Pub Date : 2018-07-01DOI: 10.1109/NANO.2018.8626383
Su Mengxing, Xie Dan, Sun Yilin, L. Weiwei, Ren Tianling
The Schottky barrier between 2D materials and metal always play an important role in the determination of the electrical and optical properties of the transistors. In this work, the Schottky barrier between Monolayer MoS2 and Cr has been carefully investigated under different temperature. The Schottky barrier height of MoS2 and Cr is calculated to be 0.189 eV under room temperature. As the temperature decreases, the contact resistance between MoS2 and Cr increases according to the output curves. The change mechanism is further analyzed using the photoluminescence spectrum under different temperatures. This work investigates the electronic and optical characteristics of MoS2-based FET under low temperature and provides guidance for better designing the layered transition-metal-dichalcogenides based devices.
{"title":"The Electrical Performances of Monolayer MoS2-Based Transistors Under Ultra-Low Temperature","authors":"Su Mengxing, Xie Dan, Sun Yilin, L. Weiwei, Ren Tianling","doi":"10.1109/NANO.2018.8626383","DOIUrl":"https://doi.org/10.1109/NANO.2018.8626383","url":null,"abstract":"The Schottky barrier between 2D materials and metal always play an important role in the determination of the electrical and optical properties of the transistors. In this work, the Schottky barrier between Monolayer MoS2 and Cr has been carefully investigated under different temperature. The Schottky barrier height of MoS2 and Cr is calculated to be 0.189 eV under room temperature. As the temperature decreases, the contact resistance between MoS2 and Cr increases according to the output curves. The change mechanism is further analyzed using the photoluminescence spectrum under different temperatures. This work investigates the electronic and optical characteristics of MoS2-based FET under low temperature and provides guidance for better designing the layered transition-metal-dichalcogenides based devices.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116497041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-07-01DOI: 10.1109/NANO.2018.8626334
Y. Ajiki, T. Kan
We proposed and verified electronic shutter of a nano-antenna typed infrared photodetector by using Schottky Barrier Height modulation. Optical detection measurement synchronized with the barrier height modulation could be carried out by our proposed method. This method does not require any mechanical shutter so that system can be compact enough to set at the tip of an endoscopy.
{"title":"Schottky Barrier Modulation for Electronic Shutter Operation of Si Based IR Photodetector","authors":"Y. Ajiki, T. Kan","doi":"10.1109/NANO.2018.8626334","DOIUrl":"https://doi.org/10.1109/NANO.2018.8626334","url":null,"abstract":"We proposed and verified electronic shutter of a nano-antenna typed infrared photodetector by using Schottky Barrier Height modulation. Optical detection measurement synchronized with the barrier height modulation could be carried out by our proposed method. This method does not require any mechanical shutter so that system can be compact enough to set at the tip of an endoscopy.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127367472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-07-01DOI: 10.1109/NANO.2018.8626399
R. Zhu, X. Zong
Nano metal-oxide-semiconductor field-effect transistor (MOSFET) has been widely used in various sensors to achieve high sensitivity due to low-noise property of nano FET. In this paper, we present a novel zinc oxide (ZnO) nanorod FET operated in alternating current mode to implement ultra-sensitive detections. The FET is constructed by cross-connected ZnO nanorods directly grown from opposite ends of drain and source microelectrodes. ZnO nano FET acting as a high-frequency mixer transduces exterior-induced FET conductance change into an alternating current change at a certain difference frequency, which is detected by a lock-in amplifier. The nanorod FET demonstrates ultra-high sensitivity, excellent interference immunity and extremely stable performances.
{"title":"Zinc Oxide Nanorod Field-effect Transistor with Difference Frequency Detection","authors":"R. Zhu, X. Zong","doi":"10.1109/NANO.2018.8626399","DOIUrl":"https://doi.org/10.1109/NANO.2018.8626399","url":null,"abstract":"Nano metal-oxide-semiconductor field-effect transistor (MOSFET) has been widely used in various sensors to achieve high sensitivity due to low-noise property of nano FET. In this paper, we present a novel zinc oxide (ZnO) nanorod FET operated in alternating current mode to implement ultra-sensitive detections. The FET is constructed by cross-connected ZnO nanorods directly grown from opposite ends of drain and source microelectrodes. ZnO nano FET acting as a high-frequency mixer transduces exterior-induced FET conductance change into an alternating current change at a certain difference frequency, which is detected by a lock-in amplifier. The nanorod FET demonstrates ultra-high sensitivity, excellent interference immunity and extremely stable performances.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127368740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-07-01DOI: 10.1109/NANO.2018.8626320
R. Fechner, C. Chlub, E. Quandt, M. Kohl
This paper presents design, fabrication and characterization of a novel integrated optical waveguide switch that allows for coupling of an input port in either of two output ports. A new fabrication process has been developed to integrate a shape memory alloy (SMA) bimorph nanoactuator with a footprint below 5 $mu mathrm{m}^{2}$ on a silicon photonic chip. Optical measurements demonstrate a decrease in power transfer by 53 % for a decrease in gap size from 250 nm to 200 nm at a wavelength of 1300 nm, which is in line with FEM-based simulations. The simulations further indicate that a decrease in power transfer by 100% occurs at a gap size of 170 nm.
{"title":"A Shape Memory Alloy 1×2 Optical Waveguide Switch","authors":"R. Fechner, C. Chlub, E. Quandt, M. Kohl","doi":"10.1109/NANO.2018.8626320","DOIUrl":"https://doi.org/10.1109/NANO.2018.8626320","url":null,"abstract":"This paper presents design, fabrication and characterization of a novel integrated optical waveguide switch that allows for coupling of an input port in either of two output ports. A new fabrication process has been developed to integrate a shape memory alloy (SMA) bimorph nanoactuator with a footprint below 5 $mu mathrm{m}^{2}$ on a silicon photonic chip. Optical measurements demonstrate a decrease in power transfer by 53 % for a decrease in gap size from 250 nm to 200 nm at a wavelength of 1300 nm, which is in line with FEM-based simulations. The simulations further indicate that a decrease in power transfer by 100% occurs at a gap size of 170 nm.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133767630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-07-01DOI: 10.1109/NANO.2018.8626266
C. Cummins, R. Lundy, G. Cunningham, A. Selkirk, M. Morris, R. Enright
The proliferation of advanced portable technology places substantial demands on current patterning techniques to satisfy future device and data needs. Therefore, research on integrating high-performing nanomaterials such as transition metal dichalcogenides (TMDs) with industry standard patterning methods is critical to achieving ultra-low-power devices. We describe methods based upon combining TMD materials with bottom-up block copolymer (BCP) templating processes. While there has been much focus on processing layered 2D materials, these methods can be extremely difficult to control. Moreover, little work exists on creating isolated nanofeatures of TMDs for device use in an etchless manner. We detail an effective route based on BCP nanopatterning to precisely position TMD features at semiconductor surfaces with sub-l0 nm resolution.
{"title":"Etchless transition metal dichalcogenide surface nanostructure definition using block copolymer templates","authors":"C. Cummins, R. Lundy, G. Cunningham, A. Selkirk, M. Morris, R. Enright","doi":"10.1109/NANO.2018.8626266","DOIUrl":"https://doi.org/10.1109/NANO.2018.8626266","url":null,"abstract":"The proliferation of advanced portable technology places substantial demands on current patterning techniques to satisfy future device and data needs. Therefore, research on integrating high-performing nanomaterials such as transition metal dichalcogenides (TMDs) with industry standard patterning methods is critical to achieving ultra-low-power devices. We describe methods based upon combining TMD materials with bottom-up block copolymer (BCP) templating processes. While there has been much focus on processing layered 2D materials, these methods can be extremely difficult to control. Moreover, little work exists on creating isolated nanofeatures of TMDs for device use in an etchless manner. We detail an effective route based on BCP nanopatterning to precisely position TMD features at semiconductor surfaces with sub-l0 nm resolution.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"299 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133565556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-07-01DOI: 10.1109/NANO.2018.8626309
W. Kaiser, M. Rinderle, A. Gagliardi
The unique features of organic materials such as cost-efficient solution processability are accompanied by major drawbacks in terms of low charge carrier mobility. Typical organic materials which are of interest for the use in electronic devices are usually amorphous or semi-crystalline domains and exhibit a high degree of energetic and spatial disorder. We present a kinetic Monte Carlo study of the dependence of the charge transport processes on the degree of crystallinity and orientation in conjugated polymers. We implement the crystallinity using a correlation in the energetic landscape. As a test case, we consider the conjugated polymer poly(3-hexylthiophene) (P3HT).
{"title":"Impact of the Level and Orientation of Crystallinity on Charge Transport in Semi-Crystalline Organic Semiconductors","authors":"W. Kaiser, M. Rinderle, A. Gagliardi","doi":"10.1109/NANO.2018.8626309","DOIUrl":"https://doi.org/10.1109/NANO.2018.8626309","url":null,"abstract":"The unique features of organic materials such as cost-efficient solution processability are accompanied by major drawbacks in terms of low charge carrier mobility. Typical organic materials which are of interest for the use in electronic devices are usually amorphous or semi-crystalline domains and exhibit a high degree of energetic and spatial disorder. We present a kinetic Monte Carlo study of the dependence of the charge transport processes on the degree of crystallinity and orientation in conjugated polymers. We implement the crystallinity using a correlation in the energetic landscape. As a test case, we consider the conjugated polymer poly(3-hexylthiophene) (P3HT).","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133654530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-07-01DOI: 10.1109/NANO.2018.8626257
V. Sessi, H. Mulaosmanovic, R. Hentschel, S. Pregl, T. Mikolajick, W. Weber
We report on a novel silicon nanowire-based field effect transistor with integrated ferroelectric gate oxide. The concept allows tuning the carrier transport in a non-volatile approach by switching the polarization in the ferroelectric layer close to the source Schottky-junction. We interpret the results in terms of tuning the transmissibility of the Schottky-junction for charge carriers. The experimental results provide a first step towards the integration of memory-in-logic concepts with reconfigurable nanowire transistors.
{"title":"Junction Tuning by Ferroelectric Switching in Silicon Nanowire Schottky-Barrier Field Effect Transistors","authors":"V. Sessi, H. Mulaosmanovic, R. Hentschel, S. Pregl, T. Mikolajick, W. Weber","doi":"10.1109/NANO.2018.8626257","DOIUrl":"https://doi.org/10.1109/NANO.2018.8626257","url":null,"abstract":"We report on a novel silicon nanowire-based field effect transistor with integrated ferroelectric gate oxide. The concept allows tuning the carrier transport in a non-volatile approach by switching the polarization in the ferroelectric layer close to the source Schottky-junction. We interpret the results in terms of tuning the transmissibility of the Schottky-junction for charge carriers. The experimental results provide a first step towards the integration of memory-in-logic concepts with reconfigurable nanowire transistors.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130323723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-07-01DOI: 10.1109/NANO.2018.8626289
J. Cabibihan, K. K. Sadasivuni, Anas Tahir, Sadiya Waseem, N. Navkar, J. Abinahed, A. Al-Ansari
For tactile sensors to become useful technology, the required features should be flexibility, durability, and its sensitivity to physical contact. Conductive elastomer nanocomposites are widely used in fabricating a variety of electronic devices due to their excellent dispersion of the conductive nanomaterials. One such example is graphene in an elastomer matrix. In this study, we fabricated the transparent, flexible, and conductive force-responsive films from reduced graphene oxide (rGO)-filled polydimethylsiloxane (PDMS) elastomer composite. We used a simple yet unique way of mixing solution for composite preparation, which will enable an improved dispersion of filler in the matrix. Various characterization techniques were employed (i.e. SEM, FESEM, TEM, AFM XRD, UV visible spectroscopy, Raman studies, and impedance studies) to study the properties associated with the prepared thin film. The rGO was found to be well-dispersed in PDMS and it was found to behave appropriately as the sensing element during the capacitive force responsive mechanism in a metallic tip of surgical grasper. We anticipate that this kind of composites can find suitable applications for tactile sensing of surgical graspers.
为了使触觉传感器成为有用的技术,所需的特征应该是灵活性,耐用性和对物理接触的敏感性。导电弹性体纳米复合材料由于其优异的分散性能而被广泛应用于制造各种电子器件。其中一个例子是弹性体基体中的石墨烯。在这项研究中,我们用还原氧化石墨烯(rGO)填充聚二甲基硅氧烷(PDMS)弹性体复合材料制备了透明、柔性和导电的力响应薄膜。我们使用了一种简单而独特的混合溶液制备复合材料的方法,这将使填料在基体中的分散得到改善。采用各种表征技术(即SEM, FESEM, TEM, AFM, XRD, UV可见光谱,拉曼研究和阻抗研究)来研究与所制备薄膜相关的性能。研究发现,氧化石墨烯在PDMS中分散良好,并且在外科手术钳金属端部的电容力响应机制中作为传感元件表现得很好。我们期望这种复合材料能在外科手术抓握器的触觉传感中找到合适的应用。
{"title":"Graphene-filled PDMS Composite for Tactile Sensing of Surgical Graspers","authors":"J. Cabibihan, K. K. Sadasivuni, Anas Tahir, Sadiya Waseem, N. Navkar, J. Abinahed, A. Al-Ansari","doi":"10.1109/NANO.2018.8626289","DOIUrl":"https://doi.org/10.1109/NANO.2018.8626289","url":null,"abstract":"For tactile sensors to become useful technology, the required features should be flexibility, durability, and its sensitivity to physical contact. Conductive elastomer nanocomposites are widely used in fabricating a variety of electronic devices due to their excellent dispersion of the conductive nanomaterials. One such example is graphene in an elastomer matrix. In this study, we fabricated the transparent, flexible, and conductive force-responsive films from reduced graphene oxide (rGO)-filled polydimethylsiloxane (PDMS) elastomer composite. We used a simple yet unique way of mixing solution for composite preparation, which will enable an improved dispersion of filler in the matrix. Various characterization techniques were employed (i.e. SEM, FESEM, TEM, AFM XRD, UV visible spectroscopy, Raman studies, and impedance studies) to study the properties associated with the prepared thin film. The rGO was found to be well-dispersed in PDMS and it was found to behave appropriately as the sensing element during the capacitive force responsive mechanism in a metallic tip of surgical grasper. We anticipate that this kind of composites can find suitable applications for tactile sensing of surgical graspers.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130992461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-07-01DOI: 10.1109/NANO.2018.8626272
E. Ferrone, R. Araneo, M. Pea, A. Rinaldi, A. Notargiacomo, M. Migliorato
Due to its piezoelectric and semiconductive properties, ZnO is actively investigated for the development of innovative nanostructures for applications ranging from piezotronics to energy harvesting. In the present paper we develop a full model for the non-linear piezoelectricity in ZnO nanowires, where both direct and inverse non-linear piezoelectric effects are accounted for. The preliminary results show for the first time the importance of non-linear effects on the electro-mechanic behavior of nanowires especially when used for piezotronic applications.
{"title":"Towards a full model of non-linear piezolectricity in ZnO nanowires","authors":"E. Ferrone, R. Araneo, M. Pea, A. Rinaldi, A. Notargiacomo, M. Migliorato","doi":"10.1109/NANO.2018.8626272","DOIUrl":"https://doi.org/10.1109/NANO.2018.8626272","url":null,"abstract":"Due to its piezoelectric and semiconductive properties, ZnO is actively investigated for the development of innovative nanostructures for applications ranging from piezotronics to energy harvesting. In the present paper we develop a full model for the non-linear piezoelectricity in ZnO nanowires, where both direct and inverse non-linear piezoelectric effects are accounted for. The preliminary results show for the first time the importance of non-linear effects on the electro-mechanic behavior of nanowires especially when used for piezotronic applications.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"241 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132442988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-07-01DOI: 10.1109/NANO.2018.8626274
F. Sacconi, M. A. der Maur, A. Pecchia, A. Di Carlo
In recent years, much interest has been attracted by multiscale approaches in the simulation of electronic devices. In this work, we present an overview of the project TiberCAD, a software tool for design and simulation of electronic and optoelectronic nanostructured devices. Examples of applications will be provided where the combination of continuous models and models with atomistic resolution are beneficial for the correct description of device physical behavior.
{"title":"Multiscale simulation of nanostructured devices","authors":"F. Sacconi, M. A. der Maur, A. Pecchia, A. Di Carlo","doi":"10.1109/NANO.2018.8626274","DOIUrl":"https://doi.org/10.1109/NANO.2018.8626274","url":null,"abstract":"In recent years, much interest has been attracted by multiscale approaches in the simulation of electronic devices. In this work, we present an overview of the project TiberCAD, a software tool for design and simulation of electronic and optoelectronic nanostructured devices. Examples of applications will be provided where the combination of continuous models and models with atomistic resolution are beneficial for the correct description of device physical behavior.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"35 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114059875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}