During the operation period of a red clay low embankment, significant uneven settlement can occur due to vehicle loads, seriously threatening the smooth flow of roads and transportation safety. To better inform the design and filling of red clay low embankment road structures, this study combines model tests and numerical simulations to investigate the dynamic response characteristics of various pavement structures on red clay low embankments under vehicular loads. It examines how different moisture contents, embankment parameters, driving parameters, and pavement structures affect the vertical dynamic stress, acceleration, and deformation of red clay low embankments. The results show that the vertical dynamic stress and acceleration decrease rapidly along the depth and transverse width directions, and then slowly decrease. Increased vehicle loads and speeds lead to greater vertical dynamic stress and acceleration, whereas higher elastic modulus and embankment soil thickness result in lower values. Additionally, increasing water content intensifies the vertical acceleration response in red clay low embankments. The influence degree of different factors on the dynamic characteristics of red clay low embankment is: vehicle load > driving speed > embankment thickness > elastic modulus of embankment soil. The red clay low embankment under vehicular loading belongs to the deformation concentration area within 0 to 0.4 m from the top surface of the embankment. A comparative analysis of the dynamic characteristics of six common pavement structures for red clay low embankments shows that rutting-resistant pavement structures perform the best. The proposed new type of red clay low embankment upper pavement structure can effectively avoid the problem of base water damage caused by the capillary water rise of red clay.