Pub Date : 2024-07-02DOI: 10.1088/2515-7620/ad5e3c
Kanaan C Hardaway, Minsoo Choi, R. Nateghi, Sara McMillan, Zhao Ma, B. Hardiman
Cooling energy demand is sensitive to urban form and socioeconomic characteristics of cities. Climate change will impact how these characteristics influence cooling demand. We use random forest machine learning methods to analyze the sensitivity of cooling demand in Chicago, IL, to weather, vegetation, building type, socioeconomic, and control variables by dividing census tracts of the city into four groups: below-Q1 income--hot days; above-Q1 income--hot days; below-Q1 income--regular days; and above-Q1 income--regular days. Below-Q1 census tracts experienced an increase in cooling demand on hot days while above-Q1 census tracts did not see an increase in demand. Weather and control variables unsurprisingly had the most influence on cooling demand. Among the variables of interest, vegetation was associated with reduced cooling demand for below-Q1 income on hot days and increased cooling demand for below-Q1 income on regular days. In above-Q1 income census tracts building type was the most closely associated non-weather or control variable with cooling demand. The sensitivity of cooling demand for below-Q1 income census tracts to vegetation on hot days suggests vegetation could become more important for keeping cities cool for low-income populations as global temperatures increase. This result further highlights the importance of considering environmental justice in urban design.
{"title":"Vegetation reduces cooling demand in low-income neighborhoods on hot days in Chicago","authors":"Kanaan C Hardaway, Minsoo Choi, R. Nateghi, Sara McMillan, Zhao Ma, B. Hardiman","doi":"10.1088/2515-7620/ad5e3c","DOIUrl":"https://doi.org/10.1088/2515-7620/ad5e3c","url":null,"abstract":"\u0000 Cooling energy demand is sensitive to urban form and socioeconomic characteristics of cities. Climate change will impact how these characteristics influence cooling demand. We use random forest machine learning methods to analyze the sensitivity of cooling demand in Chicago, IL, to weather, vegetation, building type, socioeconomic, and control variables by dividing census tracts of the city into four groups: below-Q1 income--hot days; above-Q1 income--hot days; below-Q1 income--regular days; and above-Q1 income--regular days. Below-Q1 census tracts experienced an increase in cooling demand on hot days while above-Q1 census tracts did not see an increase in demand. Weather and control variables unsurprisingly had the most influence on cooling demand. Among the variables of interest, vegetation was associated with reduced cooling demand for below-Q1 income on hot days and increased cooling demand for below-Q1 income on regular days. In above-Q1 income census tracts building type was the most closely associated non-weather or control variable with cooling demand. The sensitivity of cooling demand for below-Q1 income census tracts to vegetation on hot days suggests vegetation could become more important for keeping cities cool for low-income populations as global temperatures increase. This result further highlights the importance of considering environmental justice in urban design.","PeriodicalId":48496,"journal":{"name":"Environmental Research Communications","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141684914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1088/2515-7620/ad5e62
Ouarda Baziz, Fabrice Beline, Patrick Durand
The aim of this study was to assess positive or negative impacts of anaerobic digestion (AD) on water quality using a systemic approach. To this end, we used the agro-hydrological model Topography-based Nitrogen Transfer and Transformation (TNT2), a spatially explicit model that simulates nitrogen and water flows at the watershed scale on a daily time step. Four scenarios were constructed and analyzed: a baseline before the introduction of AD (S0), AD with adjusted fertilization (S1), AD with unadjusted fertilization (S2), and agroecological AD (S3). The results showed that, when spreading practices were similar and an equivalent amount of effective nitrogen was applied, digested pig slurry generally had a predicted amount of nitrate leaching similar to that of undigested pig slurry. In addition, replacing catch crops with energy cover crops had little impact on water quality. Scenario S3 was the most favorable one for water quality and biogas production, but not for soil organic nitrogen storage and food and feed production. This study’s strength is its systemic approach, which considered both environmental and agronomic aspects to assess the scenarios.
{"title":"Impacts on water quality of producing biogas on pig farms as a function of the associated agricultural practices","authors":"Ouarda Baziz, Fabrice Beline, Patrick Durand","doi":"10.1088/2515-7620/ad5e62","DOIUrl":"https://doi.org/10.1088/2515-7620/ad5e62","url":null,"abstract":"\u0000 The aim of this study was to assess positive or negative impacts of anaerobic digestion (AD) on water quality using a systemic approach. To this end, we used the agro-hydrological model Topography-based Nitrogen Transfer and Transformation (TNT2), a spatially explicit model that simulates nitrogen and water flows at the watershed scale on a daily time step. Four scenarios were constructed and analyzed: a baseline before the introduction of AD (S0), AD with adjusted fertilization (S1), AD with unadjusted fertilization (S2), and agroecological AD (S3). The results showed that, when spreading practices were similar and an equivalent amount of effective nitrogen was applied, digested pig slurry generally had a predicted amount of nitrate leaching similar to that of undigested pig slurry. In addition, replacing catch crops with energy cover crops had little impact on water quality. Scenario S3 was the most favorable one for water quality and biogas production, but not for soil organic nitrogen storage and food and feed production. This study’s strength is its systemic approach, which considered both environmental and agronomic aspects to assess the scenarios.","PeriodicalId":48496,"journal":{"name":"Environmental Research Communications","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141684766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1088/2515-7620/ad5ad8
J P Evans and H M Imran
Model evaluations are performed by comparing a modelled quantity with an observation of that quantity and any deviation from this observed quantity is considered an error. We know that all observing systems have uncertainties, and multiple observational products for the same quantity can provide equally plausible ‘truths’. Thus, model errors depend on the choice of observation used in the evaluation exercise. We propose a method that considers models to be indistinguishable from observations when they lie within the range of observations, and hence are not assigned any error. Errors are assigned when models are outside the observational range. Errors calculated in this way can be used within traditional statistics to calculate the Observation Range Adjusted (ORA) version of that statistic. The ORA statistics highlight the measurable errors of models, provide more robust model performance rankings, and identify areas of the model where further model development is likely to lead to consistent model improvements.
{"title":"The observation range adjusted method: a novel approach to accounting for observation uncertainty in model evaluation","authors":"J P Evans and H M Imran","doi":"10.1088/2515-7620/ad5ad8","DOIUrl":"https://doi.org/10.1088/2515-7620/ad5ad8","url":null,"abstract":"Model evaluations are performed by comparing a modelled quantity with an observation of that quantity and any deviation from this observed quantity is considered an error. We know that all observing systems have uncertainties, and multiple observational products for the same quantity can provide equally plausible ‘truths’. Thus, model errors depend on the choice of observation used in the evaluation exercise. We propose a method that considers models to be indistinguishable from observations when they lie within the range of observations, and hence are not assigned any error. Errors are assigned when models are outside the observational range. Errors calculated in this way can be used within traditional statistics to calculate the Observation Range Adjusted (ORA) version of that statistic. The ORA statistics highlight the measurable errors of models, provide more robust model performance rankings, and identify areas of the model where further model development is likely to lead to consistent model improvements.","PeriodicalId":48496,"journal":{"name":"Environmental Research Communications","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141551066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1088/2515-7620/ad5b3c
James McCall, Brenda Beatty, Jake Janski, Kate Doubleday, Jordan Martin, Heidi Hartmann, Leroy J Walston and Jordan Macknick
As more land is being utilized for large-scale solar energy projects, there are increasing discussions from stakeholders on how to utilize land under solar panels to promote biodiversity. One path is to plant habitat beneficial to pollinators and other insects, but there have been few long-term studies that examine how different vegetation and seed mixes establish underneath solar panels. This study addresses a scientific gap to determine whether native pollinator seed mixes successfully establish over time under solar arrays using a systematic assessment of eight seed mixes planted at three utility-scale solar sites in Minnesota. We assess establishment with a percent native coverage metric, which is an assessment of native species observations compared to total observations during percent cover analyses in our vegetative test plots. The percent native coverage metric allows for a measurement of how the seed mix established and how the seed mix persists over time. The percent native coverage under and in between the solar photovoltaic (PV) arrays rose from 10% after one year of planting to 58% after three years across all sites, while the native coverage of the full sun control area rose from 9.6% to 70% under the same period, showing that native prairie and pollinator plants successfully established under the array, although to a lesser extent than in full sun conditions. Percent native coverage under the PV arrays rose 5- to 8-fold for each of the three sites from over the course of the study, while the coverage of weeds decreased for all three sites over the same period. Percent native coverage varied by seed mix over the project years, but every seed mix experienced a higher percent native coverage year after year under the PV arrays. Our results did not indicate a difference in establishment across placement within the array; the center, west, and east portions of the areas in between panels had similar establishment rates at two out of three sites, indicating that the same seed mix can be applied throughout the array. Out of 101 plant species seeded, we observed the establishment of 68 species in our vegetative test plots, and we detailed the top 20 observed species to inform future seed mix development. Based on these findings, native pollinator vegetation can establish over time at solar arrays, and it can be suitable for creating habitat at utility-scale solar sites.
{"title":"Little prairie under the panel: testing native pollinator habitat seed mix establishment at three utility-scale solar sites in Minnesota","authors":"James McCall, Brenda Beatty, Jake Janski, Kate Doubleday, Jordan Martin, Heidi Hartmann, Leroy J Walston and Jordan Macknick","doi":"10.1088/2515-7620/ad5b3c","DOIUrl":"https://doi.org/10.1088/2515-7620/ad5b3c","url":null,"abstract":"As more land is being utilized for large-scale solar energy projects, there are increasing discussions from stakeholders on how to utilize land under solar panels to promote biodiversity. One path is to plant habitat beneficial to pollinators and other insects, but there have been few long-term studies that examine how different vegetation and seed mixes establish underneath solar panels. This study addresses a scientific gap to determine whether native pollinator seed mixes successfully establish over time under solar arrays using a systematic assessment of eight seed mixes planted at three utility-scale solar sites in Minnesota. We assess establishment with a percent native coverage metric, which is an assessment of native species observations compared to total observations during percent cover analyses in our vegetative test plots. The percent native coverage metric allows for a measurement of how the seed mix established and how the seed mix persists over time. The percent native coverage under and in between the solar photovoltaic (PV) arrays rose from 10% after one year of planting to 58% after three years across all sites, while the native coverage of the full sun control area rose from 9.6% to 70% under the same period, showing that native prairie and pollinator plants successfully established under the array, although to a lesser extent than in full sun conditions. Percent native coverage under the PV arrays rose 5- to 8-fold for each of the three sites from over the course of the study, while the coverage of weeds decreased for all three sites over the same period. Percent native coverage varied by seed mix over the project years, but every seed mix experienced a higher percent native coverage year after year under the PV arrays. Our results did not indicate a difference in establishment across placement within the array; the center, west, and east portions of the areas in between panels had similar establishment rates at two out of three sites, indicating that the same seed mix can be applied throughout the array. Out of 101 plant species seeded, we observed the establishment of 68 species in our vegetative test plots, and we detailed the top 20 observed species to inform future seed mix development. Based on these findings, native pollinator vegetation can establish over time at solar arrays, and it can be suitable for creating habitat at utility-scale solar sites.","PeriodicalId":48496,"journal":{"name":"Environmental Research Communications","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141518682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-30DOI: 10.1088/2515-7620/ad5931
Catherine E Slavik, Daniel A Chapman, Hollie Smith, Michael Coughlan and Ellen Peters
Background. Wildfire smoke events are increasing in frequency and intensity due to climate change. Children are especially vulnerable to health effects even at moderate smoke levels. However, it is unclear how parents respond to Air Quality Indices (AQIs) frequently used by agencies to communicate air pollution health risks. Methods. In an experiment (3 × 2 × 2 factorial design), 2,100 parents were randomly assigned to view one of twelve adapted AQI infographics that varied by visual (table, line, gauge), index type (AQI [0-500], AQHI [1-11+]), and risk level (moderate, high). Participants were told to imagine encountering the infographic in a short-term exposure scenario. They reported worry about wildfire smoke, intentions to take risk-mitigating actions (e.g., air purifier use), and support for various exposure reduction policies. Subsequently, participants were told to imagine encountering the same infographic daily during a school week in a long-term exposure scenario and again reported worry, action intentions, and policy support. Results. Parents’ responses significantly differentiated between risk levels that both pose a threat to children’s health; worry and action intentions were much higher in the high-risk group than the moderate-risk group in both short-exposure (F = 748.68 p<.001; F = 411.59, p<.001) and long-exposure scenarios (F = 470.51, p<.001; F = 212.01, p<.001). However, in the short-exposure scenario, when shown the AQHI [1-11+] with either the line or gauge visuals, parents’ action intentions were more similar between moderate- and high-risk level groups (3-way interaction, F = 6.03, p = .002). Conclusions. These results suggest some index formats such as the AQHI—rather than the AQI—may better attune parents to moderate levels of wildfire smoke being dangerous to children’s health. Our research offers insights for agencies and officials seeking to improve current public education efforts during wildfire smoke events and speaks to the critical need to educate parents and help them act short-term and long-term to protect children’s health.
{"title":"Motivating parents to protect their children from wildfire smoke: the impact of air quality index infographics","authors":"Catherine E Slavik, Daniel A Chapman, Hollie Smith, Michael Coughlan and Ellen Peters","doi":"10.1088/2515-7620/ad5931","DOIUrl":"https://doi.org/10.1088/2515-7620/ad5931","url":null,"abstract":"Background. Wildfire smoke events are increasing in frequency and intensity due to climate change. Children are especially vulnerable to health effects even at moderate smoke levels. However, it is unclear how parents respond to Air Quality Indices (AQIs) frequently used by agencies to communicate air pollution health risks. Methods. In an experiment (3 × 2 × 2 factorial design), 2,100 parents were randomly assigned to view one of twelve adapted AQI infographics that varied by visual (table, line, gauge), index type (AQI [0-500], AQHI [1-11+]), and risk level (moderate, high). Participants were told to imagine encountering the infographic in a short-term exposure scenario. They reported worry about wildfire smoke, intentions to take risk-mitigating actions (e.g., air purifier use), and support for various exposure reduction policies. Subsequently, participants were told to imagine encountering the same infographic daily during a school week in a long-term exposure scenario and again reported worry, action intentions, and policy support. Results. Parents’ responses significantly differentiated between risk levels that both pose a threat to children’s health; worry and action intentions were much higher in the high-risk group than the moderate-risk group in both short-exposure (F = 748.68 p<.001; F = 411.59, p<.001) and long-exposure scenarios (F = 470.51, p<.001; F = 212.01, p<.001). However, in the short-exposure scenario, when shown the AQHI [1-11+] with either the line or gauge visuals, parents’ action intentions were more similar between moderate- and high-risk level groups (3-way interaction, F = 6.03, p = .002). Conclusions. These results suggest some index formats such as the AQHI—rather than the AQI—may better attune parents to moderate levels of wildfire smoke being dangerous to children’s health. Our research offers insights for agencies and officials seeking to improve current public education efforts during wildfire smoke events and speaks to the critical need to educate parents and help them act short-term and long-term to protect children’s health.","PeriodicalId":48496,"journal":{"name":"Environmental Research Communications","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141518683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-30DOI: 10.1088/2515-7620/ad59f3
Abreham Birhane Kassay, Abraham Woldemichael Tuhar, Mihret Dananto Ulsido and Markos Mathewos Godebo
Hawassa characterizes a typical developing city in Ethiopia, owning to rapid urban growth and demographic trends. The combined effect of climate change and urban expansion is increasing the challenge to the environment and the services it provides. Relating changing environments with urban water management (UWM) is required to build resilience in the urban environment. This research analyzed local climate change and urban growth and linked it to UWM. The historical period 1990–2021 of daily rainfall, temperature variables, four satellite imageries, and DEM were analyzed. Changes in rainfall (annual and daily maximum) and temperature (maximum and minimum) trends are detected and projected to 2051 using a statistical-based model. With geospatial techniques sub-watersheds are delineated, and the urban cover change is quantified. The trend detection result implies an upward trend of annual and daily maximum rainfalls however a significance is insufficient (p > 0.05) to associate it with climate change during the study period. Maximum and minimum temperatures change indicate a positive and significant trend. The forecasting result suggests an increment of both temperatures (0.5 °C–1.5 °C) to the projected period compared to historical scenario. The land cover analysis results show the built-up area changed from 11.6 km2 (7.2%) to 42.5 km2 (26.5%) during the historical period, where the rate varies spatially. The surface runoff increased by 30.7% in the urban watersheds. With a growth rate of 8.9% built-up, the urban area will cover 73.6 km2 (45.9%) for the predicted period. The research finding justifies the potential to reorganize the relationship between the spatial effect of climate change and urban growth on UWM. Considering distinct characteristics of urban watershed, exposure to flooding risk, access to water demand and resilient to climate change have spatial variation. Thus, a local-specific planning approach will support effective UWM and climate adaptation for sustainable city development.
{"title":"Statistical-based spatial analysis on urban water management under changing environments: a case study of Hawassa, Ethiopia","authors":"Abreham Birhane Kassay, Abraham Woldemichael Tuhar, Mihret Dananto Ulsido and Markos Mathewos Godebo","doi":"10.1088/2515-7620/ad59f3","DOIUrl":"https://doi.org/10.1088/2515-7620/ad59f3","url":null,"abstract":"Hawassa characterizes a typical developing city in Ethiopia, owning to rapid urban growth and demographic trends. The combined effect of climate change and urban expansion is increasing the challenge to the environment and the services it provides. Relating changing environments with urban water management (UWM) is required to build resilience in the urban environment. This research analyzed local climate change and urban growth and linked it to UWM. The historical period 1990–2021 of daily rainfall, temperature variables, four satellite imageries, and DEM were analyzed. Changes in rainfall (annual and daily maximum) and temperature (maximum and minimum) trends are detected and projected to 2051 using a statistical-based model. With geospatial techniques sub-watersheds are delineated, and the urban cover change is quantified. The trend detection result implies an upward trend of annual and daily maximum rainfalls however a significance is insufficient (p > 0.05) to associate it with climate change during the study period. Maximum and minimum temperatures change indicate a positive and significant trend. The forecasting result suggests an increment of both temperatures (0.5 °C–1.5 °C) to the projected period compared to historical scenario. The land cover analysis results show the built-up area changed from 11.6 km2 (7.2%) to 42.5 km2 (26.5%) during the historical period, where the rate varies spatially. The surface runoff increased by 30.7% in the urban watersheds. With a growth rate of 8.9% built-up, the urban area will cover 73.6 km2 (45.9%) for the predicted period. The research finding justifies the potential to reorganize the relationship between the spatial effect of climate change and urban growth on UWM. Considering distinct characteristics of urban watershed, exposure to flooding risk, access to water demand and resilient to climate change have spatial variation. Thus, a local-specific planning approach will support effective UWM and climate adaptation for sustainable city development.","PeriodicalId":48496,"journal":{"name":"Environmental Research Communications","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141518684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-30DOI: 10.1088/2515-7620/ad5ad7
Nguyen Xuan Tong, Nguyen Thi Thanh Thao and Le Hung Anh
This study was conducted to determine the surface water quality and health risks in Ho Chi Minh City (HCMC) canals. 180 water samples and 180 sediment samples were collected from 15 canal locations in HCMC in 2021 and 2022. The Water Quality Index (WQI) assessment results indicated that the water quality in 2021 ranged from unsuitable to good, with a trend towards improvement in 2022, where good quality water was predominant. TMs PCA/FA identified domestic and agricultural wastewater from HCMC residents as influencing the water quality. Most TMs detected in surface water were within the limits the Vietnamese Ministry of Natural Resources and Environment allowed, except for Pb in 2022 (> 0.02 mg l−1). For sediments, TMs concentrations were higher than in water samples but showed a decreasing trend over the survey period in the order of Hg < Cd < As < Pb < Cu. The findings show that sediments are more strongly affected by TMs than surface water, with the main sources being industrial and agricultural human activities. The non-cancer risk assessment showed that children are more exposed to TMs than adults, mainly through ingestion. Additionally, the cancer risk assessment (CR) identified As in sediments as posing an unacceptable cancer risk (TCR > 1 × 10−4). Therefore, it is necessary to establish high-frequency monitoring policies to analyze and reduce TMs concentrations in water and sediments of the canals to protect human health.
{"title":"Assessment of water quality, heavy metal pollution and human health risks in the Canal system of Ho Chi Minh City, Vietnam","authors":"Nguyen Xuan Tong, Nguyen Thi Thanh Thao and Le Hung Anh","doi":"10.1088/2515-7620/ad5ad7","DOIUrl":"https://doi.org/10.1088/2515-7620/ad5ad7","url":null,"abstract":"This study was conducted to determine the surface water quality and health risks in Ho Chi Minh City (HCMC) canals. 180 water samples and 180 sediment samples were collected from 15 canal locations in HCMC in 2021 and 2022. The Water Quality Index (WQI) assessment results indicated that the water quality in 2021 ranged from unsuitable to good, with a trend towards improvement in 2022, where good quality water was predominant. TMs PCA/FA identified domestic and agricultural wastewater from HCMC residents as influencing the water quality. Most TMs detected in surface water were within the limits the Vietnamese Ministry of Natural Resources and Environment allowed, except for Pb in 2022 (> 0.02 mg l−1). For sediments, TMs concentrations were higher than in water samples but showed a decreasing trend over the survey period in the order of Hg < Cd < As < Pb < Cu. The findings show that sediments are more strongly affected by TMs than surface water, with the main sources being industrial and agricultural human activities. The non-cancer risk assessment showed that children are more exposed to TMs than adults, mainly through ingestion. Additionally, the cancer risk assessment (CR) identified As in sediments as posing an unacceptable cancer risk (TCR > 1 × 10−4). Therefore, it is necessary to establish high-frequency monitoring policies to analyze and reduce TMs concentrations in water and sediments of the canals to protect human health.","PeriodicalId":48496,"journal":{"name":"Environmental Research Communications","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141518685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1088/2515-7620/ad5930
Maximilian Schulte, Ragnar Jonsson, Torun Hammar, Jeannette Eggers, Johan Stendahl and Per-Anders Hansson
Climate change mitigation by increased paper recycling can alleviate the two-sided pressure on the Swedish forest sector: supplying growing demands for wood-based products and increasing the forest carbon sink. This study assesses two scenarios for making use of a reduced demand for primary pulp resulting from an increased paper recycling rate in Sweden, from the present 72% to 78%. A Conservation scenario uses the saved primary pulp to reduce pulplog harvests so as to increase the forest carbon sink concomitant with constant overall wood product supply. In contrast, a Substitution scenario uses the saved primary pulp to produce man-made cellulosic fibers (MMCF) from dissolving pulp replacing cotton fiber, implying increased overall wood product supply. Our results suggest that utilizing efficiency gains in paper recycling to reduce pulplog harvests is better from a climate change mitigation perspective than producing additional MMCF to substitute cotton fiber. This conclusion holds even when assuming the use of by-products from dissolving pulp making and an indirect increase in MMCF availability. Hence, unless joint improvements across the value chain materialize, the best climate change mitigation option from increased paper recycling in Sweden would seemingly be to reduce fellings rather than producing additional MMCF.
{"title":"Climate change mitigation from increased paper recycling in Sweden: conserving forests or utilizing substitution?","authors":"Maximilian Schulte, Ragnar Jonsson, Torun Hammar, Jeannette Eggers, Johan Stendahl and Per-Anders Hansson","doi":"10.1088/2515-7620/ad5930","DOIUrl":"https://doi.org/10.1088/2515-7620/ad5930","url":null,"abstract":"Climate change mitigation by increased paper recycling can alleviate the two-sided pressure on the Swedish forest sector: supplying growing demands for wood-based products and increasing the forest carbon sink. This study assesses two scenarios for making use of a reduced demand for primary pulp resulting from an increased paper recycling rate in Sweden, from the present 72% to 78%. A Conservation scenario uses the saved primary pulp to reduce pulplog harvests so as to increase the forest carbon sink concomitant with constant overall wood product supply. In contrast, a Substitution scenario uses the saved primary pulp to produce man-made cellulosic fibers (MMCF) from dissolving pulp replacing cotton fiber, implying increased overall wood product supply. Our results suggest that utilizing efficiency gains in paper recycling to reduce pulplog harvests is better from a climate change mitigation perspective than producing additional MMCF to substitute cotton fiber. This conclusion holds even when assuming the use of by-products from dissolving pulp making and an indirect increase in MMCF availability. Hence, unless joint improvements across the value chain materialize, the best climate change mitigation option from increased paper recycling in Sweden would seemingly be to reduce fellings rather than producing additional MMCF.","PeriodicalId":48496,"journal":{"name":"Environmental Research Communications","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141518608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1088/2515-7620/ad53a6
Shanshan Zhao, Ying Li, Dajun Zhao and Yundi Jiang
In Guangdong Province, China, known as a hotspot for tropical cyclone (TC) and rainstorm disasters, investigating the role of hazard factors for both TC and rainstorm disasters is of great scientific and operational importance. Daily observational data from meteorological stations along with rainstorm/TC disaster loss data at the county level in Guangdong during 2001–2020 were analyzed to compare the characteristics of rainstorm and TC disasters. During the study period, although non-TC rainstorm rainfall in Guangdong was generally greater than TC rainstorm rainfall, TC disaster losses were double those of rainstorm disasters. Non-TC rainstorms and their losses predominantly occurred during the first flood season, whereas TC disaster primarily occurred in the second flood season. Although regional-average TC rainstorm rainfall was similar to non-TC rainstorm rainfall during the second flood season in Guangdong, it was greater than non-TC rainstorm rainfall in western Guangdong. Additionally, the coastal areas were frequently affected by TC strong winds, resulting in greater TC disaster losses than rainstorm disaster losses. The maximum daily precipitation was significantly correlated with rainstorm disaster losses. In areas influenced by both TC strong winds and rainstorms, TC disaster losses exhibited a significant positive correlation with the daily maximum wind speed, and the combined effect of strong winds and rainstorms led to greater disaster losses than with TC rainstorms alone. These findings emphasize the effects of TC strong wind and storm surges, besides those of heavy rainfall, in coastal areas of China when assessing the risks related to TC disasters.
{"title":"Assessing hotspot for tropical cyclone compound rainstorms from a disaster perspective: a case study in Guangdong, China","authors":"Shanshan Zhao, Ying Li, Dajun Zhao and Yundi Jiang","doi":"10.1088/2515-7620/ad53a6","DOIUrl":"https://doi.org/10.1088/2515-7620/ad53a6","url":null,"abstract":"In Guangdong Province, China, known as a hotspot for tropical cyclone (TC) and rainstorm disasters, investigating the role of hazard factors for both TC and rainstorm disasters is of great scientific and operational importance. Daily observational data from meteorological stations along with rainstorm/TC disaster loss data at the county level in Guangdong during 2001–2020 were analyzed to compare the characteristics of rainstorm and TC disasters. During the study period, although non-TC rainstorm rainfall in Guangdong was generally greater than TC rainstorm rainfall, TC disaster losses were double those of rainstorm disasters. Non-TC rainstorms and their losses predominantly occurred during the first flood season, whereas TC disaster primarily occurred in the second flood season. Although regional-average TC rainstorm rainfall was similar to non-TC rainstorm rainfall during the second flood season in Guangdong, it was greater than non-TC rainstorm rainfall in western Guangdong. Additionally, the coastal areas were frequently affected by TC strong winds, resulting in greater TC disaster losses than rainstorm disaster losses. The maximum daily precipitation was significantly correlated with rainstorm disaster losses. In areas influenced by both TC strong winds and rainstorms, TC disaster losses exhibited a significant positive correlation with the daily maximum wind speed, and the combined effect of strong winds and rainstorms led to greater disaster losses than with TC rainstorms alone. These findings emphasize the effects of TC strong wind and storm surges, besides those of heavy rainfall, in coastal areas of China when assessing the risks related to TC disasters.","PeriodicalId":48496,"journal":{"name":"Environmental Research Communications","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-14DOI: 10.1088/2515-7620/ad58ad
Joel Eldo, Efstratios Ntantis
Rapid urbanization and expanding tourism have led to widespread encroachments, particularly in flood-prone areas, where land degradation is more likely. Conventional methods of on-foot inspections for detecting these encroachments are intricate and time-consuming. A scarcity of data has resulted in undocumented violations, prompting the need for advanced technologies like satellite remote sensing. The current paper focuses on demonstrating the effectiveness of satellite remote sensing in detecting large-scale encroachments near flood-prone zones. Due to frequent undetected illegal constructions, Coastal Regulation Zones (CRZ) are a specific area of interest. This study employs a well-established method of analysis acquired from an extensive literature review to investigate illegal construction and encroachments via remote sensing advances. The research advocates for a practical analysis to combat illegal constructions in CRZs, presenting a comprehensive database through a concise portal for easy accessibility and analysis. The case study in Kerala, India, a region prone to natural disasters like monsoon floods, provides crucial data for measuring the boundaries required to preserve the ecosystem. The research underscores the significance of satellite remote sensing in efficiently addressing environmental threats posed by encroachments, offering insights applicable to regions facing similar challenges. This analysis has proven effective in diverse global settings and offers a standardized approach for demarking CRZ throughout the globe. Its adaptability and reliability across different terrain types and climatic conditions underscore its potential as a valuable tool in mapping encroachments. The current study contributes to the discourse on sustainable urban development, aiming to inform policies promoting resilience and ecological consciousness in rapid urbanization and tourism expansion.
{"title":"Satellite Mapping and Demarcation Analysis for Coastal Regulation Zones Assessment","authors":"Joel Eldo, Efstratios Ntantis","doi":"10.1088/2515-7620/ad58ad","DOIUrl":"https://doi.org/10.1088/2515-7620/ad58ad","url":null,"abstract":"\u0000 Rapid urbanization and expanding tourism have led to widespread encroachments, particularly in flood-prone areas, where land degradation is more likely. Conventional methods of on-foot inspections for detecting these encroachments are intricate and time-consuming. A scarcity of data has resulted in undocumented violations, prompting the need for advanced technologies like satellite remote sensing. The current paper focuses on demonstrating the effectiveness of satellite remote sensing in detecting large-scale encroachments near flood-prone zones. Due to frequent undetected illegal constructions, Coastal Regulation Zones (CRZ) are a specific area of interest. This study employs a well-established method of analysis acquired from an extensive literature review to investigate illegal construction and encroachments via remote sensing advances. The research advocates for a practical analysis to combat illegal constructions in CRZs, presenting a comprehensive database through a concise portal for easy accessibility and analysis. The case study in Kerala, India, a region prone to natural disasters like monsoon floods, provides crucial data for measuring the boundaries required to preserve the ecosystem. The research underscores the significance of satellite remote sensing in efficiently addressing environmental threats posed by encroachments, offering insights applicable to regions facing similar challenges. This analysis has proven effective in diverse global settings and offers a standardized approach for demarking CRZ throughout the globe. Its adaptability and reliability across different terrain types and climatic conditions underscore its potential as a valuable tool in mapping encroachments. The current study contributes to the discourse on sustainable urban development, aiming to inform policies promoting resilience and ecological consciousness in rapid urbanization and tourism expansion.","PeriodicalId":48496,"journal":{"name":"Environmental Research Communications","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141338767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}