首页 > 最新文献

International Journal of Turbo & Jet-Engines最新文献

英文 中文
Numerical analysis on the effect of passive control geometry in supersonic jet mixing enhancement 被动控制几何结构对超声速射流混合增强影响的数值分析
IF 0.9 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-08-29 DOI: 10.1515/tjj-2023-0068
N. Subramani, S. M, Gowtham Gajapathy
Abstract This paper presents the numerical analysis of a convergent-divergent circular nozzle with the exit Mach number of 1.69 with and without passive control at the exit. The passive control method opted for this analysis was inward and outward ascending triangular protrusion. This paper explores the influence of the passive control geometry and its blockage area concerning the nozzle exit. The nozzle pressure ratio (NPR) used for carrying out the flow analysis were 3, 4.932, and 6. Two different inward and outward protrusions were used with a height of 1.5 mm and 3 mm. From the results, the potential core length of the protrusion 1.5 mm height was not much changed in the both outward and inward cases. But when the height of the protrusion was increased to 3 mm, there was a noticeable core length reduction at all NPR but with different cases. At the NPR of 6, the potential core length of the inward protrusions 3 mm was reduced by 44 % compared to the plain CD nozzle.
摘要本文对出口马赫数为1.69的收敛-发散圆形喷嘴进行了数值分析,在出口处有和没有被动控制。本次分析采用的被动控制方法是向内和向外上升的三角形突起。本文探讨了被动控制几何结构及其堵塞面积对喷嘴出口的影响。用于进行流动分析的喷嘴压力比(NPR)分别为3、4.932和6。使用了两个不同的向内和向外突起,高度为1.5 mm和3 根据结果,突起的潜在核心长度为1.5 mm高度在向外和向内两种情况下变化不大。但当突起的高度增加到3 mm时,在所有NPR下都有明显的核心长度减少,但情况不同。在NPR为6时,向内突起3的潜在芯长度 毫米减少了44 % 与普通CD喷嘴相比。
{"title":"Numerical analysis on the effect of passive control geometry in supersonic jet mixing enhancement","authors":"N. Subramani, S. M, Gowtham Gajapathy","doi":"10.1515/tjj-2023-0068","DOIUrl":"https://doi.org/10.1515/tjj-2023-0068","url":null,"abstract":"Abstract This paper presents the numerical analysis of a convergent-divergent circular nozzle with the exit Mach number of 1.69 with and without passive control at the exit. The passive control method opted for this analysis was inward and outward ascending triangular protrusion. This paper explores the influence of the passive control geometry and its blockage area concerning the nozzle exit. The nozzle pressure ratio (NPR) used for carrying out the flow analysis were 3, 4.932, and 6. Two different inward and outward protrusions were used with a height of 1.5 mm and 3 mm. From the results, the potential core length of the protrusion 1.5 mm height was not much changed in the both outward and inward cases. But when the height of the protrusion was increased to 3 mm, there was a noticeable core length reduction at all NPR but with different cases. At the NPR of 6, the potential core length of the inward protrusions 3 mm was reduced by 44 % compared to the plain CD nozzle.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48515732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of cavity and ramp configuration on the combustion performance of a strut-based scramjet combustor 空腔和斜面结构对支杆式超燃冲压发动机燃烧室燃烧性能的影响
IF 0.9 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-08-24 DOI: 10.1515/tjj-2023-0067
S. Jeyakumar, Akash Shrikant Patale, Prince Sharma
Abstract The flow performance of a dual wall-mounted cavity in a strut-injector scramjet combustor in steady reacting flow conditions is computationally analyzed. A baseline configuration corresponding to DLR experiments and two proposed configurations with varying bottom wall cavity depth and fixed top wall ramp is considered. Steady-flow computations are performed using the 2-D Reynolds Averaged Navier–Stokes method with k-ω SST turbulence closure coupled and single-step reaction chemistry. The calculated flow patterns, density, pressure, and temperature fields are compared with shadowgraph and wall pressure measurements from DLR experiments. The cavity and strut are mounted downstream of the strut to analyze the shock patterns and their interference with the shear layer mixing features. The estimated flow patterns, density, pressure, and temperature fields are compared with shadowgraph and wall pressure measurements from DLR experiments. Incorporating cavity and ramp configuration provides earlier complete combustion compared to the baseline model, with a marginal rise in the total pressure caused by additional shock wave formation that emanates from the corners of the cavity and ramp. The combustion zone widens in the lateral direction as the cavity shifts the shock train downstream of the strut injector owing to intense shock shear layer interactions.
文摘:对支杆喷射器超燃冲压发动机燃烧室中双壁安装腔在稳定反应流条件下的流动性能进行了计算分析。考虑了与DLR实验相对应的基线配置和两种所提出的具有不同底壁空腔深度和固定顶壁斜面的配置。使用二维雷诺平均纳维-斯托克斯方法,结合k-ωSST湍流闭合耦合和单步反应化学,进行定常流计算。将计算出的流型、密度、压力和温度场与DLR实验中的阴影图和壁压测量值进行比较。空腔和支柱安装在支柱的下游,以分析冲击模式及其对剪切层混合特征的干扰。将估计的流型、密度、压力和温度场与DLR实验的阴影图和壁压力测量值进行比较。与基线模型相比,结合空腔和斜坡配置提供了更早的完全燃烧,总压力的边际上升是由从空腔和斜坡的角落发出的额外冲击波形成引起的。由于强烈的冲击剪切层相互作用,当空腔将冲击序列转移到支柱喷射器的下游时,燃烧区在横向方向上变宽。
{"title":"Impact of cavity and ramp configuration on the combustion performance of a strut-based scramjet combustor","authors":"S. Jeyakumar, Akash Shrikant Patale, Prince Sharma","doi":"10.1515/tjj-2023-0067","DOIUrl":"https://doi.org/10.1515/tjj-2023-0067","url":null,"abstract":"Abstract The flow performance of a dual wall-mounted cavity in a strut-injector scramjet combustor in steady reacting flow conditions is computationally analyzed. A baseline configuration corresponding to DLR experiments and two proposed configurations with varying bottom wall cavity depth and fixed top wall ramp is considered. Steady-flow computations are performed using the 2-D Reynolds Averaged Navier–Stokes method with k-ω SST turbulence closure coupled and single-step reaction chemistry. The calculated flow patterns, density, pressure, and temperature fields are compared with shadowgraph and wall pressure measurements from DLR experiments. The cavity and strut are mounted downstream of the strut to analyze the shock patterns and their interference with the shear layer mixing features. The estimated flow patterns, density, pressure, and temperature fields are compared with shadowgraph and wall pressure measurements from DLR experiments. Incorporating cavity and ramp configuration provides earlier complete combustion compared to the baseline model, with a marginal rise in the total pressure caused by additional shock wave formation that emanates from the corners of the cavity and ramp. The combustion zone widens in the lateral direction as the cavity shifts the shock train downstream of the strut injector owing to intense shock shear layer interactions.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49542980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proper Orthogonal Decomposition analysis of mode switching in supersonic jets impinging on flat and corrugated plates 超声速射流冲击平板和波纹板模式转换的正交分解分析
IF 0.9 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-08-22 DOI: 10.1515/tjj-2023-0071
D. Sarangi, Ramanujam Karthik, K. Srinivasan
Abstract Understanding the occurrence of various feedback mechanisms of an under-expanded impinging supersonic jet is a crucial task in research. The presence of several jet modes is examined in this study for the flat and corrugated impinging plate geometries. The behavior of impinging plate configurations during mode switching is investigated by varying the flow state, such as the jet Mach number. The staging behavior at various jet Mach numbers is observed using acoustic spectral plots and schlieren flow visualization. To explore the presence of various types of modes during the jet impingement due to the modification of jet Mach number, ensemble averaging and Proper Orthogonal Decomposition of schlieren images are carried out. In the majority of situations, the corrugated design shows a reduction in tonal noise and overall sound pressure level. In exceptional cases, for the corrugated plates, the enhanced overall sound pressure level is caused by the existence of axisymmetric instability (A1, A2).
摘要了解欠膨胀撞击超声速射流各种反馈机制的发生是研究中的一项关键任务。在本研究中,研究了平面和波纹撞击板几何形状的几种射流模式的存在。通过改变流动状态,如射流马赫数,研究了模式切换过程中撞击板结构的行为。使用声学频谱图和纹影流可视化观察了不同喷气马赫数下的分级行为。为了探索由于射流马赫数的改变而导致的射流冲击过程中各种模式的存在,对纹影图像进行了系综平均和适当正交分解。在大多数情况下,波纹设计显示出音调噪音和整体声压水平的降低。在特殊情况下,对于波纹板,整体声压级的增强是由轴对称不稳定性的存在引起的(A1,A2)。
{"title":"Proper Orthogonal Decomposition analysis of mode switching in supersonic jets impinging on flat and corrugated plates","authors":"D. Sarangi, Ramanujam Karthik, K. Srinivasan","doi":"10.1515/tjj-2023-0071","DOIUrl":"https://doi.org/10.1515/tjj-2023-0071","url":null,"abstract":"Abstract Understanding the occurrence of various feedback mechanisms of an under-expanded impinging supersonic jet is a crucial task in research. The presence of several jet modes is examined in this study for the flat and corrugated impinging plate geometries. The behavior of impinging plate configurations during mode switching is investigated by varying the flow state, such as the jet Mach number. The staging behavior at various jet Mach numbers is observed using acoustic spectral plots and schlieren flow visualization. To explore the presence of various types of modes during the jet impingement due to the modification of jet Mach number, ensemble averaging and Proper Orthogonal Decomposition of schlieren images are carried out. In the majority of situations, the corrugated design shows a reduction in tonal noise and overall sound pressure level. In exceptional cases, for the corrugated plates, the enhanced overall sound pressure level is caused by the existence of axisymmetric instability (A1, A2).","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44904841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical investigation of tip clearance flow in a variable geometry turbine with non-uniform partial clearance 非均匀部分间隙变几何涡轮叶尖间隙流动的数值研究
IF 0.9 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-08-08 DOI: 10.1515/tjj-2023-0063
Yueqi Liu, Shaowen Chen, S. Wang
Abstract In variable geometry turbine vanes, tip clearance height and shape vary with the rotation of the vane, which affect the aerodynamic performance significantly. However, these issues are rarely considered in published studies. The current paper investigated the flow field features of transonic variable geometry turbine vanes with non-uniform partial clearance induced by the vane rotating. The results show that: The influence of guide vane rotation on the clearance height and its distribution cannot be ignored. At the same turning angle, the maximum clearance difference is up to 0.79 mm (0.8 % vane height). The height and shape variation of the non-uniform clearance leads to the change in the leakage flow rate, secondary flow structure, and aerodynamic loss of the variable guide vane. Under the combined effect of pressure difference on both sides of the clearance, axial and circumferential non-uniformity of clearance height, the total pressure loss coefficient is up to 9.44 % when the turning angle is −10°. The effect of the pivot on the clearance flow was also analyzed. The pivot increases the pressure in the gap flow field and reduces leakage flow velocity. However, a backflow region appears at the suction side of the pivot, which increases the aerodynamic losses.
摘要在变几何涡轮叶片中,叶尖间隙高度和形状随着叶片的旋转而变化,这对气动性能有很大影响。然而,在已发表的研究中很少考虑这些问题。本文研究了跨声速变几何涡轮叶片旋转引起的局部间隙不均匀的流场特征。结果表明:导叶旋转对间隙高度及其分布的影响不容忽视。在相同的转弯角度下,最大间隙差可达0.79 毫米(0.8 % 叶片高度)。非均匀间隙的高度和形状变化导致可变导叶的泄漏流量、二次流结构和气动损失发生变化。在间隙两侧压差、间隙高度轴向和周向不均匀的共同作用下,总压损系数高达9.44 % 当转弯角度为−10°时。还分析了枢轴对间隙流动的影响。枢轴增加了间隙流场中的压力并降低了泄漏流速。然而,在枢轴的吸入侧出现回流区域,这增加了空气动力学损失。
{"title":"Numerical investigation of tip clearance flow in a variable geometry turbine with non-uniform partial clearance","authors":"Yueqi Liu, Shaowen Chen, S. Wang","doi":"10.1515/tjj-2023-0063","DOIUrl":"https://doi.org/10.1515/tjj-2023-0063","url":null,"abstract":"Abstract In variable geometry turbine vanes, tip clearance height and shape vary with the rotation of the vane, which affect the aerodynamic performance significantly. However, these issues are rarely considered in published studies. The current paper investigated the flow field features of transonic variable geometry turbine vanes with non-uniform partial clearance induced by the vane rotating. The results show that: The influence of guide vane rotation on the clearance height and its distribution cannot be ignored. At the same turning angle, the maximum clearance difference is up to 0.79 mm (0.8 % vane height). The height and shape variation of the non-uniform clearance leads to the change in the leakage flow rate, secondary flow structure, and aerodynamic loss of the variable guide vane. Under the combined effect of pressure difference on both sides of the clearance, axial and circumferential non-uniformity of clearance height, the total pressure loss coefficient is up to 9.44 % when the turning angle is −10°. The effect of the pivot on the clearance flow was also analyzed. The pivot increases the pressure in the gap flow field and reduces leakage flow velocity. However, a backflow region appears at the suction side of the pivot, which increases the aerodynamic losses.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46637710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of performance degradation of a mixed flow low bypass turbofan engine through GasTurb simulation 混流低涵道比涡扇发动机性能退化的GasTurb仿真评估
IF 0.9 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-08-03 DOI: 10.1515/tjj-2023-0064
Narahari Rath, Mishra R. K., A. Kushari
Abstract Aero engine performance analysis is very important for engines under development as well as for engines in service for condition monitoring. Predictions of aero engine performance and ability of building the simulation model is an invaluable asset for designers, manufacturer and end-use operator. This paper presents the methodology in establishing the baseline performance of a twin spool mixed flow low bypass turbofan engine through extensive testing at engine test bench. The baseline data is used to validate a GasTurb model which is subsequently used for assessment of off-design performance and component degradation responsible for performance deterioration at various service hours. The estimated exhaust gas temperatures by the model for degraded engines are in good agreement with the measured data. The model further assesses the drop in HP compressor efficiency and shift in operating line which will be very useful for taking judicious decision for withdrawal of engines and is expected to reduce or delay withdrawals and increase the availability of engines at operating base.
摘要航空发动机性能分析对于研制中的发动机和服役中的发动机状态监测具有重要意义。对航空发动机性能的预测和建立仿真模型的能力对于设计师、制造商和最终用户运营商来说是一笔宝贵的财富。本文介绍了通过在发动机试验台进行大量试验,确定双轴混流低涵道比涡扇发动机基准性能的方法。基线数据用于验证GasTurb模型,该模型随后用于评估在不同服务时间导致性能下降的非设计性能和组件退化。该模型估算的退化发动机排气温度与实测数据吻合较好。该模型进一步评估了高压压缩机效率的下降和运行生产线的转移,这将有助于做出明智的发动机退出决策,并有望减少或延迟退出并增加运行基地的发动机可用性。
{"title":"Assessment of performance degradation of a mixed flow low bypass turbofan engine through GasTurb simulation","authors":"Narahari Rath, Mishra R. K., A. Kushari","doi":"10.1515/tjj-2023-0064","DOIUrl":"https://doi.org/10.1515/tjj-2023-0064","url":null,"abstract":"Abstract Aero engine performance analysis is very important for engines under development as well as for engines in service for condition monitoring. Predictions of aero engine performance and ability of building the simulation model is an invaluable asset for designers, manufacturer and end-use operator. This paper presents the methodology in establishing the baseline performance of a twin spool mixed flow low bypass turbofan engine through extensive testing at engine test bench. The baseline data is used to validate a GasTurb model which is subsequently used for assessment of off-design performance and component degradation responsible for performance deterioration at various service hours. The estimated exhaust gas temperatures by the model for degraded engines are in good agreement with the measured data. The model further assesses the drop in HP compressor efficiency and shift in operating line which will be very useful for taking judicious decision for withdrawal of engines and is expected to reduce or delay withdrawals and increase the availability of engines at operating base.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46638670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontmatter 头版头条
4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-08-01 DOI: 10.1515/tjj-2023-frontmatter3
{"title":"Frontmatter","authors":"","doi":"10.1515/tjj-2023-frontmatter3","DOIUrl":"https://doi.org/10.1515/tjj-2023-frontmatter3","url":null,"abstract":"","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136072316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design optimization of a supersonic through-flow fan rotor based on the blade profiles 基于叶型的超声速贯流风扇转子优化设计
IF 0.9 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-07-24 DOI: 10.1515/tjj-2022-0082
Jutao Yang, L. Ji, Yuxin Shen, Lingchen Zhou
Abstract In this study, the authors propose an optimization process to design the baseline rotor of a supersonic through-flow fan (STFF) at an inlet Mach number of 2.0 based on Genetic Algorithm. Unlike the improvement in performance brought about by the pre-compression of conventional supersonic profiles in the presence of axial pressure flow, pre-compression did not help improve the performance of the rotor of the STFF. The efficiency of elements of the blade at spanwise heights of 10 %, 50 %, and 90 % increased by 2.47 %, 1.95 %, and 2.49 %, respectively. The performance of the rotor of the STFF that was reconstructed by stacking the optimized elements of the blade was improved at the design point as well as in off-design conditions by using three-dimensional computational fluid dynamics (CFD) simulations. The performance of the blade also improved considerably, with increases of by 2.46 % and 9.59 % in its isentropic efficiency and the overall pressure ratio, respectively.
摘要在本研究中,作者提出了一种基于遗传算法的超音速贯流风扇(STFF)基线转子优化设计方法,该方法的入口马赫数为2.0。与在存在轴向压力流的情况下对传统超声速剖面进行预压缩所带来的性能改进不同,预压缩无助于提高STFF转子的性能。叶片元件在翼展方向高度为10时的效率 %, 50 %, 和90 % 增加2.47 %, 1.95 %, 和2.49 %, 分别地通过使用三维计算流体动力学(CFD)模拟,在设计点和非设计条件下,通过堆叠叶片的优化元件重建的STFF转子的性能得到了改善。叶片的性能也得到了显著改善,增加了2.46 % 和9.59 % 其等熵效率和总压力比。
{"title":"Design optimization of a supersonic through-flow fan rotor based on the blade profiles","authors":"Jutao Yang, L. Ji, Yuxin Shen, Lingchen Zhou","doi":"10.1515/tjj-2022-0082","DOIUrl":"https://doi.org/10.1515/tjj-2022-0082","url":null,"abstract":"Abstract In this study, the authors propose an optimization process to design the baseline rotor of a supersonic through-flow fan (STFF) at an inlet Mach number of 2.0 based on Genetic Algorithm. Unlike the improvement in performance brought about by the pre-compression of conventional supersonic profiles in the presence of axial pressure flow, pre-compression did not help improve the performance of the rotor of the STFF. The efficiency of elements of the blade at spanwise heights of 10 %, 50 %, and 90 % increased by 2.47 %, 1.95 %, and 2.49 %, respectively. The performance of the rotor of the STFF that was reconstructed by stacking the optimized elements of the blade was improved at the design point as well as in off-design conditions by using three-dimensional computational fluid dynamics (CFD) simulations. The performance of the blade also improved considerably, with increases of by 2.46 % and 9.59 % in its isentropic efficiency and the overall pressure ratio, respectively.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46558494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active subspace-based performance analysis of supersonic through-flow fan rotor 超声速通流风机转子主动子空性能分析
IF 0.9 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-07-13 DOI: 10.1515/tjj-2023-0044
Jutao Yang, Yuxin Shen, L. Ji, Jiabin Li, Lingchen Zhou
Abstract This article delves into the intricate relationship between the modeling parameters of an axial supersonic through-flow fan (STFF) rotor and its performance based on an active subspace method. It considers the influence of the STFF rotor key parameters on its performance. Implementing the active subspace method generates cloud maps to visualize the performance of the STFF rotor. Moreover, this study investigates the correlation between Bezier curve variables for constructing blade angles and critical performance metrics, such as the total pressure ratio and isentropic efficiency. After a 50 % chord length, the Bezier control point parameters dominate the effect on the total pressure ratio with a linear relationship. This article provides comparative flow field analyses on the blade elements with different performances under three working conditions. Under the constraint of the blade chamber turning angle, there is a linear relationship between the upper and lower limits of the isentropic efficiency distribution and total pressure ratio. This study shows that the total pressure ratio, installation angle, and maximum deflection value are positively associated. Further analysis provides an empirical formula.
摘要基于主动子空间方法研究了轴向超声速通流风机(STFF)转子建模参数与其性能之间的复杂关系。考虑了STFF转子关键参数对其性能的影响。实现有源子空间方法生成云图,以可视化转子的性能。此外,本文还研究了构建叶片角度的Bezier曲线变量与关键性能指标(如总压比和等熵效率)之间的相关性。在50 %弦长后,贝塞尔控制点参数对总压比的影响呈线性关系。本文对不同性能的叶片元件在三种工况下的流场进行了对比分析。在叶片腔室转角约束下,等熵效率分布的上下限与总压比呈线性关系。研究表明,总压比、安装角与最大挠度值呈正相关。进一步的分析提供了一个经验公式。
{"title":"Active subspace-based performance analysis of supersonic through-flow fan rotor","authors":"Jutao Yang, Yuxin Shen, L. Ji, Jiabin Li, Lingchen Zhou","doi":"10.1515/tjj-2023-0044","DOIUrl":"https://doi.org/10.1515/tjj-2023-0044","url":null,"abstract":"Abstract This article delves into the intricate relationship between the modeling parameters of an axial supersonic through-flow fan (STFF) rotor and its performance based on an active subspace method. It considers the influence of the STFF rotor key parameters on its performance. Implementing the active subspace method generates cloud maps to visualize the performance of the STFF rotor. Moreover, this study investigates the correlation between Bezier curve variables for constructing blade angles and critical performance metrics, such as the total pressure ratio and isentropic efficiency. After a 50 % chord length, the Bezier control point parameters dominate the effect on the total pressure ratio with a linear relationship. This article provides comparative flow field analyses on the blade elements with different performances under three working conditions. Under the constraint of the blade chamber turning angle, there is a linear relationship between the upper and lower limits of the isentropic efficiency distribution and total pressure ratio. This study shows that the total pressure ratio, installation angle, and maximum deflection value are positively associated. Further analysis provides an empirical formula.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48299292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical study of the impact of hydrogen addition, swirl intensity and equivalence ratio on methane-air combustion 氢气添加量、涡流强度和当量比对甲烷-空气燃烧影响的数值研究
IF 0.9 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-07-07 DOI: 10.1515/tjj-2021-0048
M. Elbayoumi, F. Garnier, P. Seers
Abstract Hydrogen-blended fuel is a promising resource for future generations of gas turbine engines, due to its capability of reducing carbon-based emissions. This paper presents a numerical study to assess hydrogen-enriched combustion in a laboratory-scale burner operating at a high turbulence level and under lean and stoichiometric burning conditions. Moreover, a wide range of H2 (up to 90 %) is used for enriching CH4-air combustion in combination with two different swirl levels. The results show that a high swirl intensity results in shorter flames, due to the increased turbulent intensity, which reduces the flame surface area and uniformness the reacting zone. Besides, increasing swirl intensity further increase flame temperature for a given H2-blended fuel. Overall, the results suggest that high swirl intensity in combination to lean mixtures is favorable when using H2-blended fuel with high H2 concentrations. The simulation results also demonstrate that considering radiation heat loss is influential, as it yields a reduction of the outlet temperature by not less than 100 K, bringing down NO x emissions by half.
摘要氢混合燃料具有减少碳排放的能力,是未来几代燃气轮机发动机的一种很有前途的资源。本文介绍了一项数值研究,以评估实验室规模的燃烧器在高湍流水平和贫燃和化学计量燃烧条件下的富氢燃烧。此外,H2的范围很宽(高达90 %) 用于与两个不同的涡流水平相结合来富集CH4空气燃烧。结果表明,涡流强度越大,火焰越短,这是由于湍流强度的增加,火焰表面积越小,反应区越均匀。此外,对于给定的H2混合燃料,增加涡流强度会进一步提高火焰温度。总体而言,结果表明,当使用具有高H2浓度的H2混合燃料时,高涡流强度与贫混合物相结合是有利的。模拟结果还表明,考虑辐射热损失是有影响的,因为它会使出口温度降低不小于100 K、 将NOx排放量降低一半。
{"title":"Numerical study of the impact of hydrogen addition, swirl intensity and equivalence ratio on methane-air combustion","authors":"M. Elbayoumi, F. Garnier, P. Seers","doi":"10.1515/tjj-2021-0048","DOIUrl":"https://doi.org/10.1515/tjj-2021-0048","url":null,"abstract":"Abstract Hydrogen-blended fuel is a promising resource for future generations of gas turbine engines, due to its capability of reducing carbon-based emissions. This paper presents a numerical study to assess hydrogen-enriched combustion in a laboratory-scale burner operating at a high turbulence level and under lean and stoichiometric burning conditions. Moreover, a wide range of H2 (up to 90 %) is used for enriching CH4-air combustion in combination with two different swirl levels. The results show that a high swirl intensity results in shorter flames, due to the increased turbulent intensity, which reduces the flame surface area and uniformness the reacting zone. Besides, increasing swirl intensity further increase flame temperature for a given H2-blended fuel. Overall, the results suggest that high swirl intensity in combination to lean mixtures is favorable when using H2-blended fuel with high H2 concentrations. The simulation results also demonstrate that considering radiation heat loss is influential, as it yields a reduction of the outlet temperature by not less than 100 K, bringing down NO x emissions by half.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42320245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical investigation of ice crystal melting characteristic and icing risk in an axial compressor 轴流压缩机冰晶融化特性及结冰风险的数值研究
IF 0.9 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-06-30 DOI: 10.1515/tjj-2023-0053
W. Jia, Bowen Yang, M. Zheng, Q. Kong
Abstract The ingestion of ice crystals in aero-engine will cause engine surge, flameout, thrust loss, and even in-flight shutdown in the extreme cases, which seriously endanger the flight safety. In order to quantitatively investigate the ice crystal melting characteristic in the compressor, a method based on the compressor mean line flow was developed and validated. Results showed that the wet-bulb temperature increases as the temperature offset increases. The increase in temperature offset or decrease in particle size result in earlier or faster melting of the ice crystals in the low-pressure compressor. The rate of increase in melting ratio decreases with the increase of ice water content at the descent condition. The ambient temperature and ice crystal property are both the important factors affecting the icing risk in the compressor. Higher ambient temperature, smaller particle size or higher ice water content can increase the icing risk in the low-pressure compressor.
摘要航空发动机摄入冰晶,在极端情况下会导致发动机喘振、熄火、推力损失,甚至在飞行中停机,严重危及飞行安全。为了定量研究压缩机中的冰晶融化特性,开发并验证了一种基于压缩机平均线流量的方法。结果表明,湿球温度随温度偏移量的增加而增加。温度偏移的增加或颗粒尺寸的减小导致低压压缩机中的冰晶更早或更快地融化。在下降条件下,融化率的增加率随着冰水含量的增加而减小。环境温度和冰晶特性都是影响压缩机结冰风险的重要因素。较高的环境温度、较小的颗粒尺寸或较高的冰水含量会增加低压压缩机中的结冰风险。
{"title":"Numerical investigation of ice crystal melting characteristic and icing risk in an axial compressor","authors":"W. Jia, Bowen Yang, M. Zheng, Q. Kong","doi":"10.1515/tjj-2023-0053","DOIUrl":"https://doi.org/10.1515/tjj-2023-0053","url":null,"abstract":"Abstract The ingestion of ice crystals in aero-engine will cause engine surge, flameout, thrust loss, and even in-flight shutdown in the extreme cases, which seriously endanger the flight safety. In order to quantitatively investigate the ice crystal melting characteristic in the compressor, a method based on the compressor mean line flow was developed and validated. Results showed that the wet-bulb temperature increases as the temperature offset increases. The increase in temperature offset or decrease in particle size result in earlier or faster melting of the ice crystals in the low-pressure compressor. The rate of increase in melting ratio decreases with the increase of ice water content at the descent condition. The ambient temperature and ice crystal property are both the important factors affecting the icing risk in the compressor. Higher ambient temperature, smaller particle size or higher ice water content can increase the icing risk in the low-pressure compressor.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44922074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Turbo & Jet-Engines
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1