Pub Date : 2022-12-01Epub Date: 2021-09-17DOI: 10.1080/17513758.2021.1977400
Yantao Shi, Bo Zheng
We develop two discrete models to study how supplemental releases affect the Wolbachia spreading dynamics in cage mosquito populations. The first model focuses on the case when only infected males are released at each generation. This release strategy has been proved to be capable of speeding up the Wolbachia persistence by suppressing the compatible matings between uninfected individuals. The second model targets the case when only infected females are released at each generation. For both models, detailed model formulation, enumeration of the positive equilibria and their stability analysis are provided. Theoretical results show that the two models can generate bistable dynamics when there are three positive equilibrium points, semi-stable dynamics for the case of two positive equilibrium points. And when the positive equilibrium point is unique, it is globally asymptotically stable. Some numerical simulations are offered to get helpful implications on the design of the release strategy.
{"title":"Discrete dynamical models on <i>Wolbachia</i> infection frequency in mosquito populations with biased release ratios.","authors":"Yantao Shi, Bo Zheng","doi":"10.1080/17513758.2021.1977400","DOIUrl":"https://doi.org/10.1080/17513758.2021.1977400","url":null,"abstract":"<p><p>We develop two discrete models to study how supplemental releases affect the <i>Wolbachia</i> spreading dynamics in cage mosquito populations. The first model focuses on the case when only infected males are released at each generation. This release strategy has been proved to be capable of speeding up the <i>Wolbachia</i> persistence by suppressing the compatible matings between uninfected individuals. The second model targets the case when only infected females are released at each generation. For both models, detailed model formulation, enumeration of the positive equilibria and their stability analysis are provided. Theoretical results show that the two models can generate bistable dynamics when there are three positive equilibrium points, semi-stable dynamics for the case of two positive equilibrium points. And when the positive equilibrium point is unique, it is globally asymptotically stable. Some numerical simulations are offered to get helpful implications on the design of the release strategy.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":" ","pages":"320-339"},"PeriodicalIF":2.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39425951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/17513758.2022.2091800
Mengxin He, Zhong Li
In this paper, we consider a fear effect predator-prey model with mutual interference or group defense. For the model with mutual interference, we show the interior equilibrium is globally stable, and the mutual interference can stabilize the predator-prey system. For the model with group defense, we discuss the singular dynamics around the origin and the occurrence of Hopf bifurcation, and find that there is a separatrix curve near the origin such that the orbits above which tend to the origin and the orbits below which tend to limit cycle or the interior equilibrium.
{"title":"Stability of a fear effect predator-prey model with mutual interference or group defense.","authors":"Mengxin He, Zhong Li","doi":"10.1080/17513758.2022.2091800","DOIUrl":"https://doi.org/10.1080/17513758.2022.2091800","url":null,"abstract":"<p><p>In this paper, we consider a fear effect predator-prey model with mutual interference or group defense. For the model with mutual interference, we show the interior equilibrium is globally stable, and the mutual interference can stabilize the predator-prey system. For the model with group defense, we discuss the singular dynamics around the origin and the occurrence of Hopf bifurcation, and find that there is a separatrix curve near the origin such that the orbits above which tend to the origin and the orbits below which tend to limit cycle or the interior equilibrium.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":" ","pages":"480-498"},"PeriodicalIF":2.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40404119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/17513758.2022.2155717
Yongxin Gao, Shuyuan Yao
In this paper, we use a mean-reverting Ornstein-Uhlenbeck process to simulate the stochastic perturbations in the environment, and then a modified Leslie-Gower Holling-type II predator-prey stochastic model in a polluted environment with interspecific competition and pulse toxicant input is proposed. Through constructing V-function and applying formula, the sharp sufficient conditions including strongly persistent in the mean, persistent in the mean and extinction are established. In addition, the theoretical results are verified by numerical simulation.
{"title":"Dynamical analysis of a modified Leslie-Gower Holling-type II predator-prey stochastic model in polluted environments with interspecific competition and impulsive toxicant input.","authors":"Yongxin Gao, Shuyuan Yao","doi":"10.1080/17513758.2022.2155717","DOIUrl":"https://doi.org/10.1080/17513758.2022.2155717","url":null,"abstract":"<p><p>In this paper, we use a mean-reverting Ornstein-Uhlenbeck process to simulate the stochastic perturbations in the environment, and then a modified Leslie-Gower Holling-type II predator-prey stochastic model in a polluted environment with interspecific competition and pulse toxicant input is proposed. Through constructing V-function and applying <math><mi>It</mi><msup><mrow><mrow><mover><mi>o</mi><mo>^</mo></mover></mrow></mrow><mo>'</mo></msup><mi>s</mi></math> formula, the sharp sufficient conditions including strongly persistent in the mean, persistent in the mean and extinction are established. In addition, the theoretical results are verified by numerical simulation.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"16 1","pages":"840-858"},"PeriodicalIF":2.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10838564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01Epub Date: 2021-03-08DOI: 10.1080/17513758.2021.1895334
Maoxin Liao, Yanjin Liu, Shinan Liu, Ali M Meyad
This paper aims to analyse stability and Hopf bifurcation of the HIV-1 model with immune delay under the functional response of the Holling II type. The global stability analysis has been considered by Lyapunov-LaSalle theorem. And stability and the sufficient condition for the existence of Hopf Bifurcation of the infected equilibrium of the HIV-1 model with immune response are also studied. Some numerical simulations verify the above results. Finally, we propose a novel three dimension system to the future study.
{"title":"Stability and Hopf bifurcation of HIV-1 model with Holling II infection rate and immune delay.","authors":"Maoxin Liao, Yanjin Liu, Shinan Liu, Ali M Meyad","doi":"10.1080/17513758.2021.1895334","DOIUrl":"https://doi.org/10.1080/17513758.2021.1895334","url":null,"abstract":"<p><p>This paper aims to analyse stability and Hopf bifurcation of the HIV-1 model with immune delay under the functional response of the Holling II type. The global stability analysis has been considered by Lyapunov-LaSalle theorem. And stability and the sufficient condition for the existence of Hopf Bifurcation of the infected equilibrium of the HIV-1 model with immune response are also studied. Some numerical simulations verify the above results. Finally, we propose a novel three dimension system to the future study.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":" ","pages":"397-411"},"PeriodicalIF":2.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2021.1895334","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25447433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/17513758.2022.2146769
Mingju Ma, Jun Li
Diabetes mellitus is a noncommunicable disease, which is a serious threat to human health around the world. In this paper, we propose a simple glucose-insulin model with Michaelis-Menten function as insulin degradation rate to mimic the pathogenic mechanism of diabetes. By theoretical analysis, a unique positive equilibrium of model exists and it is globally asymptotically stable. The four strategies are designed for diabetes patients based on the sensitivity of parameters, including insulin injection and medicine treatments. Numerical simulations are given to support the theoretical results.
{"title":"Dynamics of a glucose-insulin model.","authors":"Mingju Ma, Jun Li","doi":"10.1080/17513758.2022.2146769","DOIUrl":"https://doi.org/10.1080/17513758.2022.2146769","url":null,"abstract":"<p><p>Diabetes mellitus is a noncommunicable disease, which is a serious threat to human health around the world. In this paper, we propose a simple glucose-insulin model with Michaelis-Menten function as insulin degradation rate to mimic the pathogenic mechanism of diabetes. By theoretical analysis, a unique positive equilibrium of model exists and it is globally asymptotically stable. The four strategies are designed for diabetes patients based on the sensitivity of parameters, including insulin injection and medicine treatments. Numerical simulations are given to support the theoretical results.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":" ","pages":"733-745"},"PeriodicalIF":2.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40469574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/17513758.2022.2144648
Yangyang Shi, Hongyong Zhao, Xuebing Zhang
This paper mainly explores the complex impacts of spatial heterogeneity, vector-bias effect, multiple strains, temperature-dependent extrinsic incubation period (EIP) and seasonality on malaria transmission. We propose a multi-strain malaria transmission model with diffusion and periodic delays and define the reproduction numbers and (i = 1, 2). Quantitative analysis indicates that the disease-free ω-periodic solution is globally attractive when , while if (), then strain i persists and strain j dies out. More interestingly, when and are greater than 1, the competitive exclusion of the two strains also occurs. Additionally, in a heterogeneous environment, the coexistence conditions of the two strains are and . Numerical simulations verify the analytical results and reveal that ignoring vector-bias effect or seasonality when studying malaria transmission will underestimate the risk of disease transmission.
本文主要探讨空间异质性、媒介偏倚效应、多菌株、温度依赖性外部潜伏期(EIP)和季节性对疟疾传播的复杂影响。我们提出了一个具有扩散和周期延迟的多菌株疟疾传播模型,并定义了繁殖数Ri和R^i (i =1,2)。定量分析表明,当Ri1时无病ω-周期解全局吸引,而当Ri>1>Rj (i≠j,i,j=1,2)时,则菌株i持续存在,菌株j灭绝。更有趣的是,当R1和R2大于1时,两个菌株也会发生竞争排斥。在异质环境下,两菌株的共存条件分别为R^1>1和R^2>1。数值模拟验证了分析结果,揭示了在研究疟疾传播时忽略媒介偏差效应或季节性将低估疾病传播的风险。
{"title":"Dynamics of a multi-strain malaria model with diffusion in a periodic environment.","authors":"Yangyang Shi, Hongyong Zhao, Xuebing Zhang","doi":"10.1080/17513758.2022.2144648","DOIUrl":"https://doi.org/10.1080/17513758.2022.2144648","url":null,"abstract":"<p><p>This paper mainly explores the complex impacts of spatial heterogeneity, vector-bias effect, multiple strains, temperature-dependent extrinsic incubation period (EIP) and seasonality on malaria transmission. We propose a multi-strain malaria transmission model with diffusion and periodic delays and define the reproduction numbers <math><msub><mi>R</mi><mrow><mi>i</mi></mrow></msub></math> and <math><msub><mrow><mover><mi>R</mi><mo>^</mo></mover></mrow><mrow><mi>i</mi></mrow></msub></math> (<i>i</i> = 1, 2). Quantitative analysis indicates that the disease-free <i>ω</i>-periodic solution is globally attractive when <math><msub><mi>R</mi><mrow><mi>i</mi></mrow></msub><mo><</mo><mn>1</mn></math>, while if <math><msub><mi>R</mi><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>1</mn><mo>></mo><msub><mi>R</mi><mrow><mi>j</mi></mrow></msub></math> (<math><mi>i</mi><mo>≠</mo><mi>j</mi><mo>,</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math>), then strain <i>i</i> persists and strain <i>j</i> dies out. More interestingly, when <math><msub><mi>R</mi><mrow><mn>1</mn></mrow></msub></math> and <math><msub><mi>R</mi><mrow><mn>2</mn></mrow></msub></math> are greater than 1, the competitive exclusion of the two strains also occurs. Additionally, in a heterogeneous environment, the coexistence conditions of the two strains are <math><msub><mrow><mover><mi>R</mi><mo>^</mo></mover></mrow><mrow><mn>1</mn></mrow></msub><mo>></mo><mn>1</mn></math> and <math><msub><mrow><mover><mi>R</mi><mo>^</mo></mover></mrow><mrow><mn>2</mn></mrow></msub><mo>></mo><mn>1</mn></math>. Numerical simulations verify the analytical results and reveal that ignoring vector-bias effect or seasonality when studying malaria transmission will underestimate the risk of disease transmission.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":" ","pages":"766-815"},"PeriodicalIF":2.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40701777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01Epub Date: 2021-12-22DOI: 10.1080/17513758.2021.2017033
Jian Liu, Zhiming Guo, Hongpeng Guo
This article is concerned with the dynamics of malaria infection model with diffusion and delay. The disease free threshold and the immune response threshold value of the malaria infection are obtained, which characterize the stability of the disease free equilibrium and infection equilibrium (with or without immune response). In addition, fluctuations occur when the model undergoes Hopf bifurcation as the delay passes through a certain critical value . In this case, periodic oscillation appears near the positive steady state, which implies the recurrent attacks of disease. Finally, numerical simulations are provided to illustrate the theoretical results.
{"title":"The blood-stage dynamics of malaria infection with immune response.","authors":"Jian Liu, Zhiming Guo, Hongpeng Guo","doi":"10.1080/17513758.2021.2017033","DOIUrl":"https://doi.org/10.1080/17513758.2021.2017033","url":null,"abstract":"<p><p>This article is concerned with the dynamics of malaria infection model with diffusion and delay. The disease free threshold <math><msub><mi>ℜ</mi><mn>0</mn></msub></math> and the immune response threshold value <math><msub><mi>ℜ</mi><mn>1</mn></msub></math> of the malaria infection are obtained, which characterize the stability of the disease free equilibrium and infection equilibrium (with or without immune response). In addition, fluctuations occur when the model undergoes Hopf bifurcation as the delay passes through a certain critical value <math><msub><mi>τ</mi><mn>0</mn></msub></math>. In this case, periodic oscillation appears near the positive steady state, which implies the recurrent attacks of disease. Finally, numerical simulations are provided to illustrate the theoretical results.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":" ","pages":"294-319"},"PeriodicalIF":2.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39748526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/17513758.2022.2109766
Richmond Opoku-Sarkodie, Ferenc A Bartha, Mónika Polner, Gergely Röst
SIRS models capture transmission dynamics of infectious diseases for which immunity is not lifelong. Extending these models by a W compartment for individuals with waning immunity, the boosting of the immune system upon repeated exposure may be incorporated. Previous analyses assumed identical waning rates from R to W and from W to S. This implicitly assumes equal length for the period of full immunity and of waned immunity. We relax this restriction, and allow an asymmetric partitioning of the total immune period. Stability switches of the endemic equilibrium are investigated with a combination of analytic and numerical tools. Then, continuation methods are applied to track bifurcations along the equilibrium branch. We find rich dynamics: Hopf bifurcations, endemic double bubbles, and regions of bistability. Our results highlight that the length of the period in which waning immunity can be boosted is a crucial parameter significantly influencing long term epidemiological dynamics.
{"title":"Dynamics of an SIRWS model with waning of immunity and varying immune boosting period.","authors":"Richmond Opoku-Sarkodie, Ferenc A Bartha, Mónika Polner, Gergely Röst","doi":"10.1080/17513758.2022.2109766","DOIUrl":"https://doi.org/10.1080/17513758.2022.2109766","url":null,"abstract":"<p><p>SIRS models capture transmission dynamics of infectious diseases for which immunity is not lifelong. Extending these models by a <i>W</i> compartment for individuals with waning immunity, the boosting of the immune system upon repeated exposure may be incorporated. Previous analyses assumed identical waning rates from <i>R</i> to <i>W</i> and from <i>W</i> to <i>S</i>. This implicitly assumes equal length for the period of full immunity and of waned immunity. We relax this restriction, and allow an asymmetric partitioning of the total immune period. Stability switches of the endemic equilibrium are investigated with a combination of analytic and numerical tools. Then, continuation methods are applied to track bifurcations along the equilibrium branch. We find rich dynamics: Hopf bifurcations, endemic double bubbles, and regions of bistability. Our results highlight that the length of the period in which waning immunity can be boosted is a crucial parameter significantly influencing long term epidemiological dynamics.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":" ","pages":"596-618"},"PeriodicalIF":2.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40692633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/17513758.2022.2027529
Lei Shi, Longxing Qi
In this paper, the actual background of the susceptible population being directly patients after inhaling a certain amount of PM is taken into account. The concentration response function of PM is introduced, and the SISP respiratory disease model is proposed. Qualitative theoretical analysis proves that the existence, local stability and global stability of the equilibria are all related to the daily emission of PM and PM pathogenic threshold K. Based on the sensitivity factor analysis and time-varying sensitivity analysis of parameters on the number of patients, it is found that the conversion rate β and the inhalation rate η has the largest positive correlation. The cure rate γ of infected persons has the greatest negative correlation on the number of patients. The control strategy formulated by the analysis results of optimal control theory is as follows: The first step is to improve the clearance rate of PM by reducing the PM emissions and increasing the intensity of dust removal. Moreover, such removal work must be maintained for a long time. The second step is to improve the cure rate of patients by being treated in time. After that, people should be reminded to wear masks and go out less so as to reduce the conversion rate of susceptible people becoming patients.
{"title":"Dynamic analysis and optimal control of a class of SISP respiratory diseases.","authors":"Lei Shi, Longxing Qi","doi":"10.1080/17513758.2022.2027529","DOIUrl":"https://doi.org/10.1080/17513758.2022.2027529","url":null,"abstract":"<p><p>In this paper, the actual background of the susceptible population being directly patients after inhaling a certain amount of PM<math><msub><mi></mi><mrow><mn>2.5</mn></mrow></msub></math> is taken into account. The concentration response function of PM<math><msub><mi></mi><mrow><mn>2.5</mn></mrow></msub></math> is introduced, and the SISP respiratory disease model is proposed. Qualitative theoretical analysis proves that the existence, local stability and global stability of the equilibria are all related to the daily emission <math><msub><mi>P</mi><mrow><mn>0</mn></mrow></msub></math> of PM<math><msub><mi></mi><mrow><mn>2.5</mn></mrow></msub></math> and PM<math><msub><mi></mi><mrow><mn>2.5</mn></mrow></msub></math> pathogenic threshold <i>K</i>. Based on the sensitivity factor analysis and time-varying sensitivity analysis of parameters on the number of patients, it is found that the conversion rate <i>β</i> and the inhalation rate <i>η</i> has the largest positive correlation. The cure rate <i>γ</i> of infected persons has the greatest negative correlation on the number of patients. The control strategy formulated by the analysis results of optimal control theory is as follows: The first step is to improve the clearance rate of PM<math><msub><mi></mi><mrow><mn>2.5</mn></mrow></msub></math> by reducing the PM<math><msub><mi></mi><mrow><mn>2.5</mn></mrow></msub></math> emissions and increasing the intensity of dust removal. Moreover, such removal work must be maintained for a long time. The second step is to improve the cure rate of patients by being treated in time. After that, people should be reminded to wear masks and go out less so as to reduce the conversion rate of susceptible people becoming patients.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":" ","pages":"64-97"},"PeriodicalIF":2.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39896570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-02DOI: 10.1080/17513758.2022.2079739
Yiyou Pang, Shuai Wang, Siyu Liu
In this paper, we study a stage-structured wild and sterile mosquito interaction impulsive model. The aim is to study the feasibility of controlling the population of wild mosquitoes by releasing sterile mosquitoes periodically. The existence of trivial periodic solutions is obtained, and the corresponding local stability and global stability conditions are proved by Floquet theory and Lyapunov stability theorem, respectively. And we prove the existence conditions of non-trivial periodic solutions and their local stability. We can find that the system has the bistable phenomenon in which the trivial periodic solution and the non-trivial periodic solution can coexist under certain threshold conditions. All the results show that the appropriate release period and release amount of sterile mosquitoes can control the wild mosquito population within a certain range and even make them extinct. Finally, numerical simulation verifies our theoretical results.
{"title":"Dynamics analysis of stage-structured wild and sterile mosquito interaction impulsive model","authors":"Yiyou Pang, Shuai Wang, Siyu Liu","doi":"10.1080/17513758.2022.2079739","DOIUrl":"https://doi.org/10.1080/17513758.2022.2079739","url":null,"abstract":"In this paper, we study a stage-structured wild and sterile mosquito interaction impulsive model. The aim is to study the feasibility of controlling the population of wild mosquitoes by releasing sterile mosquitoes periodically. The existence of trivial periodic solutions is obtained, and the corresponding local stability and global stability conditions are proved by Floquet theory and Lyapunov stability theorem, respectively. And we prove the existence conditions of non-trivial periodic solutions and their local stability. We can find that the system has the bistable phenomenon in which the trivial periodic solution and the non-trivial periodic solution can coexist under certain threshold conditions. All the results show that the appropriate release period and release amount of sterile mosquitoes can control the wild mosquito population within a certain range and even make them extinct. Finally, numerical simulation verifies our theoretical results.","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"16 1","pages":"464 - 479"},"PeriodicalIF":2.8,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46992426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}