Recently, the Generalized Cauchy (GC) process has been applied to capture a Long Memory (LM) phenomenon in product degradation modeling and life prediction. Compared with the traditional fractional Brownian motion that captures the LM using a single Hurst parameter, the GC process has two free parameters (Hurst and fractal dimension parameters) that flexibly capture both global LM and local irregularity. However, all existing GC-based degradation models are for a single Degradation Characteristic (DC). In this article, motivated by a real degradation problem of dye-sensitized solar cells that jointly exhibits multiple DCs, global LM, local irregularity and DC-wise cross-correlation, we propose a novel GC-based Multivariate Degradation Model (GC-MDM) to simultaneously capture the aforementioned effects. A maximum likelihood estimation approach is developed to estimate parameters of the GC-MDM. Subsequently, product life prediction based on the GC-MDM is developed. The proposed GC-MDM is validated through a simulation study and a physical experiment of dye-sensitized solar cells. Results show that the proposed GC-MDM fundamentally improves the life prediction accuracy in comparison with conventional degradation models which significantly misestimate the uncertainty of product life.