R. S., P. Vasanthakumar, Aravindh Kumar Suseela Moorthi, E. Rathakrishnan
Abstract The mixing characteristics of a Mach 1.9 jet at three levels of overexpansion, corresponding to nozzle pressure ratio (NPR) 3, 4 and 5, in the presence of a sonic co-flow (secondary flow), which was submerged in a subsonic co-flow (tertiary flow) was studied experimentally. For these NPRs the secondary co-flow is sonic with underexpanded levels and the tertiary flow Mach number was found to be 0.41, 0.71 and 0.85, respectively. The centerline decay results of the primary jet show that the jet mixing is abated by the co-flow, at all levels of expansion. However, in spite of the reduced mixing encountered by the supersonic primary jet, the waves in the jet core are found to be weaker in the presence of co-flows. This may be regarded as an advantage from the shock associated noise point of view, in accordance with Tam’s theory; which states weaker the waves in the core, the lesser is the shock associated noise. The results show that the reduced mixing environment caused by the sonic co-flow alone leads to the jet core elongation of about 20%, 23% and 49%, at NPRs 3, 4 and 5, respectively. The core length of the jet is found to increase by 29%, 46% and 62%, respectively, at NPRs 3, 4 and 5, when both sonic and subsonic co-flow streams are present.
{"title":"Supersonic jet mixing in the presence of two annular co-flow streams","authors":"R. S., P. Vasanthakumar, Aravindh Kumar Suseela Moorthi, E. Rathakrishnan","doi":"10.1515/tjj-2022-0048","DOIUrl":"https://doi.org/10.1515/tjj-2022-0048","url":null,"abstract":"Abstract The mixing characteristics of a Mach 1.9 jet at three levels of overexpansion, corresponding to nozzle pressure ratio (NPR) 3, 4 and 5, in the presence of a sonic co-flow (secondary flow), which was submerged in a subsonic co-flow (tertiary flow) was studied experimentally. For these NPRs the secondary co-flow is sonic with underexpanded levels and the tertiary flow Mach number was found to be 0.41, 0.71 and 0.85, respectively. The centerline decay results of the primary jet show that the jet mixing is abated by the co-flow, at all levels of expansion. However, in spite of the reduced mixing encountered by the supersonic primary jet, the waves in the jet core are found to be weaker in the presence of co-flows. This may be regarded as an advantage from the shock associated noise point of view, in accordance with Tam’s theory; which states weaker the waves in the core, the lesser is the shock associated noise. The results show that the reduced mixing environment caused by the sonic co-flow alone leads to the jet core elongation of about 20%, 23% and 49%, at NPRs 3, 4 and 5, respectively. The core length of the jet is found to increase by 29%, 46% and 62%, respectively, at NPRs 3, 4 and 5, when both sonic and subsonic co-flow streams are present.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46087389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In an attempt to reduce engine frontal area, while maintaining a high single stage pressure ratio, mixed flow compressor stages are frequently used in micro gas turbine (MGT) engines. The expansion of the choke margin of such a mixed flow compressor is presented. The use of a crossover diffuser configuration in a mixed flow compressor stage has displayed superior performance results compared to legacy diffuser configurations, especially when geometric restrictions are enforced. A disadvantage of a crossover diffuser configuration is that it typically displays an inferior operating range compared to legacy diffuser configurations. In an attempt to expand the choke margin of a MGT mixed flow compressor, the use of tandem and splitter vane crossover diffuser configurations was evaluated. It was found that a low solidity first vane row configuration provided a 3% increase in choke margin. A splitter vane crossover diffuser configuration provided a 5.9% increase in choke margin. A tandem vaned diffuser with a reduced first row vane number provided a 7.8% increase in choke margin.
{"title":"Expanding the choke margin of a mixed flow compressor stage for a micro gas turbine engine","authors":"Hano van Eck, S. J. van der Spuy, A. Gannon","doi":"10.1515/tjj-2022-0060","DOIUrl":"https://doi.org/10.1515/tjj-2022-0060","url":null,"abstract":"Abstract In an attempt to reduce engine frontal area, while maintaining a high single stage pressure ratio, mixed flow compressor stages are frequently used in micro gas turbine (MGT) engines. The expansion of the choke margin of such a mixed flow compressor is presented. The use of a crossover diffuser configuration in a mixed flow compressor stage has displayed superior performance results compared to legacy diffuser configurations, especially when geometric restrictions are enforced. A disadvantage of a crossover diffuser configuration is that it typically displays an inferior operating range compared to legacy diffuser configurations. In an attempt to expand the choke margin of a MGT mixed flow compressor, the use of tandem and splitter vane crossover diffuser configurations was evaluated. It was found that a low solidity first vane row configuration provided a 3% increase in choke margin. A splitter vane crossover diffuser configuration provided a 5.9% increase in choke margin. A tandem vaned diffuser with a reduced first row vane number provided a 7.8% increase in choke margin.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44060966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Jagadish Babu, Mathews P. Samuel, Antonio Davis, R. K. Mishra
Abstract Compressor characteristics of a single spool turboprop engine have been studied in this paper. It has been brought outhow constant power lines in the compressor characteristics of these compressors make them different from others. Constant speed lines and constant power lines have also been highlighted. A novel method of modeling of compressorof a single spool turboprop engine has also been studied in this paper. Application of neural networks in prediction of compressor characteristics has been investigated. Multilayer Perceptron feed forward neural network has been considered with different transfer functions to assess the potential capability of network in extrapolation and interpolation. Effectiveness of prediction with and without engine bleed valve open and anti-ice valve open situations have been assessed. Network Predictionshas been compared with engine test data to assess the accuracy of prediction and to quantify the build variation in the manufacture of engines. Capability of network with limited test data to predict the complete performance has also been assessed and presented in this paper.
{"title":"Prediction of compressor nominal characteristics of a turboprop engine using artificial neural networks for build standard assessment","authors":"C. Jagadish Babu, Mathews P. Samuel, Antonio Davis, R. K. Mishra","doi":"10.1515/tjj-2020-0015","DOIUrl":"https://doi.org/10.1515/tjj-2020-0015","url":null,"abstract":"Abstract Compressor characteristics of a single spool turboprop engine have been studied in this paper. It has been brought outhow constant power lines in the compressor characteristics of these compressors make them different from others. Constant speed lines and constant power lines have also been highlighted. A novel method of modeling of compressorof a single spool turboprop engine has also been studied in this paper. Application of neural networks in prediction of compressor characteristics has been investigated. Multilayer Perceptron feed forward neural network has been considered with different transfer functions to assess the potential capability of network in extrapolation and interpolation. Effectiveness of prediction with and without engine bleed valve open and anti-ice valve open situations have been assessed. Network Predictionshas been compared with engine test data to assess the accuracy of prediction and to quantify the build variation in the manufacture of engines. Capability of network with limited test data to predict the complete performance has also been assessed and presented in this paper.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":"96 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136389487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In this paper, a diffuser is used to integrate a transonic high-pressure turbine with a rotating detonation combustor (RDC). The paper focuses on the required design modifications to the turbine endwalls (EW) to enable high efficiency, while preserving the airfoil blade-to-blade geometry. The main challenge is the stator passage unstarting, due to the high inlet Mach number. First of all, steady Reynolds Averaged Navier Stokes simulations were performed to compare the efficiency of turbines with constant-radius EWs to turbines with axisymmetric EWs. A modified EW design prevented the unstarting of the stator passage, enabling a significant gain in performance. Afterward, the influence on the turbine efficiency and damping due to the unsteadiness from the diffuser-like fluctuations of the RDC was evaluated with unsteady Reynolds Averaged Navier Stokes simulations with a mixing plane approach (MPA). Full unsteady simulations were carried out on selected inlet conditions and compared to the mixing plane results. This parametric study provides turbine designers with recommended diffusion rates along the vane EWs. Additionally, we provide guidance on the upstream diffuser design, specifically the required damping and outlet Mach number.
{"title":"Integration of a transonic high-pressure turbine with a rotating detonation combustor and a diffuser","authors":"Zhe Liu, James Braun, Guillermo Paniagua","doi":"10.1515/tjj-2020-0016","DOIUrl":"https://doi.org/10.1515/tjj-2020-0016","url":null,"abstract":"Abstract In this paper, a diffuser is used to integrate a transonic high-pressure turbine with a rotating detonation combustor (RDC). The paper focuses on the required design modifications to the turbine endwalls (EW) to enable high efficiency, while preserving the airfoil blade-to-blade geometry. The main challenge is the stator passage unstarting, due to the high inlet Mach number. First of all, steady Reynolds Averaged Navier Stokes simulations were performed to compare the efficiency of turbines with constant-radius EWs to turbines with axisymmetric EWs. A modified EW design prevented the unstarting of the stator passage, enabling a significant gain in performance. Afterward, the influence on the turbine efficiency and damping due to the unsteadiness from the diffuser-like fluctuations of the RDC was evaluated with unsteady Reynolds Averaged Navier Stokes simulations with a mixing plane approach (MPA). Full unsteady simulations were carried out on selected inlet conditions and compared to the mixing plane results. This parametric study provides turbine designers with recommended diffusion rates along the vane EWs. Additionally, we provide guidance on the upstream diffuser design, specifically the required damping and outlet Mach number.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":"294 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135031426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongxin Zhang, Jian-Jun Ye, Bo Jin, C. Xu, Guoping Huang
Abstract Endwall-pulsed blowing (EPB) is studied for three different excitation waveforms to improve the aerodynamic performance of highly loaded compressors. Some important excitation parameters include the excitation frequency and momentum coefficient, which were analyzed in detail. The results of the EPB are compared with the endwall steady blowing (ESB) case. For EPBs with the three excitation waveforms (Waveforms sine, triangle and trapezoid), excitation frequencies that are equal to an integral multiple of the natural frequency of the vortex shedding are optimal and provide better performances than the ESB with the same time-mean momentum coefficient. Moreover, the EPBs of the three excitation waveforms have significant differences in their aerodynamic performance improvements. The optimal case is achieved by the EPB with Waveform triangle and provides a total pressure loss coefficient with a reduction of 25.64%.
{"title":"Endwall-pulsed blowing of different excitation models to control flow separation on a highly-loaded compressor cascade","authors":"Hongxin Zhang, Jian-Jun Ye, Bo Jin, C. Xu, Guoping Huang","doi":"10.1515/tjj-2023-0009","DOIUrl":"https://doi.org/10.1515/tjj-2023-0009","url":null,"abstract":"Abstract Endwall-pulsed blowing (EPB) is studied for three different excitation waveforms to improve the aerodynamic performance of highly loaded compressors. Some important excitation parameters include the excitation frequency and momentum coefficient, which were analyzed in detail. The results of the EPB are compared with the endwall steady blowing (ESB) case. For EPBs with the three excitation waveforms (Waveforms sine, triangle and trapezoid), excitation frequencies that are equal to an integral multiple of the natural frequency of the vortex shedding are optimal and provide better performances than the ESB with the same time-mean momentum coefficient. Moreover, the EPBs of the three excitation waveforms have significant differences in their aerodynamic performance improvements. The optimal case is achieved by the EPB with Waveform triangle and provides a total pressure loss coefficient with a reduction of 25.64%.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44917768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract During take-off of a vertical take-off and landing (VTOL) aircraft, ground effects can cause a downward force on the aircraft body and wings. The downward force could substantially reduce the payload of the aircraft, which is undesirable. This paper investigates the ground effects related to VTOL applications with distributed propulsion. A slot jet is used to simulate the distributed propulsion system. A model of a wing with a slot jet placed near the trailing edge of the wing is investigated. The slot jet is almost perpendicular to the ground to provide a vertical thrust. Experimental and numerical methods are used to investigate the aerodynamic performance of this model. Theoretical analysis is carried out to understand the formation mechanism of the low pressure region on the lower surface of the wing, which causes the downward force. The flow physics of the jet inducing ground vortex is investigated. It is found that the convection term in the ground vortex area is the main source of the pressure reduction. Based on the flow mechanism, a redesigned configuration is proposed to reduce the negative effect of the ground vortex. The flow structures such as the tip vortex are also investigated.
{"title":"Ground effects on the aerodynamics of a wing with slot type distributed propulsion system for VTOL applications","authors":"Cheng'an Bai, Chao Zhou","doi":"10.1515/tjj-2022-0065","DOIUrl":"https://doi.org/10.1515/tjj-2022-0065","url":null,"abstract":"Abstract During take-off of a vertical take-off and landing (VTOL) aircraft, ground effects can cause a downward force on the aircraft body and wings. The downward force could substantially reduce the payload of the aircraft, which is undesirable. This paper investigates the ground effects related to VTOL applications with distributed propulsion. A slot jet is used to simulate the distributed propulsion system. A model of a wing with a slot jet placed near the trailing edge of the wing is investigated. The slot jet is almost perpendicular to the ground to provide a vertical thrust. Experimental and numerical methods are used to investigate the aerodynamic performance of this model. Theoretical analysis is carried out to understand the formation mechanism of the low pressure region on the lower surface of the wing, which causes the downward force. The flow physics of the jet inducing ground vortex is investigated. It is found that the convection term in the ground vortex area is the main source of the pressure reduction. Based on the flow mechanism, a redesigned configuration is proposed to reduce the negative effect of the ground vortex. The flow structures such as the tip vortex are also investigated.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45308044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We propose a new type of effervescent atomizer with bushings installed in the liquid channel perpendicular to the channel’s axis. Bushings have holes through which air is injected to create bubbles. The air is released into the gap between the channel and the bushing. This investigation evaluates the bubbles’ atomization quality. Atomizer tests were conducted at multiple water and air flow rates, under different configurations, without an exit nozzle and with a 2 mm nozzle diameter. The atomizer’s design enables a homogenous bubble flow with small air bubbles. At an ALR = 0.012–0.036 and water flow rates of 1.67 and 2.17 L/min without an exit nozzle, bubble diameters of 0.2–0.4 mm comprised 40–50% of the total number of bubbles. The number of the bubbles with diameters of 0.8–1.0 mm does not exceed 5%. After increasing the injection parameter ε twice, the average diameter of the bubbles remained constant. Upon testing, an atomizer with one bushing, 2 mm-diameter outlet nozzle, and a water flow rate of 1.67 L/min produced particle diameters of SMD = 32–100 μm at ALR values of 0.02–0.12.
{"title":"Study of a new effervescent atomizer design","authors":"I. Levitsky, Nikolay Razoronov","doi":"10.1515/tjj-2023-0007","DOIUrl":"https://doi.org/10.1515/tjj-2023-0007","url":null,"abstract":"Abstract We propose a new type of effervescent atomizer with bushings installed in the liquid channel perpendicular to the channel’s axis. Bushings have holes through which air is injected to create bubbles. The air is released into the gap between the channel and the bushing. This investigation evaluates the bubbles’ atomization quality. Atomizer tests were conducted at multiple water and air flow rates, under different configurations, without an exit nozzle and with a 2 mm nozzle diameter. The atomizer’s design enables a homogenous bubble flow with small air bubbles. At an ALR = 0.012–0.036 and water flow rates of 1.67 and 2.17 L/min without an exit nozzle, bubble diameters of 0.2–0.4 mm comprised 40–50% of the total number of bubbles. The number of the bubbles with diameters of 0.8–1.0 mm does not exceed 5%. After increasing the injection parameter ε twice, the average diameter of the bubbles remained constant. Upon testing, an atomizer with one bushing, 2 mm-diameter outlet nozzle, and a water flow rate of 1.67 L/min produced particle diameters of SMD = 32–100 μm at ALR values of 0.02–0.12.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":"40 1","pages":"229 - 241"},"PeriodicalIF":0.9,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46471204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We propose a new type of effervescent atomizer with bushings installed in the liquid channel perpendicular to the channel’s axis. Bushings have holes through which air is injected to create bubbles. The air is released into the gap between the channel and the bushing. This investigation evaluates the bubbles’ atomization quality. Atomizer tests were conducted at multiple water and air flow rates, under different configurations, without an exit nozzle and with a 2 mm nozzle diameter. The atomizer’s design enables a homogenous bubble flow with small air bubbles. At an ALR = 0.012–0.036 and water flow rates of 1.67 and 2.17 L/min without an exit nozzle, bubble diameters of 0.2–0.4 mm comprised 40–50% of the total number of bubbles. The number of the bubbles with diameters of 0.8–1.0 mm does not exceed 5%. After increasing the injection parameter ε twice, the average diameter of the bubbles remained constant. Upon testing, an atomizer with one bushing, 2 mm-diameter outlet nozzle, and a water flow rate of 1.67 L/min produced particle diameters of SMD = 32–100 μm at ALR values of 0.02–0.12.
{"title":"Study of a new effervescent atomizer design","authors":"I. Levitsky, Nikolay Razoronov","doi":"10.1515/tjeng-2023-0007","DOIUrl":"https://doi.org/10.1515/tjeng-2023-0007","url":null,"abstract":"Abstract We propose a new type of effervescent atomizer with bushings installed in the liquid channel perpendicular to the channel’s axis. Bushings have holes through which air is injected to create bubbles. The air is released into the gap between the channel and the bushing. This investigation evaluates the bubbles’ atomization quality. Atomizer tests were conducted at multiple water and air flow rates, under different configurations, without an exit nozzle and with a 2 mm nozzle diameter. The atomizer’s design enables a homogenous bubble flow with small air bubbles. At an ALR = 0.012–0.036 and water flow rates of 1.67 and 2.17 L/min without an exit nozzle, bubble diameters of 0.2–0.4 mm comprised 40–50% of the total number of bubbles. The number of the bubbles with diameters of 0.8–1.0 mm does not exceed 5%. After increasing the injection parameter ε twice, the average diameter of the bubbles remained constant. Upon testing, an atomizer with one bushing, 2 mm-diameter outlet nozzle, and a water flow rate of 1.67 L/min produced particle diameters of SMD = 32–100 μm at ALR values of 0.02–0.12.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44293875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The role of turbine blade cooling and coolants are significant factors in modern gas turbine aerodynamic design. This paper presents an effective and rapid airfoil design method based on CFD computation of the S1 surface and the existing loss correlations. The method can assess the coolant mixing loss by identifying each cooling hole separately and obtain the overall mainflow aerodynamic loss for cooled airfoil. The CFD computation code of the S1 surface is powered by a two-dimensional Euler equation, which is inviscid. Typical Kacker–Okapuu empirical correlations are then used to assess the airfoil friction loss, trailing edge loss, and shock loss. A novel form of the Hartsel model for coolant mixing loss is developed and employed in the CFD codes. In the reformed model, the mixing loss coefficient is directly associated with the blowing ratio and the total pressure/temperature ratio of mainstream-to-coolant, making it more convenient than the original model in the airfoil design process. Based on a transonic turbine vane airfoil, the influences of the film outflow location and outflow Mach number on the coolant mixing loss are investigated using the above prediction method and the cascade blowing test.
{"title":"A cooled turbine airfoil performance prediction method with two-dimensional CFD computation and loss models","authors":"Xiaodong Zhang, J. Liu, Chen Li","doi":"10.1515/tjj-2022-0044","DOIUrl":"https://doi.org/10.1515/tjj-2022-0044","url":null,"abstract":"Abstract The role of turbine blade cooling and coolants are significant factors in modern gas turbine aerodynamic design. This paper presents an effective and rapid airfoil design method based on CFD computation of the S1 surface and the existing loss correlations. The method can assess the coolant mixing loss by identifying each cooling hole separately and obtain the overall mainflow aerodynamic loss for cooled airfoil. The CFD computation code of the S1 surface is powered by a two-dimensional Euler equation, which is inviscid. Typical Kacker–Okapuu empirical correlations are then used to assess the airfoil friction loss, trailing edge loss, and shock loss. A novel form of the Hartsel model for coolant mixing loss is developed and employed in the CFD codes. In the reformed model, the mixing loss coefficient is directly associated with the blowing ratio and the total pressure/temperature ratio of mainstream-to-coolant, making it more convenient than the original model in the airfoil design process. Based on a transonic turbine vane airfoil, the influences of the film outflow location and outflow Mach number on the coolant mixing loss are investigated using the above prediction method and the cascade blowing test.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42550019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}