首页 > 最新文献

Photonics and Nanostructures-Fundamentals and Applications最新文献

英文 中文
Gaussian grating for enhancing light absorption by amorphous silicon thin-film solar cells 用于增强非晶硅薄膜太阳能电池光吸收的高斯光栅
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-07 DOI: 10.1016/j.photonics.2024.101247
Mohammad Eskandari

In this study, a grating with a Gaussian distribution was used to increase the absorption of light by amorphous silicon thin film solar cells. A grating is an effective structure for trapping light inside the active layer of a cell, so a two-dimensional Gaussian grating with a rectangular structure was placed on the front surface of the cell. The results obtained by using the finite element method showed that the Gaussian grating significantly enhanced the absorption of light in the visible and near-infrared ranges by a cell with a thickness of 0.5 μm compared with a cell without gratings and a cell with normal gratings. The maximum average light absorption by the cell with a Gaussian grating was 84.8%, which was 90% higher compared with the reference cell. In addition, the short-circuit current density and efficiency were determined as 34.2 and 17.6 mA/cm2, respectively, which were 72% and 72.5% higher, respectively, compared with the reference cell. The proposed structure could be used in a cell to convert more light into electricity.

本研究利用高斯分布的光栅来增加非晶硅薄膜太阳能电池对光的吸收。光栅是将光捕获到电池活性层内部的有效结构,因此在电池前表面放置了一个矩形结构的二维高斯光栅。使用有限元法得出的结果表明,与不带光栅的电池和带普通光栅的电池相比,厚度为 0.5 μm 的电池对可见光和近红外波段光的吸收明显增强。带有高斯光栅的电池对光的最大平均吸收率为 84.8%,比参照电池高出 90%。此外,短路电流密度和效率分别为 34.2 mA/cm2 和 17.6 mA/cm2,与参考电池相比分别提高了 72% 和 72.5%。建议的结构可用于电池中,将更多的光能转化为电能。
{"title":"Gaussian grating for enhancing light absorption by amorphous silicon thin-film solar cells","authors":"Mohammad Eskandari","doi":"10.1016/j.photonics.2024.101247","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101247","url":null,"abstract":"<div><p>In this study, a grating with a Gaussian distribution was used to increase the absorption of light by amorphous silicon thin film solar cells. A grating is an effective structure for trapping light inside the active layer of a cell, so a two-dimensional Gaussian grating with a rectangular structure was placed on the front surface of the cell. The results obtained by using the finite element method showed that the Gaussian grating significantly enhanced the absorption of light in the visible and near-infrared ranges by a cell with a thickness of 0.5 μm compared with a cell without gratings and a cell with normal gratings. The maximum average light absorption by the cell with a Gaussian grating was 84.8%, which was 90% higher compared with the reference cell. In addition, the short-circuit current density and efficiency were determined as 34.2 and 17.6 mA/cm<sup>2</sup>, respectively, which were 72% and 72.5% higher, respectively, compared with the reference cell. The proposed structure could be used in a cell to convert more light into electricity.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"59 ","pages":"Article 101247"},"PeriodicalIF":2.7,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140103457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large area Terahertz digitated photoconductive antennas based on a single high resistivity metal and nanoplasmonic electrode 基于单一高电阻率金属和纳米光电导电极的大面积太赫兹数字化光电导天线
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-02 DOI: 10.1016/j.photonics.2024.101248
Anna De Vetter, Chao Song, Martin Mičica, Jerome Tignon, Juliette Mangeney, José Palomo, Sukhdeep Dhillon

Optical excited photoconductive antennas are a central technology for the Terahertz (THz) domain, crucial for both emitting and detecting THz radiation. This work proposes and experimentally realises a new approach in digitated photoconductive antennas (d-PCAs) based on a single digitated high resistivity metal contact with integrated resistances as voltage dividers. This permits a uniform applied electric field over a large surface area and a single step device processing procedure, simplifying the device realisation. This concept is further combined with digitated plasmonic nano-antennas that permits to enhance the light-matter interaction. Through femtosecond optical excitation of such structures, THz pulses can be generated efficiently through this device. Further, for the plasmonic d-PCA, the detected THz electric field of the device shows the effect of polarisation of the incident IR beam, highlighting the role of the nanostructured digitated contacts. This work is supported by electromagnetic simulations showing the optical and THz response of this new type of photoconductive antenna with integrated resistances.

光激发光电导天线是太赫兹(THz)领域的核心技术,对于发射和探测太赫兹辐射至关重要。这项研究提出并在实验中实现了数字化光电导天线(d-PCAs)的新方法,该方法基于单个数字化高电阻率金属触点和作为分压器的集成电阻。这样就能在大面积表面上形成均匀的外加电场,并采用单步器件处理程序,从而简化了器件的实现过程。这一概念还与数字等离子纳米天线相结合,从而增强了光与物质的相互作用。通过对这种结构进行飞秒光激发,可以通过该设备有效地产生太赫兹脉冲。此外,对于质子 d-PCA,该器件检测到的太赫兹电场显示了入射红外光束的极化效应,突出了纳米结构数字化触点的作用。这项工作得到了电磁模拟的支持,模拟显示了这种集成电阻的新型光电导天线的光学和太赫兹响应。
{"title":"Large area Terahertz digitated photoconductive antennas based on a single high resistivity metal and nanoplasmonic electrode","authors":"Anna De Vetter,&nbsp;Chao Song,&nbsp;Martin Mičica,&nbsp;Jerome Tignon,&nbsp;Juliette Mangeney,&nbsp;José Palomo,&nbsp;Sukhdeep Dhillon","doi":"10.1016/j.photonics.2024.101248","DOIUrl":"10.1016/j.photonics.2024.101248","url":null,"abstract":"<div><p>Optical excited photoconductive antennas are a central technology for the Terahertz (THz) domain, crucial for both emitting and detecting THz radiation. This work proposes and experimentally realises a new approach in digitated photoconductive antennas (d-PCAs) based on a single digitated high resistivity metal contact with integrated resistances as voltage dividers. This permits a uniform applied electric field over a large surface area and a single step device processing procedure, simplifying the device realisation. This concept is further combined with digitated plasmonic nano-antennas that permits to enhance the light-matter interaction. Through femtosecond optical excitation of such structures, THz pulses can be generated efficiently through this device. Further, for the plasmonic d-PCA, the detected THz electric field of the device shows the effect of polarisation of the incident IR beam, highlighting the role of the nanostructured digitated contacts. This work is supported by electromagnetic simulations showing the optical and THz response of this new type of photoconductive antenna with integrated resistances.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"59 ","pages":"Article 101248"},"PeriodicalIF":2.7,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569441024000233/pdfft?md5=0f202330482ff99c3eaa93fdc5c841b3&pid=1-s2.0-S1569441024000233-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140045481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Broadband characterization of the spectral responsivity of thermoelectrically-coupled nanoantennas 热电耦合纳米天线光谱响应性的宽带特性分析
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-22 DOI: 10.1016/j.photonics.2024.101242
Chao Dong , Gergo P. Szakmany , Hadrian Aquino , Wolfgang Porod , Alexei O. Orlov , Edward C. Kinzel , Gary H. Bernstein , David Burghoff

Thermoelectrically-coupled nanoantennas (TECNAs)—nanoantennas that use the Seebeck effect to detect radiation—are a promising modality for spectrally resolved detection in the infrared. By tailoring the geometry of a nanoantenna coupled to a micro-cavity, their responsivity and spectral selectivity can be carefully designed. However, to date no measurements have directly established the spectral response of these detectors over a large frequency span in the infrared regime, particularly from 2 μm to 20 μm. In this work, we provide a comprehensive analysis of the spectral selectivity of TECNAs operating within the mid- and long-wave infrared (MWIR and LWIR) regions. We engineer arrays of detectors at 5.5 μm, 10.6 μm, and 14 μm, and we verify their selectivity using polarization-dependent Fourier-transform infrared spectroscopy (FTIR). We also show that the response can be tailored using a combination of antenna and cavity design. Our results not only underscore the potential of TECNAs in advancing sensing applications within the MWIR and LWIR domains, but also offer a promising direction for enhancing other detector modalities.

热电耦合纳米天线(TECNA)--利用塞贝克效应探测辐射的纳米天线--是一种很有前途的红外光谱分辨探测模式。通过调整与微腔耦合的纳米天线的几何形状,可以精心设计其响应度和光谱选择性。然而,迄今为止,还没有任何测量能直接确定这些探测器在红外系统中较大频率范围内的光谱响应,特别是从 2 μm 到 20 μm 的范围。在这项工作中,我们全面分析了在中波和长波红外(MWIR 和 LWIR)区域工作的 TECNA 的光谱选择性。我们设计了 5.5 μm、10.6 μm 和 14 μm 的探测器阵列,并使用偏振相关傅立叶变换红外光谱(FTIR)验证了它们的选择性。我们还表明,可以结合天线和腔体设计来定制响应。我们的研究结果不仅强调了 TECNAs 在推动中波红外和低波红外领域传感应用方面的潜力,还为增强其他探测器模式提供了一个很有前景的方向。
{"title":"Broadband characterization of the spectral responsivity of thermoelectrically-coupled nanoantennas","authors":"Chao Dong ,&nbsp;Gergo P. Szakmany ,&nbsp;Hadrian Aquino ,&nbsp;Wolfgang Porod ,&nbsp;Alexei O. Orlov ,&nbsp;Edward C. Kinzel ,&nbsp;Gary H. Bernstein ,&nbsp;David Burghoff","doi":"10.1016/j.photonics.2024.101242","DOIUrl":"10.1016/j.photonics.2024.101242","url":null,"abstract":"<div><p>Thermoelectrically-coupled nanoantennas (TECNAs)—nanoantennas that use the Seebeck effect to detect radiation—are a promising modality for spectrally resolved detection in the infrared. By tailoring the geometry of a nanoantenna coupled to a micro-cavity, their responsivity and spectral selectivity can be carefully designed. However, to date no measurements have directly established the spectral response of these detectors over a large frequency span in the infrared regime, particularly from 2 μm to 20 μm. In this work, we provide a comprehensive analysis of the spectral selectivity of TECNAs operating within the mid- and long-wave infrared (MWIR and LWIR) regions. We engineer arrays of detectors at 5.5 μm, 10.6 μm, and 14 μm, and we verify their selectivity using polarization-dependent Fourier-transform infrared spectroscopy (FTIR). We also show that the response can be tailored using a combination of antenna and cavity design. Our results not only underscore the potential of TECNAs in advancing sensing applications within the MWIR and LWIR domains, but also offer a promising direction for enhancing other detector modalities.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"59 ","pages":"Article 101242"},"PeriodicalIF":2.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139950151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Taking advantage of an axisymmetric plasmonic structure and grooves to nanofocus and ultraenhance a radially polarized electric field 利用轴对称质子结构和凹槽实现纳米聚焦和超增强径向极化电场
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-16 DOI: 10.1016/j.photonics.2024.101240
Fatemeh Salmeh, Masoud Mohebbi

This study investigates the enhancement and nanofocusing of a radially polarized electric field by a conical plasmonic structure (CPS). The CPS is a dielectric cone with nanometer metal cladding on a dielectric substrate. Concentric circular slanted grooves are etched on the surface of the dielectric substrate. These grooves converge the incident field on the structure. Angled periodic gratings are engraved on the CPS metal surface near the tip, creating a plasmonic momentum and contributing to the field enhancement above the apex. The symmetry of the incident radially polarized light and the structure significantly boosts nanofocusing and field enhancement. The optimal width of the nanofocusing and the electric field enhancement factor obtained are approximately 9 nm and 30000, respectively. Because of its impressive effects, this scheme is a valuable tool for plasmonic, optics, and laser applications.

本研究探讨了锥形等离子体结构(CPS)对径向极化电场的增强和纳米聚焦。CPS 是介电基底上带有纳米金属包层的介电圆锥体。电介质基底表面蚀刻有同心圆斜槽。这些凹槽将入射场汇聚到结构上。在靠近顶端的 CPS 金属表面上刻有成角度的周期性光栅,形成等离子体动量,有助于增强顶点上方的场。入射径向偏振光与该结构的对称性极大地促进了纳米聚焦和场增强。获得的最佳纳米聚焦宽度和电场增强因子分别约为 9 纳米和 5 数量级。由于其令人印象深刻的效果,该方案是等离子体、光学和激光应用的重要工具。
{"title":"Taking advantage of an axisymmetric plasmonic structure and grooves to nanofocus and ultraenhance a radially polarized electric field","authors":"Fatemeh Salmeh,&nbsp;Masoud Mohebbi","doi":"10.1016/j.photonics.2024.101240","DOIUrl":"10.1016/j.photonics.2024.101240","url":null,"abstract":"<div><p>This study investigates the enhancement and nanofocusing of a radially polarized electric field by a conical plasmonic structure (CPS). The CPS is a dielectric cone with nanometer metal cladding on a dielectric substrate. Concentric circular slanted grooves are etched on the surface of the dielectric substrate. These grooves converge the incident field on the structure. Angled periodic gratings are engraved on the CPS metal surface near the tip, creating a plasmonic momentum and contributing to the field enhancement above the apex. The symmetry of the incident radially polarized light and the structure significantly boosts nanofocusing and field enhancement. The optimal width of the nanofocusing and the electric field enhancement factor obtained are approximately 9 nm and 30000, respectively. Because of its impressive effects, this scheme is a valuable tool for plasmonic, optics, and laser applications.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"59 ","pages":"Article 101240"},"PeriodicalIF":2.7,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chip-scale mid-infrared digitalized computational spectrometer powered by silicon photonics MEMS technology 采用硅光子 MEMS 技术的芯片级中红外数字化计算光谱仪
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101231
Haoyang Sun , Qifeng Qiao , Chengkuo Lee , Guangya Zhou

Miniaturized spectrometers are attracting widespread interest due to the rising demand for portable spectroscopic applications. While the chip-scale spectrometers are widely investigated using silicon photonics technology, few research have addressed the need for a mid-infrared (MIR) integrated chip-scale spectrometer due to the lack of an effective reconfigurable photonics approach. In this paper, we present a novel solution using silicon photonics MEMS technology in the MIR region (3.6–5 µm wavelength range). We adopt a computational spectrometry scheme using the digitalized control of cascaded MEMS-tunable waveguide couplers. The MEMS waveguide couplers are operated in digital on/off mode, thus making the device immune to driving voltage fluctuations and robust for on-chip field sensing applications. Moreover, a comprehensive numerical analysis method is discussed to systematically evaluate the performance of the computational spectrometer, including its resolution and operational bandwidth. As a proof-of-concept, a chip-scale spectrometer realized by seven cascaded MEMS-actuated waveguide coupler is demonstrated. The sparse spectral reconstruction is demonstrated in the wavelength range from 3.65 to 4.1 µm and the dual-peaks reconstruction results indicate a resolution of 8 nm. Besides, response time and power consumption of the proposed device are experimentally characterized. Benefitting from good scalability, the spectral resolution can be further improved by increasing the number of waveguide coupler stages. The proposed work has the potential to realize lab-on-a-chip applications with advances in MIR silicon photonics. © 2001 Elsevier Science. All rights reserved.

由于对便携式光谱应用的需求日益增长,微型光谱仪正引起广泛关注。虽然利用硅光子学技术对芯片级光谱仪进行了广泛研究,但由于缺乏有效的可重构光子学方法,很少有研究涉及中红外(MIR)集成芯片级光谱仪的需求。在本文中,我们利用硅光子 MEMS 技术在中红外区域(3.6~5 μm 波长范围)提出了一种新颖的解决方案。我们采用了一种计算光谱测量方案,利用级联 MEMS 可调波导耦合器的数字化控制。MEMS 波导耦合器在数字开/关模式下工作,从而使该器件不受驱动电压波动的影响,并可用于片上场感应用。此外,还讨论了一种全面的数值分析方法,以系统地评估计算光谱仪的性能,包括其分辨率和工作带宽。作为概念验证,演示了由七个级联 MEMS 驱动波导耦合器实现的芯片级光谱仪。在 3.65 至 4.1 μm 波长范围内演示了稀疏光谱重建,双峰重建结果表明分辨率为 8 nm。此外,实验还表征了所提设备的响应时间和功耗。得益于良好的可扩展性,光谱分辨率可以通过增加波导耦合器级数得到进一步提高。随着中红外硅光子学的发展,所提出的工作有可能实现实验室芯片上的应用。© 2001 爱思唯尔科学。保留所有权利。
{"title":"Chip-scale mid-infrared digitalized computational spectrometer powered by silicon photonics MEMS technology","authors":"Haoyang Sun ,&nbsp;Qifeng Qiao ,&nbsp;Chengkuo Lee ,&nbsp;Guangya Zhou","doi":"10.1016/j.photonics.2024.101231","DOIUrl":"10.1016/j.photonics.2024.101231","url":null,"abstract":"<div><p>Miniaturized spectrometers are attracting widespread interest due to the rising demand for portable spectroscopic applications. While the chip-scale spectrometers are widely investigated using silicon photonics technology, few research have addressed the need for a mid-infrared (MIR) integrated chip-scale spectrometer due to the lack of an effective reconfigurable photonics approach. In this paper, we present a novel solution using silicon photonics MEMS technology in the MIR region (3.6–5 µm wavelength range). We adopt a computational spectrometry scheme using the digitalized control of cascaded MEMS-tunable waveguide couplers. The MEMS waveguide couplers are operated in digital on/off mode, thus making the device immune to driving voltage fluctuations and robust for on-chip field sensing applications. Moreover, a comprehensive numerical analysis method is discussed to systematically evaluate the performance of the computational spectrometer, including its resolution and operational bandwidth. As a proof-of-concept, a chip-scale spectrometer realized by seven cascaded MEMS-actuated waveguide coupler is demonstrated. The sparse spectral reconstruction is demonstrated in the wavelength range from 3.65 to 4.1 µm and the dual-peaks reconstruction results indicate a resolution of 8 nm. Besides, response time and power consumption of the proposed device are experimentally characterized. Benefitting from good scalability, the spectral resolution can be further improved by increasing the number of waveguide coupler stages. The proposed work has the potential to realize lab-on-a-chip applications with advances in MIR silicon photonics. © 2001 Elsevier Science. All rights reserved.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101231"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569441024000063/pdfft?md5=bed374d080af912058f5628b8b071dfd&pid=1-s2.0-S1569441024000063-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidation effect on optical properties of integrated waveguides based on porous silicon layers at mid-infrared wavelength 氧化对中红外波长基于多孔硅层的集成波导光学特性的影响
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101244
A. Jaafar, S. Meziani, A. Hammouti, P. Pirasteh, N. Lorrain, L. Bodiou, M. Guendouz, J. Charrier

Integrated sensors based on guided optical devices can efficiently and selectively detect molecules in the mid-infrared (mid-IR) spectral range, exploiting the vibrational and rotational modes of these molecules at these wavelengths. In this work, a ridge waveguide based on porous silicon (PSi) layers was developed by electrochemical etching followed by a photolithographic process. The ridge waveguide is capable of propagating light in the mid-IR range (3.90–4.35 µm) with optical losses of approximately 10 dB/cm. An oxidation study was performed to stabilize the porous structure and identify the optimal oxidation degree, that allow mid-IR light to propagate in a ridge waveguide based on PSi material for sensing application. The results showed that the ridge waveguide remains capable of propagating light after undergoing partial oxidation at 300 °C and 600 °C (15% and 36% of the oxidation degree respectively) with optical losses of around 30 dB/cm and 60 dB/cm at the wavelength of 4.1 µm, respectively.

基于导引光学器件的集成传感器可以利用中红外(mid-IR)光谱范围内分子的振动和旋转模式,高效、选择性地探测这些分子。在这项工作中,通过电化学蚀刻和光刻工艺开发了一种基于多孔硅(PSi)层的脊波导。这种脊波导能够传播中红外波段(3.90-4.35 微米)的光,光损耗约为 10 dB/cm。为了稳定多孔结构并确定最佳氧化度,对基于 PSi 材料的脊波导进行了氧化研究,以使中红外光能够在脊波导中传播,从而实现传感应用。结果表明,脊波导在 300 ℃ 和 600 ℃(氧化度分别为 15%和 36%)下部分氧化后仍能传播光,在 4.1 µm 波长处的光损耗分别约为 30 dB/cm 和 60 dB/cm。
{"title":"Oxidation effect on optical properties of integrated waveguides based on porous silicon layers at mid-infrared wavelength","authors":"A. Jaafar,&nbsp;S. Meziani,&nbsp;A. Hammouti,&nbsp;P. Pirasteh,&nbsp;N. Lorrain,&nbsp;L. Bodiou,&nbsp;M. Guendouz,&nbsp;J. Charrier","doi":"10.1016/j.photonics.2024.101244","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101244","url":null,"abstract":"<div><p>Integrated sensors based on guided optical devices can efficiently and selectively detect molecules in the mid-infrared (mid-IR) spectral range, exploiting the vibrational and rotational modes of these molecules at these wavelengths. In this work, a ridge waveguide based on porous silicon (PSi) layers was developed by electrochemical etching followed by a photolithographic process. The ridge waveguide is capable of propagating light in the mid-IR range (3.90–4.35 µm) with optical losses of approximately 10 dB/cm. An oxidation study was performed to stabilize the porous structure and identify the optimal oxidation degree, that allow mid-IR light to propagate in a ridge waveguide based on PSi material for sensing application. The results showed that the ridge waveguide remains capable of propagating light after undergoing partial oxidation at 300 °C and 600 °C (15% and 36% of the oxidation degree respectively) with optical losses of around 30 dB/cm and 60 dB/cm at the wavelength of 4.1 µm, respectively.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101244"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139942499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reverse design of multifunctional demultiplexing devices 多功能解复用装置的逆向设计
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101246
Zhibin Wang, Zhengyang Li, Xuwei Hou, Jiutian Zhang

A novel direct binary search algorithm based on rotation (RDBS) is proposed in this paper. A 1*2 ultra-compact 2.4*3.6µm2 multimode wavelength demultiplexer (DEMUX) is designed in reverse, which is roughly two orders of magnitude smaller than the size of a conventional waveguide device. It can simultaneously perform wavelength demultiplexing and mode conversion. This DEMUX separates the 1310 and 1550 nm wavelengths while converting the input light from the fundamental transverse electric mode (TE0) to the first-order transverse electric mode (TE1). The simulation results using RDBS show that the insertion loss(IL) of the upper channel (wavelength 1310 nm) is −0.9644 dB, the IL of the lower channel (wavelength 1550 nm) is −0.9752 dB, and the crosstalk values(CT) are −10.079 dB and −9.261 dB, respectively.

本文提出了一种新颖的基于旋转的直接二进制搜索算法(RDBS)。反向设计了一个 1*2 超紧凑型 2.4*3.6µm2 多模波长解复用器(DEMUX),其尺寸比传统波导器件小大约两个数量级。它可以同时进行波长解复用和模式转换。该 DEMUX 分离了 1310 和 1550 nm 波长,同时将输入光从基本横向电模式(TE0)转换为一阶横向电模式(TE1)。使用 RDBS 的仿真结果显示,上通道(波长 1310 nm)的插入损耗(IL)为 -0.9644 dB,下通道(波长 1550 nm)的插入损耗(IL)为 -0.9752 dB,串扰值(CT)分别为 -10.079 dB 和 -9.261 dB。
{"title":"Reverse design of multifunctional demultiplexing devices","authors":"Zhibin Wang,&nbsp;Zhengyang Li,&nbsp;Xuwei Hou,&nbsp;Jiutian Zhang","doi":"10.1016/j.photonics.2024.101246","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101246","url":null,"abstract":"<div><p>A novel direct binary search algorithm based on rotation (RDBS) is proposed in this paper. A 1*2 ultra-compact 2.4*3.6µm<sup>2</sup> multimode wavelength demultiplexer (DEMUX) is designed in reverse, which is roughly two orders of magnitude smaller than the size of a conventional waveguide device. It can simultaneously perform wavelength demultiplexing and mode conversion. This DEMUX separates the 1310 and 1550 nm wavelengths while converting the input light from the fundamental transverse electric mode (TE0) to the first-order transverse electric mode (TE1). The simulation results using RDBS show that the insertion loss(<span><math><mrow><mi>I</mi><mi>L</mi></mrow></math></span>) of the upper channel (wavelength 1310 nm) is −0.9644 dB, the <span><math><mrow><mi>I</mi><mi>L</mi></mrow></math></span> of the lower channel (wavelength 1550 nm) is −0.9752 dB, and the crosstalk values(CT) are −10.079 dB and −9.261 dB, respectively.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101246"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140014325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of ZnO and Si semiconductor-based ultraviolet photodetectors enhanced by laser-ablated silver nanoparticles 通过激光喷射银纳米粒子增强氧化锌和硅半导体紫外线光电探测器的开发
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101228
Abdullah Marzouq Alharbi , Naser M. Ahmed , Azhar Abdul Rahman , Nurul Zahirah Noor Azman , Sameer Algburi , Ismael.A. Wadi , Ayed M. Binzowaimil , Osamah Aldaghri , Khalid Hassan Ibnaouf

The present study employs a cost-effective laser ablation technique in combination with the RF sputtering method to successfully synthesize silver nanoparticles encapsulated by zinc oxide on a silicon (Si) substrate. This synthesis approach aims to enhance the efficiency of photodetector devices while concurrently reducing material expenses, thereby promoting advancements in photodetector applications. The incorporation of various plasmonic nanoparticles (NPs) into the photodetector's architecture is demonstrated as a means to substantially improve the photoresponse of UV photodetectors. Three distinct samples, denoted as AgNPs/Si, AgNPs/ZnO/Si, and ZnO/AgNPs/Si, underwent comprehensive analysis and characterization of their morphological attributes, crystal structures, elemental composition, and optical properties. The UV photodetection efficacy of these samples was evaluated by subjecting them to 385 nm UV light at different bias voltages. The current-voltage (I-V) characteristics of the ZnO/AgNPs/Si photodetector revealed significantly enhanced conductivity in comparison to the AgNPs/Si and AgNPs/ZnO/Si counterparts. Remarkably, the ZnO/AgNPs/Si photodetector exhibited the highest responsivity value of 132 A/W, accompanied by quantum efficiency of 429.88, sensitivity of 31,400%, gain of 315, detectivity of 18 × 1010 Jones, and a noise equivalent power (NEP) of 0.556 × 10–13 W. These findings underscore the efficacy of our innovative broadband photodetector, highlighting its potential for practical implementation. This research offers valuable insights into the enhancement of photodetector performance and its applicability in real-world scenarios.

本研究采用经济高效的激光烧蚀技术,结合射频溅射方法,在硅(Si)基底上成功合成了氧化锌包裹的银纳米粒子。这种合成方法旨在提高光电探测器设备的效率,同时降低材料成本,从而推动光电探测器应用的发展。在光电探测器的结构中加入各种等离子纳米粒子(NPs)被证明是大幅改善紫外光电探测器光响应的一种方法。对三种不同的样品(分别为 AgNPs/Si、AgNPs/ZnO/Si 和 ZnO/AgNPs/Si)的形态属性、晶体结构、元素组成和光学特性进行了全面的分析和表征。在不同的偏置电压下,将这些样品置于 385 纳米紫外光下,对其紫外光检测功效进行了评估。与 AgNPs/Si 和 AgNPs/ZnO/Si 样品相比,ZnO/AgNPs/Si 光电探测器的电流-电压(I-V)特性显示出显著增强的导电性。值得注意的是,ZnO/AgNPs/Si 光电探测器的响应率最高,达到 132 A/W ,量子效率为 429.88,灵敏度为 31400%,增益为 315,探测率为 18 × 1010 Jones,噪声等效功率 (NEP) 为 0.556 × 10-13 W。这项研究为提高光电探测器的性能及其在现实世界中的应用提供了宝贵的见解。
{"title":"Development of ZnO and Si semiconductor-based ultraviolet photodetectors enhanced by laser-ablated silver nanoparticles","authors":"Abdullah Marzouq Alharbi ,&nbsp;Naser M. Ahmed ,&nbsp;Azhar Abdul Rahman ,&nbsp;Nurul Zahirah Noor Azman ,&nbsp;Sameer Algburi ,&nbsp;Ismael.A. Wadi ,&nbsp;Ayed M. Binzowaimil ,&nbsp;Osamah Aldaghri ,&nbsp;Khalid Hassan Ibnaouf","doi":"10.1016/j.photonics.2024.101228","DOIUrl":"10.1016/j.photonics.2024.101228","url":null,"abstract":"<div><p><span><span><span>The present study employs a cost-effective laser ablation technique in combination with the RF sputtering method to successfully synthesize silver </span>nanoparticles encapsulated by zinc oxide on a </span>silicon<span> (Si) substrate. This synthesis approach aims to enhance the efficiency of photodetector<span> devices while concurrently reducing material expenses, thereby promoting advancements in photodetector applications. The incorporation of various plasmonic nanoparticles (NPs) into the photodetector's architecture is demonstrated as a means to substantially improve the photoresponse of UV photodetectors. Three distinct samples, denoted as AgNPs/Si, AgNPs/ZnO/Si, and ZnO/AgNPs/Si, underwent comprehensive analysis and characterization of their morphological attributes, crystal structures, elemental composition, and optical properties. The UV photodetection efficacy of these samples was evaluated by subjecting them to 385 nm UV light at different bias voltages. The current-voltage (I-V) characteristics of the ZnO/AgNPs/Si photodetector revealed significantly enhanced conductivity in comparison to the AgNPs/Si and AgNPs/ZnO/Si counterparts. Remarkably, the ZnO/AgNPs/Si photodetector exhibited the highest responsivity value of 132 A/W, accompanied by quantum efficiency of 429.88, sensitivity of 31,400%, gain of 315, detectivity of 18 × 10</span></span></span><sup>10</sup> Jones, and a noise equivalent power (NEP) of 0.556 × 10<sup>–13</sup> W. These findings underscore the efficacy of our innovative broadband photodetector, highlighting its potential for practical implementation. This research offers valuable insights into the enhancement of photodetector performance and its applicability in real-world scenarios.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101228"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139510468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-wideband solar absorber based on double-polygonal metamaterial structures 基于双多边形超材料结构的超宽带太阳能吸收器
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101234
Pengfei Sun , Lijing Su , Sihan Nie , Xin Li , Yaxin Zhou , Yang Gao

In this work, a novel solar absorber with wide angle tolerance and insensitivity to polarization is proposed. The upper layer of the absorber comprises two polygonal structures, which can achieve an absorption rate of 94.2% across a broad wavelength range of 2218 nm (584 nm - 2802 nm). The performance of the absorber is simulated and verified using the finite difference time domain (FDTD) method combined with impedance matching theory. Through examining the electromagnetic field distribution at absorption peaks, the physical mechanism is elucidated. Moreover, incorporating refractory metals and nonmetallic materials in its design enhances the stability of the absorber, making it suitable for various extreme environments. This indicates its potential applications in solar energy storage and solar thermal photovoltaic systems.

这项研究提出了一种新型太阳能吸收器,它具有广角容限和对偏振不敏感的特性。吸收器的上层由两个多边形结构组成,在 2218 nm(584 nm - 2802 nm)的宽波长范围内吸收率可达 94.2%。利用有限差分时域 (FDTD) 方法结合阻抗匹配理论对吸收器的性能进行了模拟和验证。通过研究吸收峰的电磁场分布,阐明了物理机制。此外,在设计中加入难熔金属和非金属材料增强了吸收器的稳定性,使其适用于各种极端环境。这表明它在太阳能储存和太阳能光热系统中具有潜在的应用价值。
{"title":"Ultra-wideband solar absorber based on double-polygonal metamaterial structures","authors":"Pengfei Sun ,&nbsp;Lijing Su ,&nbsp;Sihan Nie ,&nbsp;Xin Li ,&nbsp;Yaxin Zhou ,&nbsp;Yang Gao","doi":"10.1016/j.photonics.2024.101234","DOIUrl":"10.1016/j.photonics.2024.101234","url":null,"abstract":"<div><p>In this work, a novel solar absorber with wide angle tolerance and insensitivity to polarization is proposed. The upper layer of the absorber comprises two polygonal structures, which can achieve an absorption rate of 94.2% across a broad wavelength range of 2218 nm (584 nm - 2802 nm). The performance of the absorber is simulated and verified using the finite difference time domain (FDTD) method combined with impedance matching theory. Through examining the electromagnetic field distribution at absorption peaks, the physical mechanism is elucidated. Moreover, incorporating refractory metals and nonmetallic materials in its design enhances the stability of the absorber, making it suitable for various extreme environments. This indicates its potential applications in solar energy storage and solar thermal photovoltaic systems.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101234"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139667591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mid-infrared assisted transport at the nano-junction between graphene and a doped-diamond scanning probe 石墨烯与掺杂金刚石扫描探针纳米接合处的中红外辅助传输
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101243
Tommaso Venanzi , Maria Eleonora Temperini , Leonetta Baldassarre , Michele Ortolani , Valeria Giliberti

We report mid-infrared photoconductive atomic-force microscopy (AFM) of a graphene sheet with doped-diamond AFM probes illuminated with a quantum cascade laser. The diamond probe ensures high mechanical and electrical stability. We observe a prominent photoconduction at finite biases that we interpret as the overcoming of a potential barrier formed at the graphene-diamond junction by free carriers excited by mid-infrared photons (220 meV photon energy). Moreover, we observe a small photo-thermoelectric effect of graphene under zero applied bias. We demonstrate that the use of diamond AFM probes for mid-infrared photoconductive AFM has great potential to investigate the nanometric inhomogeneities of the Fermi level and of the work function across integrated semiconductor devices.

我们报告了利用量子级联激光照射的掺杂金刚石原子力显微镜探针对石墨烯薄片进行中红外光电导原子力显微镜(AFM)观察的结果。金刚石探针确保了高度的机械和电气稳定性。我们观察到在有限偏压下的显著光电导现象,并将其解释为中红外光子(光子能量为 220 meV)激发的自由载流子克服了石墨烯-金刚石交界处形成的势垒。此外,我们还观察到石墨烯在零外加偏压下的微弱光热电效应。我们证明,使用金刚石原子力显微镜探针进行中红外光电导原子力显微镜研究,在研究费米级的纳米不均匀性和集成半导体器件的功函数方面具有巨大潜力。
{"title":"Mid-infrared assisted transport at the nano-junction between graphene and a doped-diamond scanning probe","authors":"Tommaso Venanzi ,&nbsp;Maria Eleonora Temperini ,&nbsp;Leonetta Baldassarre ,&nbsp;Michele Ortolani ,&nbsp;Valeria Giliberti","doi":"10.1016/j.photonics.2024.101243","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101243","url":null,"abstract":"<div><p>We report mid-infrared photoconductive atomic-force microscopy (AFM) of a graphene sheet with doped-diamond AFM probes illuminated with a quantum cascade laser. The diamond probe ensures high mechanical and electrical stability. We observe a prominent photoconduction at finite biases that we interpret as the overcoming of a potential barrier formed at the graphene-diamond junction by free carriers excited by mid-infrared photons (220 meV photon energy). Moreover, we observe a small photo-thermoelectric effect of graphene under zero applied bias. We demonstrate that the use of diamond AFM probes for mid-infrared photoconductive AFM has great potential to investigate the nanometric inhomogeneities of the Fermi level and of the work function across integrated semiconductor devices.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101243"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S156944102400018X/pdfft?md5=6fed236b94fb15d32d69ca003bce04bb&pid=1-s2.0-S156944102400018X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139999410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Photonics and Nanostructures-Fundamentals and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1