodium batteries are among the most promising candidates for replacing conventional lithium-ion batteries for next-generation electrochemical energy storage systems. Their advantages include abundant Na resources, lower cost, enhanced safety, and high energy density. Central to the development of these batteries is the use of all-solid-state sodium electrolytes, with sulfide-based solid electrolytes emerging as particularly viable due to their high ionic conductivity (on par with liquid electrolytes), favorable interfacial contact with electrodes, and mild preparation conditions. Despite these benefits, several crucial challenges limit the development of sulfide-based solid electrolytes, including a narrow electrochemical stability window, unstable interface between sulfide-based solid electrolytes and electrodes, and the growth of detrimental sodium dendrites. This review examines the fundamental ion transport mechanism in sulfide-based solid electrolytes, discusses the primary challenges and strategic solutions, and separately addresses the critical interfacial issues at the cathode and anode. It also highlights the importance of scaling up these techniques for industrial applications. Finally, this review offers key recommendations for advancing the industrialization and enhancing the energy density of sulfide-based solid-state sodium batteries. Hopefully, solid-state sodium batteries based on sulfide-based solid electrolytes will achieve significant breakthroughs in energy density and industrial scalability in the very near future.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 429-449"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.09.007
T. DebRoy , J.W. Elmer
Finite or scarce metal supplies, rising demand, declining ore grades, and prospects of creating a climate-friendly metallurgical industry pose both a challenge and an opportunity to revitalize metals production through sustainable technology, innovations, and informed public policies. The rapid rise in metal consumption, faster than the population growth, challenges both the supply-demand balance and international environmental goals. Depletion of green technology critical metals, with known metal reserves unlikely to last more than half a century, emphasizes the need for increased substitutions, recycling, and reuse efforts. In the past, organized research and serendipity empowered us to innovate manufacturing processes and develop new alloys that fulfilled important societal needs. However, a renewed emphasis on metals research and development is required to meet new and future challenges where the use of critical metals is optimized, and metal sustainability is taken into account. While green technologies offer hope for a cleaner future, scale-up concerns and higher costs of these metals inhibit their widespread use. Current mitigation strategies fall short of Paris Agreement goals, but using advanced high-strength steels could significantly cut total steel usage and greenhouse gas emissions. Ensuring long-term reliance on metals necessitates finding a delicate balance between the challenges facing the metals industry and the multitude of technical and political factors important for their resolution. Engaging and educating the younger generation, particularly Generation Z, policymakers, and industry leaders, is necessary to effectively map out a path forward to revitalize the metals industry.
有限或稀缺的金属供应、不断增长的需求、不断下降的矿石品位,以及创建气候友好型冶金工业的前景,都为通过可持续技术、创新和明智的公共政策振兴金属生产带来了挑战和机遇。金属消费量的快速增长超过了人口的增长速度,这对供需平衡和国际环境目标都提出了挑战。绿色技术的关键金属已经耗尽,已知的金属储量不可能维持半个世纪以上,这就强调了加强替代、回收和再利用工作的必要性。过去,有组织的研究和偶然性使我们能够创新制造工艺,开发新合金,满足重要的社会需求。然而,为了应对新的和未来的挑战,我们需要重新重视金属研发,优化关键金属的使用,并考虑金属的可持续性。虽然绿色技术为更清洁的未来带来了希望,但这些金属的规模化问题和较高的成本阻碍了它们的广泛使用。目前的减排战略无法实现《巴黎协定》的目标,但使用先进的高强度钢可以显著减少钢材的总用量和温室气体排放量。要确保对金属的长期依赖,就必须在金属行业面临的挑战与解决这些挑战的众多重要技术和政治因素之间找到微妙的平衡。让年轻一代(尤其是 Z 世代)、政策制定者和行业领导者参与进来并对他们进行教育,对于有效规划振兴金属行业的前进道路十分必要。
{"title":"Metals beyond tomorrow: Balancing supply, demand, sustainability, substitution, and innovations","authors":"T. DebRoy , J.W. Elmer","doi":"10.1016/j.mattod.2024.09.007","DOIUrl":"10.1016/j.mattod.2024.09.007","url":null,"abstract":"<div><div>Finite or scarce metal supplies, rising demand, declining ore grades, and prospects of creating a climate-friendly metallurgical industry pose both a challenge and an opportunity to revitalize metals production through sustainable technology, innovations, and informed public policies. The rapid rise in metal consumption, faster than the population growth, challenges both the supply-demand balance and international environmental goals. Depletion of green technology critical metals, with known metal reserves unlikely to last more than half a century, emphasizes the need for increased substitutions, recycling, and reuse efforts. In the past, organized research and serendipity empowered us to innovate manufacturing processes and develop new alloys that fulfilled important societal needs. However, a renewed emphasis on metals research and development is required to meet new and future challenges where the use of critical metals is optimized, and metal sustainability is taken into account. While green technologies offer hope for a cleaner future, scale-up concerns and higher costs of these metals inhibit their widespread use. Current mitigation strategies fall short of Paris Agreement goals, but using advanced high-strength steels could significantly cut total steel usage and greenhouse gas emissions. Ensuring long-term reliance on metals necessitates finding a delicate balance between the challenges facing the metals industry and the multitude of technical and political factors important for their resolution. Engaging and educating the younger generation, particularly Generation Z, policymakers, and industry leaders, is necessary to effectively map out a path forward to revitalize the metals industry.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 737-757"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.08.017
Pawantree Promsuwan , Md Al Mahadi Hasan , Suwen Xu , Ya Yang
The need for power technology that improves human life and convenience is driving the demand for increased energy consumption. At present, fossil fuels are the primary source of energy that meets the energy demand of mankind. However, they are also the main cause of environmental pollution. Therefore, it is imperative to develop technology that can harness energy from renewable sources to replace fossil fuels. One promising technology that has gained significant attention is the droplet nanogenerators, which harvest energy from various forms of water. This technology has grown in popularity due to its straightforward design, low fabrication cost, and high output power, which is sufficient to power small electronic devices sustainably. With innovative structures and various fundamental materials, droplet nanogenerators’ performance can be improved, which leads to the expansion of their application areas. This review summarizes recent advancements in droplet nanogenerators, including mechanisms, output performance, and applications. Finally, the challenges and opportunities associated with droplet nanogenerators are briefly discussed.
{"title":"Droplet nanogenerators: Mechanisms, performance, and applications","authors":"Pawantree Promsuwan , Md Al Mahadi Hasan , Suwen Xu , Ya Yang","doi":"10.1016/j.mattod.2024.08.017","DOIUrl":"10.1016/j.mattod.2024.08.017","url":null,"abstract":"<div><div>The need for power technology that improves human life and convenience is driving the demand for increased energy consumption. At present, fossil fuels are the primary source of energy that meets the energy demand of mankind. However, they are also the main cause of environmental pollution. Therefore, it is imperative to develop technology that can harness energy from renewable sources to replace fossil fuels. One promising technology that has gained significant attention is the droplet nanogenerators, which harvest energy from various forms of water. This technology has grown in popularity due to its straightforward design, low fabrication cost, and high output power, which is sufficient to power small electronic devices sustainably. With innovative structures and various fundamental materials, droplet nanogenerators’ performance can be improved, which leads to the expansion of their application areas. This review summarizes recent advancements in droplet nanogenerators, including mechanisms, output performance, and applications. Finally, the challenges and opportunities associated with droplet nanogenerators are briefly discussed.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 497-528"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.mattod.2024.08.003
Shijia Li , Jingwen Zhao , Xieyu Xu , Jiasen Shen , Kai Zhang , Xue Chen , Kai Wang , Xingxing Jiao , Ziyang Wang , Dinghao Xu , Qianyu Zhang , Yangyang Liu , Ying Bai
Aqueous zinc-ion batteries are recognized as a potential candidate in large-scale energy storage devices. However, parasitic reactions on interfaces have severely limited their further development due to sticky de-solvation process of Zn(H2O)62+. Acetylacetone (Hacac) is proposed as a tri-functional additive by altering the solvation structure to address detrimental interface issues. Specifically, the acetyl groups induced by decomposition of Hacac inhibit dendrite growth, by-product aggregation on anode via guiding ordered deposition of zinc ions and suppressing water decomposition in internal Helmholtz plane (IHP). Meanwhile, the acetyl groups remarkably alleviate by-product aggregation and maintain the cathode structure by accelerating zinc ion transfer and inhibiting disintegration of water in IHP. With the addition of 0.5 wt% Hacac, Zn metal maintains a high coulombic efficiency of 99.9 % after 2000 cycles at 10 mA cm−2 and 1 mAh cm−2, with superior longevity of 5200 h at 1 mA cm−2 with 0.5 mAh cm−2 for Zn|Zn cells. As expected, the assembled Zn|NH4V4O10 batteries exhibit an outstanding capacity retention of 90 % up to 22,000 cycles at 10 A/g. As a highly efficient strategy, the reframing of Helmholtz layer structure via electrolyte additive could be broadened to address general interfacial issues in advanced energy storage systems.
{"title":"Regulating interfacial behavior via reintegration the Helmholtz layer structure towards ultra-stable and wide-temperature-range aqueous zinc ion batteries","authors":"Shijia Li , Jingwen Zhao , Xieyu Xu , Jiasen Shen , Kai Zhang , Xue Chen , Kai Wang , Xingxing Jiao , Ziyang Wang , Dinghao Xu , Qianyu Zhang , Yangyang Liu , Ying Bai","doi":"10.1016/j.mattod.2024.08.003","DOIUrl":"10.1016/j.mattod.2024.08.003","url":null,"abstract":"<div><div>Aqueous zinc-ion batteries are recognized as a potential candidate in large-scale energy storage devices. However, parasitic reactions on interfaces have severely limited their further development due to sticky de-solvation process of Zn(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup>. Acetylacetone (Hacac) is proposed as a tri-functional additive by altering the solvation structure to address detrimental interface issues. Specifically, the acetyl groups induced by decomposition of Hacac inhibit dendrite growth, by-product aggregation on anode via guiding ordered deposition of zinc ions and suppressing water decomposition in internal Helmholtz plane (IHP). Meanwhile, the acetyl groups remarkably alleviate by-product aggregation and maintain the cathode structure by accelerating zinc ion transfer and inhibiting disintegration of water in IHP. With the addition of 0.5 wt% Hacac, Zn metal maintains a high coulombic efficiency of 99.9 % after 2000 cycles at 10 mA cm<sup>−2</sup> and 1 mAh cm<sup>−2</sup>, with superior longevity of 5200 h at 1 mA cm<sup>−2</sup> with 0.5 mAh cm<sup>−2</sup> for Zn|Zn cells. As expected, the assembled Zn|NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> batteries exhibit an outstanding capacity retention of 90 % up to 22,000 cycles at 10 A/g. As a highly efficient strategy, the reframing of Helmholtz layer structure via electrolyte additive could be broadened to address general interfacial issues in advanced energy storage systems.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 50-60"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conducting gels have garnered significant attention due to their distinctive properties, such as unique electrical/thermal conductivity, biocompatibility, flexibility, stretchability, and transparency. These gels adeptly combine the viscoelastic features with the combination of organic, metal, and semiconductor components. Consequently, these gels have become the subject of extensive exploration across various fields, encompassing tactile sensors, power generation systems, actuators, wearable electronics, and biomedical devices. Their potential applications extend beyond these fields to encompass human–machine interfaces, artificial intelligence, and other implementations. This review provides a comprehensive examination of the synthesis methods for various electrically conducting gels, such as hydrogels, organogels, metal–organic gels, and perovskite gels. Furthermore, this study investigates the promising applications of these gels across various fields, focusing on their potential use in energy storage, energy harvesting devices, and advanced sensors. Resolutely, the review outlines both the prospects and challenges in further research endeavors concerning the development and utilization of these remarkable gels for boosting the evolution of cutting-edge mechanically versatile intelligent stretchable skin-like devices.
{"title":"Recent advances in conducting gels for flexible and stretchable smart electronic devices: A comprehensive review","authors":"Bablesh Gupta , Suman Kalyan Samanta , Ranbir Singh","doi":"10.1016/j.mattod.2024.09.001","DOIUrl":"10.1016/j.mattod.2024.09.001","url":null,"abstract":"<div><div>Conducting gels have garnered significant attention due to their distinctive properties, such as unique electrical/thermal conductivity, biocompatibility, flexibility, stretchability, and transparency. These gels adeptly combine the viscoelastic features with the combination of organic, metal, and semiconductor components. Consequently, these gels have become the subject of extensive exploration across various fields, encompassing tactile sensors, power generation systems, actuators, wearable electronics, and biomedical devices. Their potential applications extend beyond these fields to encompass human–machine interfaces, artificial intelligence, and other implementations. This review provides a comprehensive examination of the synthesis methods for various electrically conducting gels, such as hydrogels, organogels, metal–organic gels, and perovskite gels. Furthermore, this study investigates the promising applications of these gels across various fields, focusing on their potential use in energy storage, energy harvesting devices, and advanced sensors. Resolutely, the review outlines both the prospects and challenges in further research endeavors concerning the development and utilization of these remarkable gels for boosting the evolution of cutting-edge mechanically versatile intelligent stretchable skin-like devices.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 681-709"},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}