Genitourinary surgeons and oncologists are particularly interested in whether a robotic surgery improves times to Prostate Specific Antigen (PSA) recurrence compared to a non-robotic surgery for removing the cancerous prostate. Time to PSA recurrence is an example of a survival time that is typically interval-censored between two consecutive clinical inspections with opposite test results. In addition, success of medical devices and technologies often depends on factors such as experience and skill level of the medical service providers, thus leading to clustering of these survival times. For analyzing the effects of surgery types and other covariates on median of clustered interval-censored time to post-surgery PSA recurrence, we present three competing novel models and associated frequentist and Bayesian analyses. The first model is based on a transform-both-sides of survival time with Gaussian random effects to account for the within-cluster association. Our second model assumes an approximate marginal Laplace distribution for the transformed log-survival times with a Gaussian copula to accommodate clustering. Our third model is a special case of the second model with Laplace distribution for the marginal log-survival times and Gaussian copula for the within-cluster association. Simulation studies establish the second model to be highly robust against extreme observations while estimating median regression coefficients. We provide a comprehensive comparison among these three competing models based on the model properties and the computational ease of their Frequentist and Bayesian analysis. We also illustrate the practical implementations and uses of these methods via analysis of a simulated clustered interval-censored data-set similar in design to a post-surgery PSA recurrence study.