首页 > 最新文献

Integration-The Vlsi Journal最新文献

英文 中文
A wide-output buck DC-DC power management IC 宽输出降压型 DC-DC 电源管理集成电路
IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-09-06 DOI: 10.1016/j.vlsi.2024.102278
Xinglong Guo , Qingqing Wu , Yanhang Du , Xinyu Li , Zihao Cui

-This article designs and develops a wide-input voltage, high-efficiency, small-size, and peak current-mode control step-down DC-DC converter. The Cadence Spectre simulation tool is used for system simulation to verify the performance of the chip. The overall research content of the article includes the function of the output under heavy load, light load and the stability of the output under transient load changes. The specific content of the research is buck synchronous step-down DC-DC converter chip with pulse modulated. It is provided with an input-voltage range of 6 V–80 V and maximum output-voltage range 72 V. The chip possesses wide operating temperature range of −20 °C to 130 °C. The 92 % high-efficiency can be achieved by using a PWM/PFM hybrid modulation method. When achieving transient load jump, the output voltage change shall not exceed 150 mV. The maximum load current of the chip is 1 A. Furthermore, the chip is packaged and samples can be obtained, and the output light load/heavy load, and other functions are tested through the circuit board. In addition, the chip achieved tape out by using 0.18 μm CMOS process with size of 2027 μm × 2020 μm. The converter features current mode control to simplify external compensation and optimize transient response through a wide range of inductors and output capacitors. It can be adopted user-programmable soft-start time to prevent inrush current during startup. It also includes thermal shutdown protection to provide safe and smooth operation in operating conditions.

-本文设计并开发了一种宽输入电压、高效率、小尺寸和峰值电流模式控制的降压型 DC-DC 转换器。采用 Cadence Spectre 仿真工具进行系统仿真,以验证芯片的性能。文章的总体研究内容包括重负载、轻负载下的输出功能以及瞬态负载变化下的输出稳定性。具体研究内容为带脉冲调制的降压同步降压型 DC-DC 转换器芯片。该芯片的输入电压范围为 6 V-80 V,最大输出电压范围为 72 V。通过使用 PWM/PFM 混合调制方法,可实现 92% 的高效率。在实现瞬态负载跳变时,输出电压变化不超过 150 mV。芯片的最大负载电流为 1 A。此外,该芯片经过封装,可以获得样品,并通过电路板测试输出轻载/重载等功能。此外,该芯片采用 0.18 μm CMOS 工艺制成,尺寸为 2027 μm × 2020 μm。该转换器采用电流模式控制,可简化外部补偿,并通过各种电感器和输出电容器优化瞬态响应。它可采用用户可编程软启动时间,以防止启动期间出现浪涌电流。它还包括热关断保护,可在工作条件下提供安全平稳的运行。
{"title":"A wide-output buck DC-DC power management IC","authors":"Xinglong Guo ,&nbsp;Qingqing Wu ,&nbsp;Yanhang Du ,&nbsp;Xinyu Li ,&nbsp;Zihao Cui","doi":"10.1016/j.vlsi.2024.102278","DOIUrl":"10.1016/j.vlsi.2024.102278","url":null,"abstract":"<div><p>-This article designs and develops a wide-input voltage, high-efficiency, small-size, and peak current-mode control step-down DC-DC converter. The Cadence Spectre simulation tool is used for system simulation to verify the performance of the chip. The overall research content of the article includes the function of the output under heavy load, light load and the stability of the output under transient load changes. The specific content of the research is buck synchronous step-down DC-DC converter chip with pulse modulated. It is provided with an input-voltage range of 6 V–80 V and maximum output-voltage range 72 V. The chip possesses wide operating temperature range of −20 °C to 130 °C. The 92 % high-efficiency can be achieved by using a PWM/PFM hybrid modulation method. When achieving transient load jump, the output voltage change shall not exceed 150 mV. The maximum load current of the chip is 1 A. Furthermore, the chip is packaged and samples can be obtained, and the output light load/heavy load, and other functions are tested through the circuit board. In addition, the chip achieved tape out by using 0.18 μm CMOS process with size of 2027 μm <span><math><mrow><mo>×</mo></mrow></math></span> 2020 μm. The converter features current mode control to simplify external compensation and optimize transient response through a wide range of inductors and output capacitors. It can be adopted user-programmable soft-start time to prevent inrush current during startup. It also includes thermal shutdown protection to provide safe and smooth operation in operating conditions.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"100 ","pages":"Article 102278"},"PeriodicalIF":2.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LA-ring based non-linear components: Application to image security 基于 LA 环的非线性组件:图像安全应用
IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-09-05 DOI: 10.1016/j.vlsi.2024.102279
Nazli Sanam, Summiya Mumtaz, Samreen Khalid

The prevalent utilization of symmetric block ciphers in contemporary information security systems reinforces the need for immediate action to increase their effectiveness. This task is considered crucial in the synthesis of high-quality cryptographic primitives, particularly S-boxes. In accordance with this requirement, the current article demonstrates a strategy for generating an 8 × 8 S-box drawing over an LA-ring of order 1024, which is considered a substantial class of non-associative rings. For the purpose of investigating LA-ring and their practical uses, it is essential to have illustrative examples. However, obtaining such examples using current methods is tedious and yields limited results. Therefore, this research explores an intriguing opportunity for an extensive exploration of LA-ring, far exceeding the limitations previously established and offering a valuable analytical approach for creating examples of higher-order LA-ring by drawing upon lower orders. The manuscript also performs a variety of standard evaluation tests based on five core indicators, which highlight their potential as parallels to the existing frameworks. By using the crafted S-box, an image encryption approach is launched that aims to enhance security measures. It is therefore seen that the recommended S-box has shown a high potential for causing confusion during the substitution phase, and a 3D chaotic map is implemented for the pixel permutation in order to create diffusion into the colour image. Certainly, the discovery is leading to a foundational framework among academics and is expected to serve as the basis for numerous implementations in the future.

对称块密码在当代信息安全系统中的广泛使用,使我们更有必要立即采取行动提高其有效性。这项任务被认为是合成高质量密码基元,特别是 S-box 的关键。根据这一要求,本文展示了在阶数为 1024 的 LA 环上生成 8 × 8 S-box 绘图的策略,LA 环被认为是非关联环的一个重要类别。为了研究 LA 环及其实际用途,必须有能说明问题的例子。然而,使用现有方法获取此类示例非常繁琐,且结果有限。因此,本研究为广泛探索 LA 环探索了一个令人感兴趣的机会,远远超出了以前建立的限制,并为通过借鉴低阶 LA 环创建高阶 LA 环示例提供了一种有价值的分析方法。该手稿还基于五项核心指标进行了各种标准评估测试,凸显了其与现有框架并行的潜力。通过使用精心制作的 S-box,推出了一种旨在加强安全措施的图像加密方法。由此可见,所推荐的 S-box 在替换阶段极有可能造成混淆,而为了在彩色图像中形成扩散,像素置换采用了三维混沌图。当然,这一发现正在学术界形成一个基础框架,并有望成为未来众多实施方案的基础。
{"title":"LA-ring based non-linear components: Application to image security","authors":"Nazli Sanam,&nbsp;Summiya Mumtaz,&nbsp;Samreen Khalid","doi":"10.1016/j.vlsi.2024.102279","DOIUrl":"10.1016/j.vlsi.2024.102279","url":null,"abstract":"<div><p>The prevalent utilization of symmetric block ciphers in contemporary information security systems reinforces the need for immediate action to increase their effectiveness. This task is considered crucial in the synthesis of high-quality cryptographic primitives, particularly S-boxes. In accordance with this requirement, the current article demonstrates a strategy for generating an 8 × 8 S-box drawing over an LA-ring of order 1024, which is considered a substantial class of non-associative rings. For the purpose of investigating LA-ring and their practical uses, it is essential to have illustrative examples. However, obtaining such examples using current methods is tedious and yields limited results. Therefore, this research explores an intriguing opportunity for an extensive exploration of LA-ring, far exceeding the limitations previously established and offering a valuable analytical approach for creating examples of higher-order LA-ring by drawing upon lower orders. The manuscript also performs a variety of standard evaluation tests based on five core indicators, which highlight their potential as parallels to the existing frameworks. By using the crafted S-box, an image encryption approach is launched that aims to enhance security measures. It is therefore seen that the recommended S-box has shown a high potential for causing confusion during the substitution phase, and a 3D chaotic map is implemented for the pixel permutation in order to create diffusion into the colour image. Certainly, the discovery is leading to a foundational framework among academics and is expected to serve as the basis for numerous implementations in the future.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"100 ","pages":"Article 102279"},"PeriodicalIF":2.2,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 3D-stack DRAM-based PNM architecture design 基于 3D 堆栈 DRAM 的 PNM 架构设计
IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-09-02 DOI: 10.1016/j.vlsi.2024.102266
Qiang Zhou , Bing Wang , XinTing Xiao

The article examines methods for integrating 3D-stacked DRAM with AI logic chips, in order to overcome the memory bandwidth challenges faced in the AI inference of transformer models. The findings indicate that this approach can yield a 9x to 3x reduction in power consumption while maintaining similar performance levels, or alternatively, an 8x improvement in performance with comparable power consumption.

文章研究了将三维堆叠 DRAM 与人工智能逻辑芯片集成的方法,以克服变压器模型的人工智能推理所面临的内存带宽挑战。研究结果表明,这种方法可以在保持类似性能水平的同时将功耗降低 9 到 3 倍,或者在功耗相当的情况下将性能提高 8 倍。
{"title":"A 3D-stack DRAM-based PNM architecture design","authors":"Qiang Zhou ,&nbsp;Bing Wang ,&nbsp;XinTing Xiao","doi":"10.1016/j.vlsi.2024.102266","DOIUrl":"10.1016/j.vlsi.2024.102266","url":null,"abstract":"<div><p>The article examines methods for integrating 3D-stacked DRAM with AI logic chips, in order to overcome the memory bandwidth challenges faced in the AI inference of transformer models. The findings indicate that this approach can yield a 9x to 3x reduction in power consumption while maintaining similar performance levels, or alternatively, an 8x improvement in performance with comparable power consumption.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"100 ","pages":"Article 102266"},"PeriodicalIF":2.2,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated electrical silicon interconnects for short-range high-speed millimeter-wave and terahertz communications 用于短程高速毫米波和太赫兹通信的集成电子硅互连器件
IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-08-31 DOI: 10.1016/j.vlsi.2024.102267
Zhihong Lin , Shiqi Chen , Yuan Liang , Lin Peng

—Millimeter-wave and terahertz interconnects implemented in advanced complementary metal oxide semiconductor (CMOS) technologies have emerged as promising solutions to fix the issues encountered by baseband interconnects and optical interconnects across specific communication ranges. Over the last decade, significant attempts to advance millimeter-wave and terahertz electronics and platforms have been made. Notably, there have been ground-breaking advancements in active components, including modulation techniques, low-noise receivers, efficient and high-output-power signal generators, and high-frequency clock synthesizers. Nevertheless, since energy efficiency is of paramount importance for interconnect applications, it is necessary to prioritize efficiency enhancements over improvements in signal power, signal integrity and noise related performance. Strategies to improve system output power and phase noise as well as strategies to reduce channel loss and channel electromagnetic crosstalk should leverage alternative approaches, such as architectural optimizations and array configurations, rather than prioritizing energy efficiency. As such, the progression of passive channel technology is equally vital. While reducing channel insertion loss is essential for extending communication reach, channel dispersion and crosstalk limitations at the interface level present critical challenges to achieving optimal bandwidth over distances of up to a few meters. This underscores the need for a balanced focus on both active and passive component innovations to fully harness the potential of millimeter-wave and terahertz interconnects in overcoming the limitations of current CMOS technologies.

-采用先进的互补金属氧化物半导体(CMOS)技术实现的毫米波和太赫兹互连已成为解决基带互连和光互连在特定通信范围内遇到的问题的有前途的解决方案。在过去十年中,人们为推动毫米波和太赫兹电子技术和平台的发展做出了重大尝试。值得注意的是,有源元件取得了突破性进展,包括调制技术、低噪声接收器、高效和高输出功率信号发生器以及高频时钟合成器。然而,由于能效对互连应用至关重要,因此有必要优先提高能效,而不是改善信号功率、信号完整性和噪声相关性能。改善系统输出功率和相位噪声的策略,以及降低通道损耗和通道电磁串扰的策略,都应采用其他方法,如架构优化和阵列配置,而不是优先考虑能效。因此,无源信道技术的发展同样至关重要。虽然降低信道插入损耗对扩大通信覆盖范围至关重要,但接口层面的信道色散和串扰限制对实现最远几米的最佳带宽提出了严峻挑战。这突出表明,要充分利用毫米波和太赫兹互连的潜力,克服当前 CMOS 技术的局限性,就必须均衡地关注有源和无源元件的创新。
{"title":"Integrated electrical silicon interconnects for short-range high-speed millimeter-wave and terahertz communications","authors":"Zhihong Lin ,&nbsp;Shiqi Chen ,&nbsp;Yuan Liang ,&nbsp;Lin Peng","doi":"10.1016/j.vlsi.2024.102267","DOIUrl":"10.1016/j.vlsi.2024.102267","url":null,"abstract":"<div><p>—Millimeter-wave and terahertz interconnects implemented in advanced complementary metal oxide semiconductor (CMOS) technologies have emerged as promising solutions to fix the issues encountered by baseband interconnects and optical interconnects across specific communication ranges. Over the last decade, significant attempts to advance millimeter-wave and terahertz electronics and platforms have been made. Notably, there have been ground-breaking advancements in active components, including modulation techniques, low-noise receivers, efficient and high-output-power signal generators, and high-frequency clock synthesizers. Nevertheless, since energy efficiency is of paramount importance for interconnect applications, it is necessary to prioritize efficiency enhancements over improvements in signal power, signal integrity and noise related performance. Strategies to improve system output power and phase noise as well as strategies to reduce channel loss and channel electromagnetic crosstalk should leverage alternative approaches, such as architectural optimizations and array configurations, rather than prioritizing energy efficiency. As such, the progression of passive channel technology is equally vital. While reducing channel insertion loss is essential for extending communication reach, channel dispersion and crosstalk limitations at the interface level present critical challenges to achieving optimal bandwidth over distances of up to a few meters. This underscores the need for a balanced focus on both active and passive component innovations to fully harness the potential of millimeter-wave and terahertz interconnects in overcoming the limitations of current CMOS technologies.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"100 ","pages":"Article 102267"},"PeriodicalIF":2.2,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An analytical placement algorithm with looking-ahead routing topology optimization 具有前瞻性路由拓扑优化功能的分析放置算法
IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-08-31 DOI: 10.1016/j.vlsi.2024.102264
Min Wei , Xingyu Tong , Zhijie Cai , Peng Zou , Zhifeng Lin , Jianli Chen

Placement is a critical step in the modern VLSI design flow, as it dramatically determines the performance of circuit designs. Most placement algorithms estimate the design performance with a half-perimeter wirelength (HPWL) and target it as their optimization objective. The wirelength model used by these algorithms limits their ability to optimize the internal routing topology, which can lead to discrepancies between estimates and the actual routing wirelength. This paper proposes an analytical placement algorithm to optimize the internal routing topology. We first introduce a differential wirelength model in the global placement stage based on an ideal routing topology RSMT. Through screening and tracing various segments, this model can generate meaningful gradients for interior points during gradient computation. Then, after global placement, we propose a cell refinement algorithm and further optimize the routing wirelength with swift density control. Experiments on ICCAD2015 benchmarks show that our algorithm can achieve a 3% improvement in routing wirelength, 0.8% in HPWL, and 23.8% in TNS compared with the state-of-the-art analytical placer. On industrial benchmarks, our algorithm can also achieve a 10.6% improvement in routing wirelength, 27.3% in WNS, and 34.4% in TNS.

贴装是现代超大规模集成电路设计流程中的关键步骤,因为它极大地决定了电路设计的性能。大多数布局算法使用半周线长(HPWL)估算设计性能,并将其作为优化目标。这些算法使用的线长模型限制了其优化内部路由拓扑的能力,从而导致估计值与实际路由线长之间的差异。本文提出了一种优化内部路由拓扑的分析性布局算法。我们首先基于理想路由拓扑 RSMT,在全局布局阶段引入了一个差分线长模型。通过筛选和跟踪各种线段,该模型可在梯度计算过程中为内部点生成有意义的梯度。然后,在全局布局之后,我们提出了一种单元细化算法,并通过快速密度控制进一步优化路由线长。在 ICCAD2015 基准上进行的实验表明,与最先进的分析放置器相比,我们的算法可实现 3% 的路由线长改进、0.8% 的 HPWL 改进和 23.8% 的 TNS 改进。在工业基准上,我们的算法还能将路由线长提高 10.6%,将 WNS 提高 27.3%,将 TNS 提高 34.4%。
{"title":"An analytical placement algorithm with looking-ahead routing topology optimization","authors":"Min Wei ,&nbsp;Xingyu Tong ,&nbsp;Zhijie Cai ,&nbsp;Peng Zou ,&nbsp;Zhifeng Lin ,&nbsp;Jianli Chen","doi":"10.1016/j.vlsi.2024.102264","DOIUrl":"10.1016/j.vlsi.2024.102264","url":null,"abstract":"<div><p>Placement is a critical step in the modern VLSI design flow, as it dramatically determines the performance of circuit designs. Most placement algorithms estimate the design performance with a half-perimeter wirelength (HPWL) and target it as their optimization objective. The wirelength model used by these algorithms limits their ability to optimize the internal routing topology, which can lead to discrepancies between estimates and the actual routing wirelength. This paper proposes an analytical placement algorithm to optimize the internal routing topology. We first introduce a differential wirelength model in the global placement stage based on an ideal routing topology RSMT. Through screening and tracing various segments, this model can generate meaningful gradients for interior points during gradient computation. Then, after global placement, we propose a cell refinement algorithm and further optimize the routing wirelength with swift density control. Experiments on ICCAD2015 benchmarks show that our algorithm can achieve a 3% improvement in routing wirelength, 0.8% in HPWL, and 23.8% in TNS compared with the state-of-the-art analytical placer. On industrial benchmarks, our algorithm can also achieve a 10.6% improvement in routing wirelength, 27.3% in WNS, and 34.4% in TNS.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"100 ","pages":"Article 102264"},"PeriodicalIF":2.2,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142150576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A three-stage single-miller CMOS OTA with no lower load capacitor limit 无负载电容下限的三级单填充 CMOS OTA
IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-08-30 DOI: 10.1016/j.vlsi.2024.102269
P. Manikandan

This work proposes a Single Miller Capacitor (SMC) compensated three-stage Operational Transconductance Amplifier (OTA) for a wide range of load capacitors with a zero minimum load capacitor. The proposed three-stage OTA does not require a minimum load capacitor for OTA to be stable. The proposed work uses two different feed-forward transconductors to enhance the small-signal and large-signal performances of the OTA. This OTA achieves more than 70° phase margin and more than 10dB gain margin with a load capacitor range of 0 to 500pF and consumes less quiescent current. The proposed OTA uses a smaller SMC of 2pF to drive a wide range of load capacitors. Furthermore, it saves the active area of the chip. The proposed OTA is simulated in a cadence virtuoso tool using UMC 90nm CMOS technology with BSIM4 MOSFETs.

这项研究提出了一种单米勒电容器(SMC)补偿式三级运算跨导放大器(OTA),适用于多种负载电容器,最小负载电容器为零。拟议的三级 OTA 不需要最小负载电容就能实现稳定的 OTA。建议的工作使用两个不同的前馈跨导来增强 OTA 的小信号和大信号性能。该 OTA 在 0 至 500pF 的负载电容范围内实现了 70° 以上的相位裕度和 10dB 以上的增益裕度,并消耗较少的静态电流。拟议的 OTA 使用 2pF 的较小 SMC,可驱动各种负载电容器。此外,它还节省了芯片的有效面积。我们在 cadence virtuoso 工具中使用联电 90nm CMOS 技术和 BSIM4 MOSFET 对拟议的 OTA 进行了仿真。
{"title":"A three-stage single-miller CMOS OTA with no lower load capacitor limit","authors":"P. Manikandan","doi":"10.1016/j.vlsi.2024.102269","DOIUrl":"10.1016/j.vlsi.2024.102269","url":null,"abstract":"<div><p>This work proposes a Single Miller Capacitor (SMC) compensated three-stage Operational Transconductance Amplifier (OTA) for a wide range of load capacitors with a zero minimum load capacitor. The proposed three-stage OTA does not require a minimum load capacitor for OTA to be stable. The proposed work uses two different feed-forward transconductors to enhance the small-signal and large-signal performances of the OTA. This OTA achieves more than <span><math><mrow><mn>70</mn></mrow></math></span>° phase margin and more than <span><math><mrow><mn>10</mn><mspace></mspace><mi>dB</mi></mrow></math></span> gain margin with a load capacitor range of 0 to <span><math><mrow><mn>500</mn><mspace></mspace><mi>pF</mi></mrow></math></span> and consumes less quiescent current. The proposed OTA uses a smaller SMC of <span><math><mrow><mn>2</mn><mspace></mspace><mi>pF</mi></mrow></math></span> to drive a wide range of load capacitors. Furthermore, it saves the active area of the chip. The proposed OTA is simulated in a cadence virtuoso tool using UMC <span><math><mrow><mn>90</mn><mspace></mspace><mi>nm</mi></mrow></math></span> CMOS technology with BSIM4 MOSFETs.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"100 ","pages":"Article 102269"},"PeriodicalIF":2.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel tunable capacitively-copuled instrumentation amplifier with 14.4 nV/ √(H z) noise and 190.47 nW micro-power for ECG applications 用于心电图应用的新型可调电容表列仪表放大器,噪声为 14.4 nV/√(H z),微功率为 190.47 nW
IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-08-30 DOI: 10.1016/j.vlsi.2024.102268
Sujeet Kumar Gupta , Riyaz Ahmad , Dharmendar Boolchandani , Sougata Kumar Kar

This paper describes a low-power, low-noise capacitively-coupled instrumentation amplifier (CCIA) designed for capturing biopotential signals. The main advantage of proposed design are as (i) CCIA based on new IA has been proposed, (ii) the lower cutoff frequency has been improved by adding MOS based resistor, (iii) gm enhancement circuit is added in operational transconductance amplifier (OTA) based fully differential difference amplifier (FDDA)to improve gain and bandwidth. The DC electrode-offset voltage is reduced and the input impedance is increased by using feedback mechanism. Cadence EDA tool is used to analyze the findings of the proposed CCIA's in 0.18 μm, CMOS technology with a 1.8 V power supply. The proposed CCIA architecture has an adjustable mid-band gain from 52.55 to 61.11 dB for bias voltage ranges from 0.1 to 0.6 V, frequency range of 0.06 Hz–1.72 kHz, and a CMRR of 122 dB. The proposed CCIA has a total power dissipation of 190.47 nW and equivalent input referred noise (IRN) of 14.4 nV/sqrtHz at 0.01 Hz. It only occupies 0.01 mm2 of core area. To assess the robustness of suggested design, PVT analysis, post layout simulation and a comparison with previously published works demonstrates the competence of the design.

本文介绍了为捕捉生物电位信号而设计的低功耗、低噪声电容耦合仪表放大器(CCIA)。该设计的主要优点包括:(i) 基于新型 IA 的 CCIA 已被提出;(ii) 通过添加基于 MOS 的电阻器提高了较低的截止频率;(iii) 在基于运算跨导放大器(OTA)的全差分差动放大器(FDDA)中添加了 gm 增强电路,以提高增益和带宽。通过使用反馈机制,降低了直流电去抵消电压,增加了输入阻抗。使用 Cadence EDA 工具分析了在 0.18 μm CMOS 技术和 1.8 V 电源条件下开发的 CCIA 的结果。在偏置电压范围为 0.1 至 0.6 V、频率范围为 0.06 Hz-1.72 kHz、CMRR 为 122 dB 时,拟议的 CCIA 架构具有 52.55 至 61.11 dB 的可调中频增益。拟议的 CCIA 的总功耗为 190.47 nW,0.01 Hz 时的等效输入参考噪声 (IRN) 为 14.4 nV/sqrtHz。它仅占用 0.01 平方毫米的内核面积。为了评估所建议设计的稳健性,我们进行了 PVT 分析、布局后仿真,并与以前发表的作品进行了比较,从而证明了该设计的能力。
{"title":"A novel tunable capacitively-copuled instrumentation amplifier with 14.4 nV/ √(H z) noise and 190.47 nW micro-power for ECG applications","authors":"Sujeet Kumar Gupta ,&nbsp;Riyaz Ahmad ,&nbsp;Dharmendar Boolchandani ,&nbsp;Sougata Kumar Kar","doi":"10.1016/j.vlsi.2024.102268","DOIUrl":"10.1016/j.vlsi.2024.102268","url":null,"abstract":"<div><p>This paper describes a low-power, low-noise capacitively-coupled instrumentation amplifier (CCIA) designed for capturing biopotential signals. The main advantage of proposed design are as (i) CCIA based on new IA has been proposed, (ii) the lower cutoff frequency has been improved by adding MOS based resistor, (iii) g<sub>m</sub> enhancement circuit is added in operational transconductance amplifier (OTA) based fully differential difference amplifier (FDDA)to improve gain and bandwidth. The DC electrode-offset voltage is reduced and the input impedance is increased by using feedback mechanism. Cadence EDA tool is used to analyze the findings of the proposed CCIA's in 0.18 μm, CMOS technology with a 1.8 V power supply. The proposed CCIA architecture has an adjustable mid-band gain from 52.55 to 61.11 dB for bias voltage ranges from 0.1 to 0.6 V, frequency range of 0.06 Hz–1.72 kHz, and a CMRR of 122 dB. The proposed CCIA has a total power dissipation of 190.47 nW and equivalent input referred noise (IRN) of 14.4 nV/sqrtHz at 0.01 Hz. It only occupies 0.01 mm<sup>2</sup> of core area. To assess the robustness of suggested design, PVT analysis, post layout simulation and a comparison with previously published works demonstrates the competence of the design.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"100 ","pages":"Article 102268"},"PeriodicalIF":2.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142128398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental analysis of irregularly shaped octagonal on-chip inductors for improving area-efficiency in CMOS RFICs for millimeter wave applications 用于提高毫米波应用 CMOS 射频集成电路面积效率的不规则八边形片上电感器实验分析
IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-08-24 DOI: 10.1016/j.vlsi.2024.102259
Subbareddy Chavva, Immanuel Raja

This article deals with the analysis of irregularly shaped single turn octagonal spiral inductors for millimeter-wave and sub-THz CMOS IC designs. Simulations and experimental results, along with theoretical formulations, are used to characterize these irregular structures. This article proposes a novel approach for efficient use of silicon chip area by reshaping the on-chip inductors used in millimeter wave (mm-wave) applications without compromising the performance of the inductors. Especially in CMOS RFICs when a space constraint exists in either X- or Y-direction in their layout, such reshaping can be attempted. Moreover, two novel methods of reshaping the inductors are proposed and studied thoroughly. The study of these irregular shapes has interesting conclusions, which are validated through on-wafer measurements. Certain methods of reshaping result in inductors which do not have degradation in their quality factors (Q), while other approaches degrade the Q. Based on these insights, a design methodology is proposed for designers who need to reshape their inductors to irregular structures while not compromising on the quality factor. The measurement results agree with the simulations and prove that the proposed reshaping is practically possible.

本文分析了用于毫米波和超高频 CMOS 集成电路设计的不规则形状单匝八角螺旋电感器。仿真和实验结果以及理论公式被用来描述这些不规则结构的特征。本文提出了一种新方法,通过重塑毫米波(mm-wave)应用中使用的片上电感器,在不影响电感器性能的前提下有效利用硅芯片面积。特别是在 CMOS 射频集成电路中,当其布局的 X 或 Y 方向存在空间限制时,可以尝试这种重塑方法。此外,我们还提出并深入研究了两种重塑电感器的新方法。对这些不规则形状的研究得出了有趣的结论,并通过晶圆上的测量进行了验证。某些重塑方法会导致电感器的品质因数(Q 值)不降低,而其他方法则会降低 Q 值。基于这些见解,我们为需要将电感器重塑为不规则结构同时又不影响品质因数的设计人员提出了一种设计方法。测量结果与模拟结果一致,证明所提出的重塑方法切实可行。
{"title":"Experimental analysis of irregularly shaped octagonal on-chip inductors for improving area-efficiency in CMOS RFICs for millimeter wave applications","authors":"Subbareddy Chavva,&nbsp;Immanuel Raja","doi":"10.1016/j.vlsi.2024.102259","DOIUrl":"10.1016/j.vlsi.2024.102259","url":null,"abstract":"<div><p>This article deals with the analysis of irregularly shaped single turn octagonal spiral inductors for millimeter-wave and sub-THz CMOS IC designs. Simulations and experimental results, along with theoretical formulations, are used to characterize these irregular structures. This article proposes a novel approach for efficient use of silicon chip area by reshaping the on-chip inductors used in millimeter wave (mm-wave) applications without compromising the performance of the inductors. Especially in CMOS RFICs when a space constraint exists in either <span><math><mi>X</mi></math></span>- or <span><math><mi>Y</mi></math></span>-direction in their layout, such reshaping can be attempted. Moreover, two novel methods of reshaping the inductors are proposed and studied thoroughly. The study of these irregular shapes has interesting conclusions, which are validated through on-wafer measurements. Certain methods of reshaping result in inductors which do not have degradation in their quality factors (<span><math><mi>Q</mi></math></span>), while other approaches degrade the <span><math><mi>Q</mi></math></span>. Based on these insights, a design methodology is proposed for designers who need to reshape their inductors to irregular structures while not compromising on the quality factor. The measurement results agree with the simulations and prove that the proposed reshaping is practically possible.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"100 ","pages":"Article 102259"},"PeriodicalIF":2.2,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fast test compaction method using dedicated Pure MaxSAT solver embedded in DFT flow 使用嵌入 DFT 流程的专用 Pure MaxSAT 求解器的快速测试压实方法
IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-08-22 DOI: 10.1016/j.vlsi.2024.102265
Zhiteng Chao , Xindi Zhang , Junying Huang , Zizhen Liu , Yixuan Zhao , Jing Ye , Shaowei Cai , Huawei Li , Xiaowei Li

Minimizing the testing cost is crucial in the context of the design for test (DFT) flow. In our observation, the test patterns generated by ATPG tools in test compression mode still contain redundancy. To tackle this obstacle, we propose a post-flow static test compaction method that utilizes a partial fault dictionary instead of a full fault dictionary to sharply reduce time and memory overhead, and leverages a dedicated Pure MaxSAT solver to re-compact the test patterns generated by ATPG tools. We also observe that ATPG tools offer a more comprehensive selection of candidate patterns for compaction in the “n-detect” mode, leading to superior compaction efficiency. In our experiments conducted on benchmark circuits ISCAS89, ITC99, and an open-source RISC-V CPU, we employed two methodologies. For commercial tool, we utilized a non-intrusive approach, while we adopted an intrusive method for open-source ATPG. Under the non-intrusive approach, our method achieved a maximum reduction of 34.69% in pattern count and a maximum 29.80% decrease in test cycles as evaluated by a leading commercial tool. Meanwhile, under the intrusive approach, our method attained a maximum 71.90% reduction in pattern count as evaluated by an open-source ATPG tool. Notably, fault coverage remained unchanged throughout the experiments. Furthermore, our approach demonstrates improved performance compared with existing methods.

在测试设计(DFT)流程中,测试成本最小化至关重要。根据我们的观察,ATPG 工具在测试压缩模式下生成的测试模式仍包含冗余。为了解决这一障碍,我们提出了一种流程后静态测试压缩方法,利用部分故障字典而不是完整故障字典来大幅减少时间和内存开销,并利用专用的纯 MaxSAT 求解器来重新压缩 ATPG 工具生成的测试模式。我们还发现,在 "n-检测 "模式下,ATPG 工具能提供更全面的压缩候选模式选择,从而实现更高的压缩效率。在对基准电路 ISCAS89、ITC99 和开源 RISC-V CPU 进行的实验中,我们采用了两种方法。对于商业工具,我们采用了非侵入式方法,而对于开源 ATPG,我们采用了侵入式方法。在非侵入式方法下,我们的方法最大减少了 34.69% 的模式数,并在领先商业工具的评估中最大减少了 29.80% 的测试周期。与此同时,在侵入式方法下,根据一款开源 ATPG 工具的评估,我们的方法最多减少了 71.90% 的模式数。值得注意的是,故障覆盖率在整个实验过程中保持不变。此外,与现有方法相比,我们的方法表现出更高的性能。
{"title":"A fast test compaction method using dedicated Pure MaxSAT solver embedded in DFT flow","authors":"Zhiteng Chao ,&nbsp;Xindi Zhang ,&nbsp;Junying Huang ,&nbsp;Zizhen Liu ,&nbsp;Yixuan Zhao ,&nbsp;Jing Ye ,&nbsp;Shaowei Cai ,&nbsp;Huawei Li ,&nbsp;Xiaowei Li","doi":"10.1016/j.vlsi.2024.102265","DOIUrl":"10.1016/j.vlsi.2024.102265","url":null,"abstract":"<div><p>Minimizing the testing cost is crucial in the context of the design for test (DFT) flow. In our observation, the test patterns generated by ATPG tools in test compression mode still contain redundancy. To tackle this obstacle, we propose a post-flow static test compaction method that utilizes a partial fault dictionary instead of a full fault dictionary to sharply reduce time and memory overhead, and leverages a dedicated Pure MaxSAT solver to re-compact the test patterns generated by ATPG tools. We also observe that ATPG tools offer a more comprehensive selection of candidate patterns for compaction in the “n-detect” mode, leading to superior compaction efficiency. In our experiments conducted on benchmark circuits ISCAS89, ITC99, and an open-source RISC-V CPU, we employed two methodologies. For commercial tool, we utilized a non-intrusive approach, while we adopted an intrusive method for open-source ATPG. Under the non-intrusive approach, our method achieved a maximum reduction of 34.69% in pattern count and a maximum 29.80% decrease in test cycles as evaluated by a leading commercial tool. Meanwhile, under the intrusive approach, our method attained a maximum 71.90% reduction in pattern count as evaluated by an open-source ATPG tool. Notably, fault coverage remained unchanged throughout the experiments. Furthermore, our approach demonstrates improved performance compared with existing methods.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"100 ","pages":"Article 102265"},"PeriodicalIF":2.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clock mesh synthesis through dynamic programming with physical parameters consideration 通过考虑物理参数的动态编程合成时钟网格
IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-08-19 DOI: 10.1016/j.vlsi.2024.102261
Dejian Li , Jie Gan , Chongfei Shen , Qi Chen , Lixin Yang , Sihai Qiu , Xin Jin , Tiantian Wu , Zhijie Chen , Meng Liu

In response to the evolving technological landscape, the traditional clock network architecture faces challenges in meeting the complexities of modern System-on-Chip (SoC) designs. While the clock mesh topology offers resilience against On-Chip Variation (OCV) fluctuations, its manual implementation leaves room for advancements in methodology and swift analytical techniques. This paper introduces an innovative clock mesh synthesis approach, leveraging dynamic programming algorithms and emphasizing compliance with critical physical implementation parameters. Our experimental results demonstrate a significant 26.6% reduction in power consumption compared to baseline methodologies. Moreover, it achieves an impressive average runtime reduction of 78.0% when contrasted with traditional simulation methods. These findings underscore the potential of our methodology to enhance the efficiency and power management of clock mesh designs.

随着技术的不断发展,传统的时钟网络架构在应对现代片上系统(SoC)设计的复杂性方面面临着挑战。虽然时钟网状拓扑结构能抵御片上变化 (OCV) 波动,但其手动实现方法仍有待改进,分析技术也有待提高。本文介绍了一种创新的时钟网格合成方法,它利用动态编程算法,强调符合关键的物理实现参数。我们的实验结果表明,与基准方法相比,功耗大幅降低了 26.6%。此外,与传统模拟方法相比,该方法的平均运行时间缩短了 78.0%,令人印象深刻。这些发现凸显了我们的方法在提高时钟网格设计的效率和电源管理方面的潜力。
{"title":"Clock mesh synthesis through dynamic programming with physical parameters consideration","authors":"Dejian Li ,&nbsp;Jie Gan ,&nbsp;Chongfei Shen ,&nbsp;Qi Chen ,&nbsp;Lixin Yang ,&nbsp;Sihai Qiu ,&nbsp;Xin Jin ,&nbsp;Tiantian Wu ,&nbsp;Zhijie Chen ,&nbsp;Meng Liu","doi":"10.1016/j.vlsi.2024.102261","DOIUrl":"10.1016/j.vlsi.2024.102261","url":null,"abstract":"<div><p>In response to the evolving technological landscape, the traditional clock network architecture faces challenges in meeting the complexities of modern System-on-Chip (SoC) designs. While the clock mesh topology offers resilience against On-Chip Variation (OCV) fluctuations, its manual implementation leaves room for advancements in methodology and swift analytical techniques. This paper introduces an innovative clock mesh synthesis approach, leveraging dynamic programming algorithms and emphasizing compliance with critical physical implementation parameters. Our experimental results demonstrate a significant 26.6% reduction in power consumption compared to baseline methodologies. Moreover, it achieves an impressive average runtime reduction of 78.0% when contrasted with traditional simulation methods. These findings underscore the potential of our methodology to enhance the efficiency and power management of clock mesh designs.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"100 ","pages":"Article 102261"},"PeriodicalIF":2.2,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Integration-The Vlsi Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1