To elucidate the fracturing mechanism of deep hard rock under complex disturbance environments, this study investigates the dynamic failure behavior of pre-damaged granite subjected to multi-source dynamic disturbances. Blasting vibration monitoring was conducted in a deep-buried drill-and-blast tunnel to characterize in-situ dynamic loading conditions. Subsequently, true triaxial compression tests incorporating multi-source disturbances were performed using a self-developed wide-low-frequency true triaxial system to simulate disturbance accumulation and damage evolution in granite. The results demonstrate that combined dynamic disturbances and unloading damage significantly accelerate strength degradation and trigger shear-slip failure along preferentially oriented blast-induced fractures, with strength reductions up to 16.7%. Layered failure was observed on the free surface of pre-damaged granite under biaxial loading, indicating a disturbance-induced fracture localization mechanism. Time–stress–fracture–energy coupling fields were constructed to reveal the spatiotemporal characteristics of fracture evolution. Critical precursor frequency bands (105–150, 185–225, and 300–325 kHz) were identified, which serve as diagnostic signatures of impending failure. A dynamic instability mechanism driven by multi-source disturbance superposition and pre-damage evolution was established. Furthermore, a grouting-based wave-absorption control strategy was proposed to mitigate deep dynamic disasters by attenuating disturbance amplitude and reducing excitation frequency.
扫码关注我们
求助内容:
应助结果提醒方式:
