Rafael Herrero-Álvarez, Coromoto León, Gara Miranda, Eduardo Segredo
This article examines the effectiveness and interest generated among primary and secondary education students through activities aimed at developing Computational Thinking skills, in the context of the coronavirus disease 2019 pandemic. The shift to online or hybrid learning models posed a significant challenge for educators, particularly those lacking digital skills. The study sought to answer several research questions, including the impact of online versus in-person teaching on preuniversity students and gender differences in Computer Science perception, and Computational Thinking skills performance. The study employed a four-phase methodology, consisting of pre- and posttraining measurements of Computer Science perception and Computational Thinking skills development through specific activities delivered in-person or online. The results indicate that in-person training is more effective for developing Computational Thinking skills, particularly at the secondary education level. Furthermore, there is a need to focus on maintaining girls' interest in Computer Science during primary school, as interest levels tend to decline significantly in secondary school. These findings have significant implications for Engineering Education in the context of digital transformation and the increasing importance of Computational Thinking skills in various fields of engineering. This study highlights the importance of developing Computational Thinking skills among preuniversity students and the need for effective training methods to achieve this goal and underscore the significance of investing in Engineering Education to prepare the next generation of engineers for the rapidly changing digital landscape.
{"title":"Training future engineers: Integrating Computational Thinking and effective learning methodologies into education","authors":"Rafael Herrero-Álvarez, Coromoto León, Gara Miranda, Eduardo Segredo","doi":"10.1002/cae.22723","DOIUrl":"10.1002/cae.22723","url":null,"abstract":"<p>This article examines the effectiveness and interest generated among primary and secondary education students through activities aimed at developing Computational Thinking skills, in the context of the coronavirus disease 2019 pandemic. The shift to online or hybrid learning models posed a significant challenge for educators, particularly those lacking digital skills. The study sought to answer several research questions, including the impact of online versus in-person teaching on preuniversity students and gender differences in Computer Science perception, and Computational Thinking skills performance. The study employed a four-phase methodology, consisting of pre- and posttraining measurements of Computer Science perception and Computational Thinking skills development through specific activities delivered in-person or online. The results indicate that in-person training is more effective for developing Computational Thinking skills, particularly at the secondary education level. Furthermore, there is a need to focus on maintaining girls' interest in Computer Science during primary school, as interest levels tend to decline significantly in secondary school. These findings have significant implications for Engineering Education in the context of digital transformation and the increasing importance of Computational Thinking skills in various fields of engineering. This study highlights the importance of developing Computational Thinking skills among preuniversity students and the need for effective training methods to achieve this goal and underscore the significance of investing in Engineering Education to prepare the next generation of engineers for the rapidly changing digital landscape.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cae.22723","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139772991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mathias Proboste Martinez, Felipe Muñoz La Rivera, Javier Mora Serrano
Construction 4.0 promotes digital transformation through automation, robotisation, and the integration of systems and processes into digital environments, with direct links to real systems, using a wide range of technologies. The risk here is centred on having very advanced machines with people not prepared to use them. If the training is centred on teaching people, however, the risk is transferred to having overqualified equipment. In search of this balance, the study, analysis, and evaluation of human–machine interaction are crucial, as are correctly identifying the tools through which this interaction is achieved. Extended reality (XR), emerging technology within Construction 4.0, seems to be a tool that offers an environment conducive to achieving these interactions and meeting the objectives sought. In civil engineering, efforts have been directed towards the study and development of applications of XR experiences rather than the application of this technology in a transcendental way in civil engineering training. This research identifies developments in XR experiences and analyses their use, application methodologies, and training areas that include immersive training, as well as the relationship between XR and construction industry methodologies and technologies, such as building information modelling.
{"title":"Critical analysis of the use of extended reality XR for training in civil engineering","authors":"Mathias Proboste Martinez, Felipe Muñoz La Rivera, Javier Mora Serrano","doi":"10.1002/cae.22720","DOIUrl":"10.1002/cae.22720","url":null,"abstract":"<p>Construction 4.0 promotes digital transformation through automation, robotisation, and the integration of systems and processes into digital environments, with direct links to real systems, using a wide range of technologies. The risk here is centred on having very advanced machines with people not prepared to use them. If the training is centred on teaching people, however, the risk is transferred to having overqualified equipment. In search of this balance, the study, analysis, and evaluation of human–machine interaction are crucial, as are correctly identifying the tools through which this interaction is achieved. Extended reality (XR), emerging technology within Construction 4.0, seems to be a tool that offers an environment conducive to achieving these interactions and meeting the objectives sought. In civil engineering, efforts have been directed towards the study and development of applications of XR experiences rather than the application of this technology in a transcendental way in civil engineering training. This research identifies developments in XR experiences and analyses their use, application methodologies, and training areas that include immersive training, as well as the relationship between XR and construction industry methodologies and technologies, such as building information modelling.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139781166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gloria P. Gasca-Hurtado, Solbey Morillo-Puente, María C. Gómez-Álvarez
In this research, a microlearning strategy for Software Engineering supported by a mobile application was designed and implemented. The goal is to evaluate the motivation and learning outcomes in the specific context of Software Project Management, with the Scrum framework, in participants of a Software Engineering course at a Latin American higher education institution. An empirical investigation was conducted using a quantitative approach, a quasi-experimental design, and pretest–posttest measurements without a control group. A one-sample t-test for comparison of the means of a sample was used. Statistically significant differences were found between the theoretical and empirical mean of the variable motivation to learn in the specific context and the variable Stimulus for learning after interacting with the mobile application. The means were higher than the theoretical average of the scale, which suggests that the participants valued the mobile application positively. Regarding the learning outcomes of the Scrum framework, a paired sample t-test for comparison of means revealed an increase in posttest scores, although this rise was not statistically significant. Microlearning can increase the participants' motivation and promote learning in the specific context of Software Project Management. The mobile application has the potential to support microlearning since the participants felt highly motivated and agreed that its use facilitates learning, a key aspect of success in a microlearning strategy.
本研究设计并实施了一种由移动应用程序支持的软件工程微学习策略。其目的是在软件项目管理的特定背景下,采用 Scrum 框架,对拉丁美洲一所高等教育机构软件工程课程参与者的学习动机和学习成果进行评估。我们采用定量方法、准实验设计和无对照组的前测-后测测量方法进行了实证调查。采用单样本 t 检验来比较样本的平均值。结果发现,在特定情境下的学习动机变量和与移动应用程序互动后的学习刺激变量的理论平均值与实证平均值之间存在明显的统计学差异。平均值高于量表的理论平均值,这表明参与者对移动应用程序给予了积极评价。关于 Scrum 框架的学习成果,通过对均值进行配对样本 t 检验发现,学员的测验后得分有所提高,但这一提高在统计上并不显著。在软件项目管理的特定背景下,微学习可以提高参与者的积极性并促进学习。移动应用程序具有支持微观学习的潜力,因为学员感到积极性很高,并一致认为使用移动应用程序有助于学习,这是微观学习策略取得成功的一个关键方面。
{"title":"Microlearning strategy in the promotion of motivation and learning outcomes in software project management","authors":"Gloria P. Gasca-Hurtado, Solbey Morillo-Puente, María C. Gómez-Álvarez","doi":"10.1002/cae.22717","DOIUrl":"10.1002/cae.22717","url":null,"abstract":"<p>In this research, a microlearning strategy for Software Engineering supported by a mobile application was designed and implemented. The goal is to evaluate the motivation and learning outcomes in the specific context of Software Project Management, with the Scrum framework, in participants of a Software Engineering course at a Latin American higher education institution. An empirical investigation was conducted using a quantitative approach, a quasi-experimental design, and pretest–posttest measurements without a control group. A one-sample <i>t</i>-test for comparison of the means of a sample was used. Statistically significant differences were found between the theoretical and empirical mean of the variable motivation to learn in the specific context and the variable Stimulus for learning after interacting with the mobile application. The means were higher than the theoretical average of the scale, which suggests that the participants valued the mobile application positively. Regarding the learning outcomes of the Scrum framework, a paired sample <i>t</i>-test for comparison of means revealed an increase in posttest scores, although this rise was not statistically significant. Microlearning can increase the participants' motivation and promote learning in the specific context of Software Project Management. The mobile application has the potential to support microlearning since the participants felt highly motivated and agreed that its use facilitates learning, a key aspect of success in a microlearning strategy.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139754908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In today's environment, finite element analysis is crucial for Mechanical Engineers. In today's highly competitive industries, graduates need to be productive from Day one as they enter the industry. To meet the vast range of industrial requirements or even for higher education, education institutes must adhere to an industry enabled curriculum as defined in collaboration with industry employees. As students reach their prefinal year of mechanical engineering studies, they will encounter courses like finite element analysis, design of machine elements, and failure analysis in design, which will serve as foundation steps for their future careers. As students need to compete in the real world, it becomes imperative to have a thorough understanding of both theoretical and practical issues. The focus of current work is to provide them a platform to think as a real-time problem-solving engineer to address the society-based problems and how he/she approaches the problem in an optimized way and finally, convert the entire work to tangible documents in the form of research articles. Since 2018, a new vertical called as “advanced computer aided engineering (CAE)” has emerged to link and prepare people for the business. In the realm of finite element method (FEM) theoretical and allied laboratory work, the current study discusses sustainability while selecting the problem statement. The entire emphasis is on eco-environment with nature's sustainability along with the go-green concept in terms of materials, design, optimization, cost, quality, and so on. The present work includes several new features that were not present in the previous curriculum, such as transforming the work to high-quality journals, student feedback, subscription-based journal selection for the manuscript, and embedding experimental and analytical work alongside simulation studies. This time, 40 teams participated, with around 36 project works being qualified for publication in prestigious journals and 8–10 works being filed for Indian patents. In terms of quality and quantity of work completed, this is the best output attained in contrast to previous iterations. Because of the increasing growth rate of higher education, our students have been able to get into Top 100 QS ranked universities. The figures show that because of faculty involvement in the FEM lab, Advanced CAE I, and Advanced CAE II, over the previous 4–5 years, students were able to publish more than 50 publications in prestigious peer-reviewed International/National Journals and Conference papers.
{"title":"Finite element analysis megatrends: A road less traveled","authors":"Arun Y. Patil, Tanmay Kundu, Raman Kumar","doi":"10.1002/cae.22721","DOIUrl":"10.1002/cae.22721","url":null,"abstract":"<p>In today's environment, finite element analysis is crucial for Mechanical Engineers. In today's highly competitive industries, graduates need to be productive from Day one as they enter the industry. To meet the vast range of industrial requirements or even for higher education, education institutes must adhere to an industry enabled curriculum as defined in collaboration with industry employees. As students reach their prefinal year of mechanical engineering studies, they will encounter courses like finite element analysis, design of machine elements, and failure analysis in design, which will serve as foundation steps for their future careers. As students need to compete in the real world, it becomes imperative to have a thorough understanding of both theoretical and practical issues. The focus of current work is to provide them a platform to think as a real-time problem-solving engineer to address the society-based problems and how he/she approaches the problem in an optimized way and finally, convert the entire work to tangible documents in the form of research articles. Since 2018, a new vertical called as “advanced computer aided engineering (CAE)” has emerged to link and prepare people for the business. In the realm of finite element method (FEM) theoretical and allied laboratory work, the current study discusses sustainability while selecting the problem statement. The entire emphasis is on eco-environment with nature's sustainability along with the go-green concept in terms of materials, design, optimization, cost, quality, and so on. The present work includes several new features that were not present in the previous curriculum, such as transforming the work to high-quality journals, student feedback, subscription-based journal selection for the manuscript, and embedding experimental and analytical work alongside simulation studies. This time, 40 teams participated, with around 36 project works being qualified for publication in prestigious journals and 8–10 works being filed for Indian patents. In terms of quality and quantity of work completed, this is the best output attained in contrast to previous iterations. Because of the increasing growth rate of higher education, our students have been able to get into Top 100 QS ranked universities. The figures show that because of faculty involvement in the FEM lab, Advanced CAE I, and Advanced CAE II, over the previous 4–5 years, students were able to publish more than 50 publications in prestigious peer-reviewed International/National Journals and Conference papers.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139772987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The evolution of augmented reality (AR) and virtual reality (VR) technologies has ushered in a new era of immersive experiences, with applications ranging from entertainment to education. The proposed framework introduces a fog layer with an innovative, improved geographic load-balancing algorithm. It optimizes load distribution and provides quality of service (QoS) parameters that are important for enhancing user experiences for AR/VR applications. The iFogSim toolkit experimentally validates the framework in electroencephalogram-based VR/AR gaming applications. Also, the proposed framework is tested in a diverse range of scenarios. Results show that the proposed algorithm improves QoS for AR/VR applications with noticeable improvements on average latency, jitter, and packet loss. Future research should aim to address these limitations for a more comprehensive understanding of the proposed framework's practicality and effectiveness. The development of immersive technologies will continue to expand in multiple sectors, and future research will focus on energy efficiency, security, and real-world applications.
{"title":"QoS-enhanced load balancing strategies for metaverse-infused VR/AR in engineering education 5.0","authors":"Kiran Deep Singh, Prabh Deep Singh","doi":"10.1002/cae.22722","DOIUrl":"10.1002/cae.22722","url":null,"abstract":"<p>The evolution of augmented reality (AR) and virtual reality (VR) technologies has ushered in a new era of immersive experiences, with applications ranging from entertainment to education. The proposed framework introduces a fog layer with an innovative, improved geographic load-balancing algorithm. It optimizes load distribution and provides quality of service (QoS) parameters that are important for enhancing user experiences for AR/VR applications. The iFogSim toolkit experimentally validates the framework in electroencephalogram-based VR/AR gaming applications. Also, the proposed framework is tested in a diverse range of scenarios. Results show that the proposed algorithm improves QoS for AR/VR applications with noticeable improvements on average latency, jitter, and packet loss. Future research should aim to address these limitations for a more comprehensive understanding of the proposed framework's practicality and effectiveness. The development of immersive technologies will continue to expand in multiple sectors, and future research will focus on energy efficiency, security, and real-world applications.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139754989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Building information modeling (BIM), as the core technology for digital transformation and development of the construction industry, is in vigorous development. This study analyzes the current situation of teaching BIM to construction management professionals in universities. Based on the CDIO (conceive–design–implement–operate) engineering education concept, a new teaching system of BIM technology for construction management professionals is proposed. It is composed of a diversified teaching mode of implanting BIM technology in professional courses, establishing a school–enterprise cooperation platform, expert linkage, BIM team construction, skill competition, and transformation of scientific research achievements, and provides a reference for the reform of practical teaching. It is proved that this education mode improves students' learning enthusiasm, engineering practice ability, solidarity and ability to solve practical engineering problems, cultivates outstanding talents in BIM technology, drives students' employment, and provides innovative talents in BIM technology needed for the development of the construction industry.
{"title":"Theory and practice of BIM skills of construction management professional based on conceive–design–implement–operate engineering teaching mode","authors":"Nan Li, Yiming Han, Feng Gao","doi":"10.1002/cae.22719","DOIUrl":"10.1002/cae.22719","url":null,"abstract":"<p>Building information modeling (BIM), as the core technology for digital transformation and development of the construction industry, is in vigorous development. This study analyzes the current situation of teaching BIM to construction management professionals in universities. Based on the CDIO (conceive–design–implement–operate) engineering education concept, a new teaching system of BIM technology for construction management professionals is proposed. It is composed of a diversified teaching mode of implanting BIM technology in professional courses, establishing a school–enterprise cooperation platform, expert linkage, BIM team construction, skill competition, and transformation of scientific research achievements, and provides a reference for the reform of practical teaching. It is proved that this education mode improves students' learning enthusiasm, engineering practice ability, solidarity and ability to solve practical engineering problems, cultivates outstanding talents in BIM technology, drives students' employment, and provides innovative talents in BIM technology needed for the development of the construction industry.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139667956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francisco M. Muñoz-Pérez, Juan C. Castro-Palacio, Marcos H. Giménez, Juan A. Monsoriu
We present a new virtual laboratory developed with COMSOL multiphysics for the simulation of an acoustic levitator, as well as a three-dimensional (3D) printed experimental setup. Our software application simulates the acoustic pressure field and its interaction with a set of particles. Students can interact with the system having the possibility to change the frequency and distance parameters between transducers in real time. We have also developed and shared for free use the 3D printing design files for the construction of the necessary components for the acoustic levitator, as well as the instructions for its experimental implementation. The experimental results are contrasted, along with those from the virtual laboratory, providing students with useful tools to understand and interpret the acoustic phenomenon in question.
{"title":"Visualizing acoustic levitation with COMSOL Multiphysics and a simple experimental setup","authors":"Francisco M. Muñoz-Pérez, Juan C. Castro-Palacio, Marcos H. Giménez, Juan A. Monsoriu","doi":"10.1002/cae.22718","DOIUrl":"10.1002/cae.22718","url":null,"abstract":"<p>We present a new virtual laboratory developed with COMSOL multiphysics for the simulation of an acoustic levitator, as well as a three-dimensional (3D) printed experimental setup. Our software application simulates the acoustic pressure field and its interaction with a set of particles. Students can interact with the system having the possibility to change the frequency and distance parameters between transducers in real time. We have also developed and shared for free use the 3D printing design files for the construction of the necessary components for the acoustic levitator, as well as the instructions for its experimental implementation. The experimental results are contrasted, along with those from the virtual laboratory, providing students with useful tools to understand and interpret the acoustic phenomenon in question.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cae.22718","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139668282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The traditional experimental teaching and practical teaching cannot meet the requirements of experimental practice teaching under the new situation, and virtual simulation technology has made great progress in teaching. Based on this, a new teaching mode—engineering simulation practices teaching platform—is proposed. In this regard, the methodology research is carried out, and the implementation scheme is proposed. The teaching design, implementation, and improvement have received good application results, which effectively improve the training level of applied talents for civil engineering majors in colleges and universities.
{"title":"Research and innovation of engineering simulation practice teaching platform based on the civil engineering talent training","authors":"Nan Li, Mengjin Gao, Shuaijie Liu, Yiming Han, Yajun Xi, Feng Gao","doi":"10.1002/cae.22713","DOIUrl":"10.1002/cae.22713","url":null,"abstract":"<p>The traditional experimental teaching and practical teaching cannot meet the requirements of experimental practice teaching under the new situation, and virtual simulation technology has made great progress in teaching. Based on this, a new teaching mode—engineering simulation practices teaching platform—is proposed. In this regard, the methodology research is carried out, and the implementation scheme is proposed. The teaching design, implementation, and improvement have received good application results, which effectively improve the training level of applied talents for civil engineering majors in colleges and universities.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139516966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raoudha Garma, Doniazed Sioud, Housam Binous, Ahmed Bellagi
In the present paper several aspects of the simulation of complex chemical equilibrium are discussed, using two research and educational software: gPROMS® and GAMS®. All computations are performed to boost the understanding of chemical engineering students, undergraduate, and graduate, of the complex concepts behind both thermo-chemical processes and optimization techniques. Four case studies with varying levels of difficulty illustrate the proposed methodology and robustness of the modeling systems:
Qingshu Yuan, Kailiang Shou, Jin Xu, Zhengwei Yao, Zhigeng Pan
As the cornerstone of spatial geometry and engineering drawings, three-view drawing lays the necessary foundation for students to learn geography, graphics, industrial design, geographic information science, and so forth. However, teaching three-view drawing can be challenging due to its abstraction. Currently, desktop and handheld augmented reality (AR) systems are widely applied to three-view teaching. However, existing systems suffer from visuo-tactile inconsistency and contain unfriendly interactions, resulting in a poor learning experience. In this paper, head-mounted AR is introduced for the first time in the teaching of three-view drawing. A system was designed for learning three-view drawing to facilitate students' free exploration and learning in lessons. Additionally, a comparative experiment was designed and conducted to investigate whether multimodal interaction and head-mounted AR help students to better understand the relationship between concrete three-dimensional (3D) objects and abstract two-dimensional planes and the impact on subjective perceptions. The results demonstrated that the proposed system significantly improved learning performance. Furthermore, the proposed system heightened students' interest in learning, made reproducing 3D structures more intuitive, and students were more willing to use such systems in their future studies.
作为空间几何和工程制图的基石,三视图为学生学习地理、制图、工业设计、地理信息科学等奠定了必要的基础。然而,由于三视图的抽象性,三视图的教学具有一定的挑战性。目前,桌面和手持增强现实(AR)系统被广泛应用于三视图教学。然而,现有系统存在视觉触觉不一致、交互不友好等问题,导致学习体验不佳。本文首次将头戴式 AR 引入三视图教学。为了方便学生在课堂上自由探索和学习,我们设计了一个学习三视图的系统。此外,还设计并进行了一项对比实验,研究多模态交互和头戴式 AR 是否有助于学生更好地理解具体的三维(3D)物体和抽象的二维平面之间的关系,以及对主观感受的影响。结果表明,拟议的系统显著提高了学习成绩。此外,该系统还提高了学生的学习兴趣,使三维结构的再现更加直观,学生也更愿意在今后的学习中使用该系统。
{"title":"Examining the impact of head-mounted augmented reality on learning engineering drawings: A case study for three-view drawing","authors":"Qingshu Yuan, Kailiang Shou, Jin Xu, Zhengwei Yao, Zhigeng Pan","doi":"10.1002/cae.22716","DOIUrl":"10.1002/cae.22716","url":null,"abstract":"<p>As the cornerstone of spatial geometry and engineering drawings, three-view drawing lays the necessary foundation for students to learn geography, graphics, industrial design, geographic information science, and so forth. However, teaching three-view drawing can be challenging due to its abstraction. Currently, desktop and handheld augmented reality (AR) systems are widely applied to three-view teaching. However, existing systems suffer from visuo-tactile inconsistency and contain unfriendly interactions, resulting in a poor learning experience. In this paper, head-mounted AR is introduced for the first time in the teaching of three-view drawing. A system was designed for learning three-view drawing to facilitate students' free exploration and learning in lessons. Additionally, a comparative experiment was designed and conducted to investigate whether multimodal interaction and head-mounted AR help students to better understand the relationship between concrete three-dimensional (3D) objects and abstract two-dimensional planes and the impact on subjective perceptions. The results demonstrated that the proposed system significantly improved learning performance. Furthermore, the proposed system heightened students' interest in learning, made reproducing 3D structures more intuitive, and students were more willing to use such systems in their future studies.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139516835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}