首页 > 最新文献

International Journal of Turbo & Jet-Engines最新文献

英文 中文
Effect of zero penetration angle chevrons in supersonic jet noise and screech tone mitigation 零贯穿角人字形对超音速喷气噪声的影响及尖声抑制
IF 0.9 4区 工程技术 Q3 Engineering Pub Date : 2023-04-17 DOI: 10.1515/tjj-2022-0073
Kaleeswaran Periyasamy, Kadiresh P. Natarajan, Bogadi Surendra, Khandai Suresh Chandra
Abstract An experimental study is conducted to determine the effect of chevrons with zero penetration angles at the CD nozzle exit on an emitted noise field. The implication of passive control is to reduce the blockage of the nozzle exit area with minimal engine thrust penalty. The cold air jets issued at design Mach numbers 1.5 and 1.75 from the De Laval nozzles of the circular section were investigated. This passive control eliminates screech tones at the over and ideally expanded conditions at 60° and 90° in the azimuth plane. The acoustic data measurements have also been observed for the chosen jet Mach numbers. The schlieren images reveal the shock cell pattern to eliminate the effect of shock-associated noise levels at supersonic jets. The results show that 10 chevrons with no penetration act as an effective eliminator of screech tone and noise suppression average ∆OASPL value up to 3 dB at Mach number 1.75.
摘要通过实验研究了CD喷管出口零侵彻角线形对发射噪声场的影响。被动控制的意义在于以最小的发动机推力损失来减少喷管出口区域的堵塞。研究了圆形截面De Laval喷嘴在设计马赫数为1.5和1.75时发出的冷空气射流。这种被动控制消除了在60°和90°的方位角平面上的过度和理想扩展条件下的刺耳音调。对选定的射流马赫数也进行了声学数据测量。纹影图像揭示了冲击细胞模式,以消除超音速射流中与冲击相关的噪声水平的影响。结果表明,10条无穿透的线形线对噪声抑制效果较好,在1.75马赫数下噪声抑制平均∆OASPL值可达3 dB。
{"title":"Effect of zero penetration angle chevrons in supersonic jet noise and screech tone mitigation","authors":"Kaleeswaran Periyasamy, Kadiresh P. Natarajan, Bogadi Surendra, Khandai Suresh Chandra","doi":"10.1515/tjj-2022-0073","DOIUrl":"https://doi.org/10.1515/tjj-2022-0073","url":null,"abstract":"Abstract An experimental study is conducted to determine the effect of chevrons with zero penetration angles at the CD nozzle exit on an emitted noise field. The implication of passive control is to reduce the blockage of the nozzle exit area with minimal engine thrust penalty. The cold air jets issued at design Mach numbers 1.5 and 1.75 from the De Laval nozzles of the circular section were investigated. This passive control eliminates screech tones at the over and ideally expanded conditions at 60° and 90° in the azimuth plane. The acoustic data measurements have also been observed for the chosen jet Mach numbers. The schlieren images reveal the shock cell pattern to eliminate the effect of shock-associated noise levels at supersonic jets. The results show that 10 chevrons with no penetration act as an effective eliminator of screech tone and noise suppression average ∆OASPL value up to 3 dB at Mach number 1.75.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42725090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reacting flow analysis in scramjet engine: effect of mass flow rate of fuel and flight velocity 超燃冲压发动机反应流分析:燃料质量流量和飞行速度的影响
IF 0.9 4区 工程技术 Q3 Engineering Pub Date : 2023-04-17 DOI: 10.1515/tjeng-2023-0029
S. P. Sanaka, Ramanaiah Kandula, Khyathi Sree Chalamalasetty, Durga Rao Kappala
Abstract The objective of the study is realizing the effect of fuel mass flow rate and flight speed on combustion in scramjet engine. DLR conical strut based scramjet combustor configuration was chosen and simulated the chemical reaction between the air and hydrogen fuel. A slot of size 40 mm × 0.295 mm provided at the center of the strut to injected hydrogen fuel from the rare side in to the downstream flow. ICEM CFD software is used for the generation of structured elements in computational domain for three dimensional flow analyses. Standard k-epsilon turbulence model and species transport equation is used in ANSYS fluent solver. The predicted temperature, velocity distribution along the axial length was compared with the experimental results and validated. The temperature distribution at different Mach numbers and mass flow rate reveals that the peak temperature increased with the flight speed and inlet fuel mass flow rate. The peak temperature noticed at the center of the combustor is around 3500 K at a flight speed of Mach 4. The predicted variation of temperature, pressure, velocity in the combustor and the flow structure for reacting flow facilitate good understanding of the combustion process in scramjet combustor.
研究的目的是实现燃料质量、流量和飞行速度对超燃冲压发动机燃烧的影响。选择了基于DLR锥形支杆的超燃冲压发动机燃烧室构型,并对空气与氢燃料的化学反应进行了模拟。在支板中心有一个40 mm × 0.295 mm的槽,用于从稀有侧向下游流动注入氢燃料。采用ICEM CFD软件在计算域生成结构单元,进行三维流动分析。ANSYS fluent求解器采用标准k-epsilon湍流模型和种输运方程。将预测的温度、速度沿轴向长度的分布与实验结果进行了比较,并得到了验证。不同马赫数和质量流量下的温度分布表明,峰值温度随飞行速度和进口燃油质量流量的增加而增加。在4马赫的飞行速度下,燃烧室中心的峰值温度约为3500k。预测了燃烧室内温度、压力、速度的变化以及反应流的流动结构,有助于更好地理解超燃冲压发动机燃烧过程。
{"title":"Reacting flow analysis in scramjet engine: effect of mass flow rate of fuel and flight velocity","authors":"S. P. Sanaka, Ramanaiah Kandula, Khyathi Sree Chalamalasetty, Durga Rao Kappala","doi":"10.1515/tjeng-2023-0029","DOIUrl":"https://doi.org/10.1515/tjeng-2023-0029","url":null,"abstract":"Abstract The objective of the study is realizing the effect of fuel mass flow rate and flight speed on combustion in scramjet engine. DLR conical strut based scramjet combustor configuration was chosen and simulated the chemical reaction between the air and hydrogen fuel. A slot of size 40 mm × 0.295 mm provided at the center of the strut to injected hydrogen fuel from the rare side in to the downstream flow. ICEM CFD software is used for the generation of structured elements in computational domain for three dimensional flow analyses. Standard k-epsilon turbulence model and species transport equation is used in ANSYS fluent solver. The predicted temperature, velocity distribution along the axial length was compared with the experimental results and validated. The temperature distribution at different Mach numbers and mass flow rate reveals that the peak temperature increased with the flight speed and inlet fuel mass flow rate. The peak temperature noticed at the center of the combustor is around 3500 K at a flight speed of Mach 4. The predicted variation of temperature, pressure, velocity in the combustor and the flow structure for reacting flow facilitate good understanding of the combustion process in scramjet combustor.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43841774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient flow control technique based on co-flow jet and multi-stage slot circulation control applied to a supercritical airfoil 基于共流射流和多级缝隙循环控制的高效流动控制技术在超临界翼型中的应用
IF 0.9 4区 工程技术 Q3 Engineering Pub Date : 2023-04-10 DOI: 10.1515/tjj-2023-0027
Lei Wang, Hanan Lu, Yue Xu, Q. Li
Abstract Circulation control is a kind of efficient flow control technology which can improve aircraft aerodynamic performance and reduce fuel consumption. However, improving the aerodynamic efficiency of a circulation device to enhance flight endurance and achieve environmentally flying is a challenging problem for the application of circulation control. This paper presents an efficient flow control technique that combines co-flow jet and multi-stage slot circulation control. The combinational flow control technique is applied to a supersonic airfoil to test its energy consumption and aerodynamic benefit achievement. Results show that both the single and double slot circulation control can improve the maximum lift-drag ratio of the baseline airfoil, with an increment of 11.3% and 19.1%, respectively. Compared with the single application of co-flow jet control which can increase the lift-drag ratio of the baseline airfoil by 16.3% and extend the stall angle of attack from 6° to 8°, the combinational flow control can obtain a more significant lift-drag ratio increment by about 27.3% and eliminate flow separations at high angle of attack. The stall angle of attack can even be increased to about 10°. Additionally, the blowing efficiency of the circulation control airfoil has been comprehensively analyzed. The results show that the maximum effective lift-drag ratio and highest blowing efficiency can be achieved at a blowing coefficient of 0.00235.
摘要循环控制是一种能够提高飞机气动性能、降低燃油消耗的高效流动控制技术。然而,如何提高循环装置的气动效率,提高飞行续航力,实现环境飞行,是循环控制应用中的一个难题。本文提出了一种将共流射流与多级槽式循环控制相结合的高效流动控制技术。将组合流动控制技术应用于某超声速翼型,对其能量消耗和气动效益进行了测试。结果表明,单缝和双缝循环控制均能提高基准翼型的最大升阻比,分别提高11.3%和19.1%。与单一应用共流射流控制可使基准翼型升阻比提高16.3%,失速攻角从6°扩展到8°相比,组合流动控制可获得更显著的升阻比增加约27.3%,并消除了大攻角下的流动分离。失速攻角甚至可以增加到10°左右。此外,还对循环控制翼型的吹气效率进行了综合分析。结果表明:吹气系数为0.00235时,有效升阻比最大,吹气效率最高;
{"title":"An efficient flow control technique based on co-flow jet and multi-stage slot circulation control applied to a supercritical airfoil","authors":"Lei Wang, Hanan Lu, Yue Xu, Q. Li","doi":"10.1515/tjj-2023-0027","DOIUrl":"https://doi.org/10.1515/tjj-2023-0027","url":null,"abstract":"Abstract Circulation control is a kind of efficient flow control technology which can improve aircraft aerodynamic performance and reduce fuel consumption. However, improving the aerodynamic efficiency of a circulation device to enhance flight endurance and achieve environmentally flying is a challenging problem for the application of circulation control. This paper presents an efficient flow control technique that combines co-flow jet and multi-stage slot circulation control. The combinational flow control technique is applied to a supersonic airfoil to test its energy consumption and aerodynamic benefit achievement. Results show that both the single and double slot circulation control can improve the maximum lift-drag ratio of the baseline airfoil, with an increment of 11.3% and 19.1%, respectively. Compared with the single application of co-flow jet control which can increase the lift-drag ratio of the baseline airfoil by 16.3% and extend the stall angle of attack from 6° to 8°, the combinational flow control can obtain a more significant lift-drag ratio increment by about 27.3% and eliminate flow separations at high angle of attack. The stall angle of attack can even be increased to about 10°. Additionally, the blowing efficiency of the circulation control airfoil has been comprehensively analyzed. The results show that the maximum effective lift-drag ratio and highest blowing efficiency can be achieved at a blowing coefficient of 0.00235.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42465910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical investigations of heat transfer characteristics using oblong fins and circular fins in a wedge channel 楔形通道中长形翅片和圆形翅片传热特性的数值研究
IF 0.9 4区 工程技术 Q3 Engineering Pub Date : 2023-04-04 DOI: 10.1515/tjj-2022-0055
Goveraiahgari Venkatesh, R. Meenakshi Reddy, Pabbisetty Mallikarjuna Rao
Abstract Turbine inlet air temperatures are extremely high, which can result in blade material damage. As a result, cooling the turbine blades is required, and a variety of cooling techniques have been introduced. The majority of the previous research on pin fins has focused on circular fins using a wedge duct to apply a constant temperature and uniform heat flux to the end wall and pin fin surfaces. The present study compares seven oblong pin-fins to seven circular pin fins in a wedge duct with a Reynolds number range of 10,000–50,000 and a constant heat flux (surface) of 3280 W/m2 applied to the endwall and surfaces of the oblong pin fin. The results indicate that the friction factor for oblong fins is 14% lower than for circular pin fins. The thermal performance factor is increased by 11.4%. The thermal performance factor can be improved by using oblong pin fins with higher Reynolds numbers.
摘要涡轮机进气温度极高,可能导致叶片材料损坏。因此,需要冷却涡轮机叶片,并且已经引入了各种冷却技术。以前对针翅式翅片的大多数研究都集中在圆形翅片上,该翅片使用楔形管道将恒定的温度和均匀的热通量施加到端壁和针翅式表面。本研究比较了楔形管道中的七个椭圆形销片和七个圆形销片,雷诺数范围为10000–50000,应用于椭圆形销片端壁和表面的恒定热通量(表面)为3280 W/m2。结果表明,长方形翅片的摩擦系数比圆销翅片低14%。热性能因数提高了11.4%。使用雷诺数更高的长方形销片可以提高热性能因数。
{"title":"Numerical investigations of heat transfer characteristics using oblong fins and circular fins in a wedge channel","authors":"Goveraiahgari Venkatesh, R. Meenakshi Reddy, Pabbisetty Mallikarjuna Rao","doi":"10.1515/tjj-2022-0055","DOIUrl":"https://doi.org/10.1515/tjj-2022-0055","url":null,"abstract":"Abstract Turbine inlet air temperatures are extremely high, which can result in blade material damage. As a result, cooling the turbine blades is required, and a variety of cooling techniques have been introduced. The majority of the previous research on pin fins has focused on circular fins using a wedge duct to apply a constant temperature and uniform heat flux to the end wall and pin fin surfaces. The present study compares seven oblong pin-fins to seven circular pin fins in a wedge duct with a Reynolds number range of 10,000–50,000 and a constant heat flux (surface) of 3280 W/m2 applied to the endwall and surfaces of the oblong pin fin. The results indicate that the friction factor for oblong fins is 14% lower than for circular pin fins. The thermal performance factor is increased by 11.4%. The thermal performance factor can be improved by using oblong pin fins with higher Reynolds numbers.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43607522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Detailed investigation of supersonic film cooling performance in a convergent divergent nozzle 会聚发散喷管超声速气膜冷却性能的详细研究
IF 0.9 4区 工程技术 Q3 Engineering Pub Date : 2023-03-27 DOI: 10.1515/tjj-2022-0080
Lingling Chen, Y. Shi, Haoqi Yang, Yalin Shi, Qingzhen Yang
Abstract This paper numerically studied supersonic film cooling performance in a convergent divergent nozzle, for the purpose of exploring and extending the knowledge of high-efficient cooling techniques for exhaust nozzles in real working conditions. The work was conducted with a steady state RANS approach with the SST turbulence model. The boundary conditions were chosen to mimic a real engine condition. The slot height and the inlet pressure ratio were varied to investigate the effect of the geometrical condition and flow condition. The flow field was analyzed in detail to study the phenomena of the supersonic secondary flow injected into the transonic flow. Besides the cooling effectiveness, the thrust coefficient and the discharge coefficient for the cooling cases were discussed together with the baseline case, to evaluate the influence of the supersonic coolant injection on the nozzle performance. The work can be a basis for the design of cooling schemes in an aero-engine exhaust nozzle.
摘要本文对会聚发散喷管的超声速气膜冷却性能进行了数值研究,旨在探索和拓展实际工况下排气喷管高效冷却技术的知识。这项工作是用海温湍流模式的稳态RANS方法进行的。边界条件的选择是为了模拟真实的发动机工况。改变狭缝高度和进口压比,考察几何条件和流动条件对狭缝高度和进口压比的影响。对流场进行了详细的分析,研究了超声速二次流注入跨声速流动的现象。除了冷却效果外,还讨论了冷却工况下的推力系数和流量系数以及基准工况,以评估超音速冷却剂喷射对喷管性能的影响。该工作可为航空发动机排气喷嘴冷却方案的设计提供依据。
{"title":"Detailed investigation of supersonic film cooling performance in a convergent divergent nozzle","authors":"Lingling Chen, Y. Shi, Haoqi Yang, Yalin Shi, Qingzhen Yang","doi":"10.1515/tjj-2022-0080","DOIUrl":"https://doi.org/10.1515/tjj-2022-0080","url":null,"abstract":"Abstract This paper numerically studied supersonic film cooling performance in a convergent divergent nozzle, for the purpose of exploring and extending the knowledge of high-efficient cooling techniques for exhaust nozzles in real working conditions. The work was conducted with a steady state RANS approach with the SST turbulence model. The boundary conditions were chosen to mimic a real engine condition. The slot height and the inlet pressure ratio were varied to investigate the effect of the geometrical condition and flow condition. The flow field was analyzed in detail to study the phenomena of the supersonic secondary flow injected into the transonic flow. Besides the cooling effectiveness, the thrust coefficient and the discharge coefficient for the cooling cases were discussed together with the baseline case, to evaluate the influence of the supersonic coolant injection on the nozzle performance. The work can be a basis for the design of cooling schemes in an aero-engine exhaust nozzle.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46450552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel design of impeller cavity pre-swirl system for efficient supercharging and low power consumption 一种新颖的叶轮腔预旋流系统设计,实现高效增压和低能耗
IF 0.9 4区 工程技术 Q3 Engineering Pub Date : 2023-03-02 DOI: 10.1515/tjj-2022-0038
Wenlei Lian, Yu Zhu, Xiaoming Chen, Zhixiang Zhou, Yong-Yi Huang
Abstract A design for a turbine pre-swirl system with impeller cavity is proposed to improve the quality of cooling air supplied to the turbine blades of an aeroengine. Impeller cavity is analyzed in order to increase the system pressure ratio with a low system power consumption at the system outlet. Theoretical and numerical investigation are used to investigate the flow characteristics in an impeller cavity pre-swirl system. The conclusions in this study indicate that the impeller structure can increases the pressure ratio by changing the power consumption and distribution of the absolute velocity in the impeller cavity and system outlet. To obtain high pressure ratio and low power consumption, the impeller should have a structure with a high outlet installation radius and low outlet angle. The highest increase in the pressure ratio compared with the empty cavity pre-swirl system is 6.4% and the corresponding increase in the power consumption is 2620 W.
摘要为提高某型航空发动机涡轮叶片供气质量,提出了一种带叶轮腔的涡轮预旋系统设计方案。为了提高系统压力比,降低系统出口的系统功耗,对叶轮空腔进行了分析。采用理论和数值方法研究了叶轮腔预旋流系统的流动特性。研究结果表明,叶轮结构可以通过改变功率消耗和叶轮腔内及系统出口的绝对速度分布来提高压比。为了获得高压力比和低功耗,叶轮应具有高出口安装半径和低出口角的结构。与空腔预旋系统相比,压力比最高提高6.4%,相应的功率增加2620 W。
{"title":"A novel design of impeller cavity pre-swirl system for efficient supercharging and low power consumption","authors":"Wenlei Lian, Yu Zhu, Xiaoming Chen, Zhixiang Zhou, Yong-Yi Huang","doi":"10.1515/tjj-2022-0038","DOIUrl":"https://doi.org/10.1515/tjj-2022-0038","url":null,"abstract":"Abstract A design for a turbine pre-swirl system with impeller cavity is proposed to improve the quality of cooling air supplied to the turbine blades of an aeroengine. Impeller cavity is analyzed in order to increase the system pressure ratio with a low system power consumption at the system outlet. Theoretical and numerical investigation are used to investigate the flow characteristics in an impeller cavity pre-swirl system. The conclusions in this study indicate that the impeller structure can increases the pressure ratio by changing the power consumption and distribution of the absolute velocity in the impeller cavity and system outlet. To obtain high pressure ratio and low power consumption, the impeller should have a structure with a high outlet installation radius and low outlet angle. The highest increase in the pressure ratio compared with the empty cavity pre-swirl system is 6.4% and the corresponding increase in the power consumption is 2620 W.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48359430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontmatter 头版头条
4区 工程技术 Q3 Engineering Pub Date : 2023-03-01 DOI: 10.1515/tjj-2023-frontmatter1
{"title":"Frontmatter","authors":"","doi":"10.1515/tjj-2023-frontmatter1","DOIUrl":"https://doi.org/10.1515/tjj-2023-frontmatter1","url":null,"abstract":"","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136389922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supersonic jet mixing in the presence of two annular co-flow streams 两个环形共流存在下的超音速射流混合
IF 0.9 4区 工程技术 Q3 Engineering Pub Date : 2023-02-28 DOI: 10.1515/tjj-2022-0048
R. S., P. Vasanthakumar, Aravindh Kumar Suseela Moorthi, E. Rathakrishnan
Abstract The mixing characteristics of a Mach 1.9 jet at three levels of overexpansion, corresponding to nozzle pressure ratio (NPR) 3, 4 and 5, in the presence of a sonic co-flow (secondary flow), which was submerged in a subsonic co-flow (tertiary flow) was studied experimentally. For these NPRs the secondary co-flow is sonic with underexpanded levels and the tertiary flow Mach number was found to be 0.41, 0.71 and 0.85, respectively. The centerline decay results of the primary jet show that the jet mixing is abated by the co-flow, at all levels of expansion. However, in spite of the reduced mixing encountered by the supersonic primary jet, the waves in the jet core are found to be weaker in the presence of co-flows. This may be regarded as an advantage from the shock associated noise point of view, in accordance with Tam’s theory; which states weaker the waves in the core, the lesser is the shock associated noise. The results show that the reduced mixing environment caused by the sonic co-flow alone leads to the jet core elongation of about 20%, 23% and 49%, at NPRs 3, 4 and 5, respectively. The core length of the jet is found to increase by 29%, 46% and 62%, respectively, at NPRs 3, 4 and 5, when both sonic and subsonic co-flow streams are present.
实验研究了淹没在亚音速共流(三次流)中的音速共流(二次流)存在时,1.9马赫射流在喷嘴压力比(NPR)为3、4和5的三个过膨胀水平下的混合特性。对于这些核反应堆,二次共流是音速的,具有欠膨胀水平,三次流马赫数分别为0.41、0.71和0.85。初级射流的中心线衰减结果表明,在膨胀的各个水平上,共流都减弱了射流的混合。然而,尽管超音速初级射流遇到的混合减少了,但在共流的存在下,射流核心中的波被发现更弱。根据Tam的理论,从与冲击相关的噪声的角度来看,这可能被视为一种优势;哪个州的震波越弱,震波相关的噪音就越小。结果表明,在NPRs 3、4和5处,仅由声速共流引起的混合环境降低可使射流芯延伸率分别提高约20%、23%和49%。当声速和亚音速共流同时存在时,在NPRs 3、4和5处,射流的核心长度分别增加了29%、46%和62%。
{"title":"Supersonic jet mixing in the presence of two annular co-flow streams","authors":"R. S., P. Vasanthakumar, Aravindh Kumar Suseela Moorthi, E. Rathakrishnan","doi":"10.1515/tjj-2022-0048","DOIUrl":"https://doi.org/10.1515/tjj-2022-0048","url":null,"abstract":"Abstract The mixing characteristics of a Mach 1.9 jet at three levels of overexpansion, corresponding to nozzle pressure ratio (NPR) 3, 4 and 5, in the presence of a sonic co-flow (secondary flow), which was submerged in a subsonic co-flow (tertiary flow) was studied experimentally. For these NPRs the secondary co-flow is sonic with underexpanded levels and the tertiary flow Mach number was found to be 0.41, 0.71 and 0.85, respectively. The centerline decay results of the primary jet show that the jet mixing is abated by the co-flow, at all levels of expansion. However, in spite of the reduced mixing encountered by the supersonic primary jet, the waves in the jet core are found to be weaker in the presence of co-flows. This may be regarded as an advantage from the shock associated noise point of view, in accordance with Tam’s theory; which states weaker the waves in the core, the lesser is the shock associated noise. The results show that the reduced mixing environment caused by the sonic co-flow alone leads to the jet core elongation of about 20%, 23% and 49%, at NPRs 3, 4 and 5, respectively. The core length of the jet is found to increase by 29%, 46% and 62%, respectively, at NPRs 3, 4 and 5, when both sonic and subsonic co-flow streams are present.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46087389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the choke margin of a mixed flow compressor stage for a micro gas turbine engine 微型燃气涡轮发动机混流压气机级节流裕度的扩大
IF 0.9 4区 工程技术 Q3 Engineering Pub Date : 2023-02-22 DOI: 10.1515/tjj-2022-0060
Hano van Eck, S. J. van der Spuy, A. Gannon
Abstract In an attempt to reduce engine frontal area, while maintaining a high single stage pressure ratio, mixed flow compressor stages are frequently used in micro gas turbine (MGT) engines. The expansion of the choke margin of such a mixed flow compressor is presented. The use of a crossover diffuser configuration in a mixed flow compressor stage has displayed superior performance results compared to legacy diffuser configurations, especially when geometric restrictions are enforced. A disadvantage of a crossover diffuser configuration is that it typically displays an inferior operating range compared to legacy diffuser configurations. In an attempt to expand the choke margin of a MGT mixed flow compressor, the use of tandem and splitter vane crossover diffuser configurations was evaluated. It was found that a low solidity first vane row configuration provided a 3% increase in choke margin. A splitter vane crossover diffuser configuration provided a 5.9% increase in choke margin. A tandem vaned diffuser with a reduced first row vane number provided a 7.8% increase in choke margin.
摘要为了在保持高单级压力比的同时减少发动机的前部面积,混流式压缩机级经常用于微型燃气轮机(MGT)发动机。介绍了这种混流式压缩机节流裕度的扩展。与传统扩散器配置相比,在混流压缩机级中使用交叉扩散器配置显示出优越的性能结果,尤其是在实施几何限制时。交叉扩散器配置的缺点是,与传统扩散器配置相比,它通常显示较差的工作范围。为了扩大MGT混流式压缩机的阻风门裕度,对串联和分流叶片交叉扩压器配置的使用进行了评估。研究发现,低固体度的第一排叶片结构使节流裕度增加了3%。分流叶片交叉扩压器配置使节流裕度增加了5.9%。具有减少的第一排叶片数量的串联叶片扩散器提供了7.8%的节流裕度增加。
{"title":"Expanding the choke margin of a mixed flow compressor stage for a micro gas turbine engine","authors":"Hano van Eck, S. J. van der Spuy, A. Gannon","doi":"10.1515/tjj-2022-0060","DOIUrl":"https://doi.org/10.1515/tjj-2022-0060","url":null,"abstract":"Abstract In an attempt to reduce engine frontal area, while maintaining a high single stage pressure ratio, mixed flow compressor stages are frequently used in micro gas turbine (MGT) engines. The expansion of the choke margin of such a mixed flow compressor is presented. The use of a crossover diffuser configuration in a mixed flow compressor stage has displayed superior performance results compared to legacy diffuser configurations, especially when geometric restrictions are enforced. A disadvantage of a crossover diffuser configuration is that it typically displays an inferior operating range compared to legacy diffuser configurations. In an attempt to expand the choke margin of a MGT mixed flow compressor, the use of tandem and splitter vane crossover diffuser configurations was evaluated. It was found that a low solidity first vane row configuration provided a 3% increase in choke margin. A splitter vane crossover diffuser configuration provided a 5.9% increase in choke margin. A tandem vaned diffuser with a reduced first row vane number provided a 7.8% increase in choke margin.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44060966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of compressor nominal characteristics of a turboprop engine using artificial neural networks for build standard assessment 基于人工神经网络的涡桨发动机压气机标称特性预测
4区 工程技术 Q3 Engineering Pub Date : 2023-02-21 DOI: 10.1515/tjj-2020-0015
C. Jagadish Babu, Mathews P. Samuel, Antonio Davis, R. K. Mishra
Abstract Compressor characteristics of a single spool turboprop engine have been studied in this paper. It has been brought outhow constant power lines in the compressor characteristics of these compressors make them different from others. Constant speed lines and constant power lines have also been highlighted. A novel method of modeling of compressorof a single spool turboprop engine has also been studied in this paper. Application of neural networks in prediction of compressor characteristics has been investigated. Multilayer Perceptron feed forward neural network has been considered with different transfer functions to assess the potential capability of network in extrapolation and interpolation. Effectiveness of prediction with and without engine bleed valve open and anti-ice valve open situations have been assessed. Network Predictionshas been compared with engine test data to assess the accuracy of prediction and to quantify the build variation in the manufacture of engines. Capability of network with limited test data to predict the complete performance has also been assessed and presented in this paper.
本文对单轴涡桨发动机的压气机特性进行了研究。介绍了压缩机中恒定的电源线是如何使这些压缩机的特性有别于其他压缩机的。恒速线路和恒功率线路也得到了强调。本文还研究了一种新的单轴涡桨发动机压气机的建模方法。研究了神经网络在压缩机特性预测中的应用。采用不同的传递函数对多层感知机前馈神经网络进行了研究,以评估其外推和内插的潜在能力。评估了发动机排气阀开启和防冰阀不开启情况下预测的有效性。将网络预测与发动机测试数据进行比较,以评估预测的准确性,并量化发动机制造中的构建变化。本文还对有限测试数据下的网络预测完整性能的能力进行了评估和介绍。
{"title":"Prediction of compressor nominal characteristics of a turboprop engine using artificial neural networks for build standard assessment","authors":"C. Jagadish Babu, Mathews P. Samuel, Antonio Davis, R. K. Mishra","doi":"10.1515/tjj-2020-0015","DOIUrl":"https://doi.org/10.1515/tjj-2020-0015","url":null,"abstract":"Abstract Compressor characteristics of a single spool turboprop engine have been studied in this paper. It has been brought outhow constant power lines in the compressor characteristics of these compressors make them different from others. Constant speed lines and constant power lines have also been highlighted. A novel method of modeling of compressorof a single spool turboprop engine has also been studied in this paper. Application of neural networks in prediction of compressor characteristics has been investigated. Multilayer Perceptron feed forward neural network has been considered with different transfer functions to assess the potential capability of network in extrapolation and interpolation. Effectiveness of prediction with and without engine bleed valve open and anti-ice valve open situations have been assessed. Network Predictionshas been compared with engine test data to assess the accuracy of prediction and to quantify the build variation in the manufacture of engines. Capability of network with limited test data to predict the complete performance has also been assessed and presented in this paper.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136389487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
International Journal of Turbo & Jet-Engines
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1