Pub Date : 2024-09-14DOI: 10.1016/j.trgeo.2024.101373
Yu-shan Hua, Hong-wei Huang, Dong-ming Zhang
The longitudinal structural resilience performance of shield tunnels is an important concern given the dramatic development of underground systems and the increasing demand for maintenance work. In this paper, a new model using longitudinal relative differential settlement as the index of tunnel structural resilience performance is proposed. The resilience metric (Re) is defined as the ratio of the area integrated by the residual performance during environmental disruptions to the area integrated by the normal performance for the corresponding duration. Then, the proposed resilience analysis model is applied to a well-documented case in Shanghai, where the existing metro tunnel is disrupted by a newly constructed large-diameter shield tunnel undercrossing and subsequently repaired by soil grouting. The variations of tunnel settlement concerning construction parameters and driving distance of the shield machine are analyzed. The performance degradation characteristics of the tunnel during disruption and recovery are effectively captured. The results show that 32.3 % of the performance loss is attributed to the new tunnel undercrossing in the first 38 days. After the completion of the grouting reinforcement, the tunnel performance is improved from 0.677 to 0.868, accounting for approximately 59.1 % of the performance loss during the crossing period. Moreover, the resilience metric (Re) is calculated as 0.764, indicating a high level of resilience for the existing metro tunnel in this case. In addition, other performance indexes based on tunnel longitudinal settlement are discussed, demonstrating the good rationality and applicability of the proposed index.
{"title":"Longitudinal structural resilience of shield tunnel: Characterization and field application","authors":"Yu-shan Hua, Hong-wei Huang, Dong-ming Zhang","doi":"10.1016/j.trgeo.2024.101373","DOIUrl":"10.1016/j.trgeo.2024.101373","url":null,"abstract":"<div><p>The longitudinal structural resilience performance of shield tunnels is an important concern given the dramatic development of underground systems and the increasing demand for maintenance work. In this paper, a new model using longitudinal relative differential settlement as the index of tunnel structural resilience performance is proposed. The resilience metric (<em>Re</em>) is defined as the ratio of the area integrated by the residual performance during environmental disruptions to the area integrated by the normal performance for the corresponding duration. Then, the proposed resilience analysis model is applied to a well-documented case in Shanghai, where the existing metro tunnel is disrupted by a newly constructed large-diameter shield tunnel undercrossing and subsequently repaired by soil grouting. The variations of tunnel settlement concerning construction parameters and driving distance of the shield machine are analyzed. The performance degradation characteristics of the tunnel during disruption and recovery are effectively captured. The results show that 32.3 % of the performance loss is attributed to the new tunnel undercrossing in the first 38 days. After the completion of the grouting reinforcement, the tunnel performance is improved from 0.677 to 0.868, accounting for approximately 59.1 % of the performance loss during the crossing period. Moreover, the resilience metric (<em>Re</em>) is calculated as 0.764, indicating a high level of resilience for the existing metro tunnel in this case. In addition, other performance indexes based on tunnel longitudinal settlement are discussed, demonstrating the good rationality and applicability of the proposed index.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"49 ","pages":"Article 101373"},"PeriodicalIF":4.9,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1016/j.trgeo.2024.101375
Xuhao Cui , Xiuli Du , Bowen Du , Mi Zhao , Congcong Xiong , Fei Xu , Hongbin Xu
The extensive development of high-speed railways in mountainous areas has underscored the significant challenge posed by tunnel floor heave, affecting the operational reliability of ballastless tracks. Such heave induces track deformation and structural impairments, critically undermining the operational safety and track serviceability. This investigation enhances the understanding of ballastless tracks’ mechanical responses to tunnel floor heave by introducing a sophisticated nonlinear analytical model that encapsulates the interplay between the track system, tunnel infrastructure, and the encasing geological environment. Utilizing the concrete damaged plasticity approach to model the track’s concrete structure, this research integrates these parameters with the track’s numerical representation, taking into account the role of internal reinforcement. Through an in-depth examination of track deformation, the interstitial gap, and damage progression within the track, it is demonstrated that comprehensive consideration of both the material’s constitutive model and reinforcement structuring is imperative. The analysis results indicate that the heave’s amplitude and wavelength exert limited influence on the deformation amplitude ratio, whereas variations in heave characteristics significantly alter the wavelength transmission ratio, engendering a distinct “M” shaped gap profile. It is observed that the propensity for material damage escalates in areas experiencing pronounced tensile stress, particularly under conditions of reduced wavelength and increased amplitude heave, necessitating prioritized attention in track maintenance protocols.
{"title":"Effect of Tunnel Floor Heave on the Deformation and Damage Behavior of Ballastless Track Structures in High-Speed Railways","authors":"Xuhao Cui , Xiuli Du , Bowen Du , Mi Zhao , Congcong Xiong , Fei Xu , Hongbin Xu","doi":"10.1016/j.trgeo.2024.101375","DOIUrl":"10.1016/j.trgeo.2024.101375","url":null,"abstract":"<div><p>The extensive development of high-speed railways in mountainous areas has underscored the significant challenge posed by tunnel floor heave, affecting the operational reliability of ballastless tracks. Such heave induces track deformation and structural impairments, critically undermining the operational safety and track serviceability. This investigation enhances the understanding of ballastless tracks’ mechanical responses to tunnel floor heave by introducing a sophisticated nonlinear analytical model that encapsulates the interplay between the track system, tunnel infrastructure, and the encasing geological environment. Utilizing the concrete damaged plasticity approach to model the track’s concrete structure, this research integrates these parameters with the track’s numerical representation, taking into account the role of internal reinforcement. Through an in-depth examination of track deformation, the interstitial gap, and damage progression within the track, it is demonstrated that comprehensive consideration of both the material’s constitutive model and reinforcement structuring is imperative. The analysis results indicate that the heave’s amplitude and wavelength exert limited influence on the deformation amplitude ratio, whereas variations in heave characteristics significantly alter the wavelength transmission ratio, engendering a distinct “M” shaped gap profile. It is observed that the propensity for material damage escalates in areas experiencing pronounced tensile stress, particularly under conditions of reduced wavelength and increased amplitude heave, necessitating prioritized attention in track maintenance protocols.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"49 ","pages":"Article 101375"},"PeriodicalIF":4.9,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1016/j.trgeo.2024.101370
Mohamad Hanafi , Sanandam Bordoloi , Ville Rinta-Hiiro , Tandre Oey , Leena Korkiala-Tanttu
Use of traditional lime-cement binders on stabilizing soft sensitive clays pose a significant challenge for the construction sector to reach Finland’s carbon neutrality goals by 2030. Traditional stabilization recipes consisting of cement as binders contributing significantly to CO2 emissions ( 500 kg CO2 eq./ton in deep mixing alone). This laboratory study explores the feasibility of achieving near carbon-negative stabilization of soft clay leveraging accelerated CO2 curing (ACC) in biochar (BC) enhanced cementitious composites. BC, a by-product of the biofuel industry, is used as partial replacement of cement (0 %, 10 %, and 50 % of binder) in developing precast cementitious piles. One non-carbonated treatment and two ACC treatments are employed to assess their uniaxial compressive strength, thermogravimetric properties and CO2 sequestration capacity. The results demonstrate that synergistic effects of using BC with ACC not only enhances the compressive strength of the composites but also promotes CO2 uptake due to formation of stable carbonates. BC due to its surface functional groups, honeycomb porous structure, and hydrophilicity facilitated uniform CO2 diffusion in the clay matrix and likely improved internal curing. In ACC treated composites, the replacement of 50 % of cement with BC resulted in sufficient load-bearing capacity (≥50 kPa as per Finnish Guidelines) for both shallow and deep clay layers, making a suitable subgrade media for many types of geotechnical applications. The measured bound CO2 increased gravimetrically from 2 % to 41 % when cement was partially replaced by BC. In case of non-carbonated samples, 10 % partial replacement of BC provided high strength (). Life Cycle Assessment (LCA) of a case study of utilizing BC stabilized clay in deep mixing operations can potentially reduce net carbon emissions to −50 kg CO2 eq./ton.
使用传统的石灰-水泥粘结剂来稳定敏感软粘土,对建筑行业实现芬兰 2030 年碳中和目标构成了重大挑战。以水泥为粘结剂的传统稳定配方会产生大量二氧化碳排放(仅深度搅拌就会产生 500 千克二氧化碳当量/吨)。本实验室研究探讨了利用生物炭(BC)增强水泥基复合材料中的二氧化碳加速固化(ACC)实现软粘土近乎负碳稳定化的可行性。生物炭是生物燃料工业的副产品,在开发水泥基预制桩时可部分替代水泥(粘结剂含量分别为 0%、10% 和 50%)。采用了一种非碳化处理方法和两种碳酸钙处理方法来评估它们的单轴抗压强度、热重特性和二氧化碳封存能力。结果表明,使用 BC 和 ACC 的协同效应不仅能提高复合材料的抗压强度,还能通过形成稳定的碳酸盐促进二氧化碳的吸收。萃取物因其表面官能团、蜂窝状多孔结构和亲水性,促进了二氧化碳在粘土基质中的均匀扩散,并有可能改善内部固化。在经 ACC 处理的复合材料中,用 BC 替代 50% 的水泥后,浅层和深层粘土层都具有足够的承载能力(根据芬兰准则,承载能力≥50 kPa),适合作为多种岩土工程应用的基层介质。当水泥部分被 BC 取代时,测得的结合态 CO2 从 2% 增加到 41%。在非碳化样品中,部分替代 10% BC 可提供高强度(≥200kPa)。在深层搅拌操作中使用萃取稳定粘土的生命周期评估(LCA)案例研究有可能将净碳排放量减少到-50 千克二氧化碳当量/吨。
{"title":"Feasibility of biochar for low-emission soft clay stabilization using CO2 curing","authors":"Mohamad Hanafi , Sanandam Bordoloi , Ville Rinta-Hiiro , Tandre Oey , Leena Korkiala-Tanttu","doi":"10.1016/j.trgeo.2024.101370","DOIUrl":"10.1016/j.trgeo.2024.101370","url":null,"abstract":"<div><p>Use of traditional lime-cement binders on stabilizing soft sensitive clays pose a significant challenge for the construction sector to reach Finland’s carbon neutrality goals by 2030. Traditional stabilization recipes consisting of cement as binders contributing significantly to CO<sub>2</sub> emissions (<span><math><mo>≅</mo></math></span> 500 kg CO<sub>2</sub> eq./ton in deep mixing alone). This laboratory study explores the feasibility of achieving near carbon-negative stabilization of soft clay leveraging accelerated CO<sub>2</sub> curing (ACC) in biochar (BC) enhanced cementitious composites. BC, a by-product of the biofuel industry, is used as partial replacement of cement (0 %, 10 %, and 50 % of binder) in developing precast cementitious piles. One non-carbonated treatment and two ACC treatments are employed to assess their uniaxial compressive strength, thermogravimetric properties and CO<sub>2</sub> sequestration capacity. The results demonstrate that synergistic effects of using BC with ACC not only enhances the compressive strength of the composites but also promotes CO<sub>2</sub> uptake due to formation of stable carbonates. BC due to its surface functional groups, honeycomb porous structure, and hydrophilicity facilitated uniform CO<sub>2</sub> diffusion in the clay matrix and likely improved internal curing. In ACC treated composites, the replacement of 50 % of cement with BC resulted in sufficient load-bearing capacity (≥50 kPa as per Finnish Guidelines) for both shallow and deep clay layers, making a suitable subgrade media for many types of geotechnical applications. The measured bound CO<sub>2</sub> increased gravimetrically from 2 % to 41 % when cement was partially replaced by BC. In case of non-carbonated samples, 10 % partial replacement of BC provided high strength (<span><math><mrow><mo>≥</mo><mn>200</mn><mspace></mspace><mi>k</mi><mi>P</mi><mi>a</mi></mrow></math></span>). Life Cycle Assessment (LCA) of a case study of utilizing BC stabilized clay in deep mixing operations can potentially reduce net carbon emissions to −50 kg CO<sub>2</sub> eq./ton.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"49 ","pages":"Article 101370"},"PeriodicalIF":4.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214391224001910/pdfft?md5=9d674a13669b692ee227a0bee58a1db6&pid=1-s2.0-S2214391224001910-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1016/j.trgeo.2024.101367
Xin Shi , Liang Zheng , Chuanxin Rong , Hua Cheng , Haibing Cai , Taihong Li
A pipeline with long-term “hidden leakage” will greatly reduce the stability of the ground between the pipeline and tunnel in the process of tunneling through existing pipelines in unsaturated soil. Excessive settlement of the surrounding strata and pipelines can occur when the shield excavation face approaches below a pipeline, which can lead to engineering accidents. This study is based on a self-developed model experimental system for tunneling through an existing pipeline with a double-line tunnel shield. The ground settlement and pipeline deformation caused by shield construction with small-scale and no leakages are investigated. An experimental study is conducted and the accuracy of the results is verified through a comparison with theoretical solutions. The results demonstrate that there is a significant increase in ground settlement and pipeline deformation under the influence of leakage water. It is also determined that the displacement field generated by the excavation of a double-line tunnel is not simply a superposition of the displacement field generated by the excavation of a single-line tunnel. The repeated disturbances caused by the excavation of a double-line tunnel significantly influences the redistribution of the displacement field. Additionally, a three-dimensional (3D) model of shield construction considering the influence of pipeline leakage is established. This study discusses the ground settlement and pipeline deformation patterns caused by changes in the vertical and horizontal leakage diffusion ranges. The computational results indicate that the diffusion depth of a leakage is the primary factor controlling the extent of settlement.
{"title":"Study on the Rules of Ground Settlement and Pipeline Deformation Considering the Combined Effects of Pipeline Damage Leakage and Shield Tunneling Construction","authors":"Xin Shi , Liang Zheng , Chuanxin Rong , Hua Cheng , Haibing Cai , Taihong Li","doi":"10.1016/j.trgeo.2024.101367","DOIUrl":"10.1016/j.trgeo.2024.101367","url":null,"abstract":"<div><p>A pipeline with long-term “hidden leakage” will greatly reduce the stability of the ground between the pipeline and tunnel in the process of tunneling through existing pipelines in unsaturated soil. Excessive settlement of the surrounding strata and pipelines can occur when the shield excavation face approaches below a pipeline, which can lead to engineering accidents. This study is based on a self-developed model experimental system for tunneling through an existing pipeline with a double-line tunnel shield. The ground settlement and pipeline deformation caused by shield construction with small-scale and no leakages are investigated. An experimental study is conducted and the accuracy of the results is verified through a comparison with theoretical solutions. The results demonstrate that there is a significant increase in ground settlement and pipeline deformation under the influence of leakage water. It is also determined that the displacement field generated by the excavation of a double-line tunnel is not simply a superposition of the displacement field generated by the excavation of a single-line tunnel. The repeated disturbances caused by the excavation of a double-line tunnel significantly influences the redistribution of the displacement field. Additionally, a three-dimensional (3D) model of shield construction considering the influence of pipeline leakage is established. This study discusses the ground settlement and pipeline deformation patterns caused by changes in the vertical and horizontal leakage diffusion ranges. The computational results indicate that the diffusion depth of a leakage is the primary factor controlling the extent of settlement.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"49 ","pages":"Article 101367"},"PeriodicalIF":4.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1016/j.trgeo.2024.101368
Li Xiao , Jianfeng Xue , Wanqiang Xu
This study employs the Random Field Finite Difference Analysis to assess how subgrade spatial variability impacts geogrid reinforcement’s strain-alleviating ability and the reinforced pavement’s rutting life. The geogrid’s abilities to reduce critical strains are evaluated using a strain-alleviating ratio and compared between deterministic and spatially variable scenarios. The analysis involves six geogrid reinforcement arrangements, considering two kinds of geogrid stiffness (G1 and G2) and three typical positions: top (L1), mid-depth (L1-2) and bottom (L2) of the base course. Key findings include: (a) Subgrade spatial variability significantly amplifies mean critical strains and leads to irregular strain and stress distributions, which in turn impacts the strain-alleviating ability of the geogrid reinforcements and potentially changes the optimal geogrid position. (b) The impacts of subgrade spatial variability on the geogrids’ strain-alleviating ability vary with the type of critical strains, the geogrid position, and the coefficient of variation and scale of fluctuation of subgrade modulus. When the geogrid is located at L2 (G_L2), its ability to alleviate critical subgrade strain is significantly compromised. (c) The adverse effect of subgrade spatial variability on the rutting life of G_L2 reinforced pavement is significant and can be mitigated by homogenising a very thin sublayer at the subgrade surface.
{"title":"Influence of subgrade spatial variability on strain-alleviating ability of geogrids and rutting life in flexible pavement","authors":"Li Xiao , Jianfeng Xue , Wanqiang Xu","doi":"10.1016/j.trgeo.2024.101368","DOIUrl":"10.1016/j.trgeo.2024.101368","url":null,"abstract":"<div><p>This study employs the Random Field Finite Difference Analysis to assess how subgrade spatial variability impacts geogrid reinforcement’s strain-alleviating ability and the reinforced pavement’s rutting life. The geogrid’s abilities to reduce critical strains are evaluated using a strain-alleviating ratio and compared between deterministic and spatially variable scenarios. The analysis involves six geogrid reinforcement arrangements, considering two kinds of geogrid stiffness (G1 and G2) and three typical positions: top (L1), mid-depth (L1-2) and bottom (L2) of the base course. Key findings include: (a) Subgrade spatial variability significantly amplifies mean critical strains and leads to irregular strain and stress distributions, which in turn impacts the strain-alleviating ability of the geogrid reinforcements and potentially changes the optimal geogrid position. (b) The impacts of subgrade spatial variability on the geogrids’ strain-alleviating ability vary with the type of critical strains, the geogrid position, and the coefficient of variation and scale of fluctuation of subgrade modulus. When the geogrid is located at L2 (G_L2), its ability to alleviate critical subgrade strain is significantly compromised. (c) The adverse effect of subgrade spatial variability on the rutting life of G_L2 reinforced pavement is significant and can be mitigated by homogenising a very thin sublayer at the subgrade surface.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"49 ","pages":"Article 101368"},"PeriodicalIF":4.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214391224001892/pdfft?md5=9400971d5f00b411de2d0b61f123fa83&pid=1-s2.0-S2214391224001892-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1016/j.trgeo.2024.101364
Abdi Pasya Reihan Beyruni , Masyhur Irsyam , Andhika Sahadewa , Erza Rismantojo , Abi Maulana Hakim
<div><div>This study investigates the load transfer mechanism of a Prebored and Precast pile (PP pile), constructed installed in accordance with the rules applicable to the Hyper-Straight pile method (HS pile), in clay soils. While the HS pile method, developed in Japan, typically results in high bearing capacity piles in various soil types, its performance in clay soils remains understudied. Our research focuses on a unique configuration where the pile tip “floats” within a soil–cement mixing (SCM) column near the bottom of the borehole, a condition that significantly influences the system’s performance.</div><div>We conducted a full-scale axial static load test on a 500 mm diameter and 140 mm thickness straight shaft precast prestressed concrete spun pile. The pile was instrumented with vibrating wire strain gauges (VWSG) and displacement measuring devices (tell-tales), embedded 15 m deep in a 750 mm diameter SCM column (15.75 m long). The pile tip was positioned 75 cm above the bottom of the borehole, creating a floating condition within the SCM material. Both the pile and the surrounding SCM were instrumented to provide comprehensive data on the system’s behavior.</div><div>The test involved two loading–unloading cycles. The 1<sup>st</sup> Cycle reached a maximum load of 3627 kN, resulting in a 75.52 mm pile head settlement. The 2<sup>nd</sup> Cycle achieved a maximum load of 4181 kN, leading to a 118.04 mm pile head settlement. In the 1<sup>st</sup> Cycle, we observed upward movement of the SCM material around the shaft after the pile skin friction reached its maximum capacity. Stress at the pile tip exceeded the unconfined compressive strength of the SCM material, indicating potential local shear failure.</div><div>Contrary to expectations based on HS pile performance in other soil types, the ultimate bearing capacity of our pile was determined to be 2000 kN, comprising 545 kN from skin friction and 1455 kN from end bearing. This result aligns more closely with the behavior of conventional bored pile rather than the “hyper” capacity typically associated with HS pile. Consequently, we classify our pile as a “prebored and precast pile,” like systems used in China and Korea.</div><div>Our study concludes that the strength of the SCM material and the pile tip location significantly influence the pile’s bearing capacity in clay soils. These findings highlight the critical impact of soil type on the performance of piles constructed using the HS method. The observed behavior suggests that current design methods for HS pile may overestimate capacity in clay conditions, emphasizing the importance of soil-specific analysis and testing.</div><div>This research contributes to the understanding of PP pile behavior in clay soils, providing valuable insights for geotechnical engineers. It underscores the need for refined prediction models and design methods specific to these soil conditions, paving the way for more accurate and reliable foundation designs
{"title":"Performance and behaviour of prebored and precast pile with floating pile tip based on A full-scale field static axial load test","authors":"Abdi Pasya Reihan Beyruni , Masyhur Irsyam , Andhika Sahadewa , Erza Rismantojo , Abi Maulana Hakim","doi":"10.1016/j.trgeo.2024.101364","DOIUrl":"10.1016/j.trgeo.2024.101364","url":null,"abstract":"<div><div>This study investigates the load transfer mechanism of a Prebored and Precast pile (PP pile), constructed installed in accordance with the rules applicable to the Hyper-Straight pile method (HS pile), in clay soils. While the HS pile method, developed in Japan, typically results in high bearing capacity piles in various soil types, its performance in clay soils remains understudied. Our research focuses on a unique configuration where the pile tip “floats” within a soil–cement mixing (SCM) column near the bottom of the borehole, a condition that significantly influences the system’s performance.</div><div>We conducted a full-scale axial static load test on a 500 mm diameter and 140 mm thickness straight shaft precast prestressed concrete spun pile. The pile was instrumented with vibrating wire strain gauges (VWSG) and displacement measuring devices (tell-tales), embedded 15 m deep in a 750 mm diameter SCM column (15.75 m long). The pile tip was positioned 75 cm above the bottom of the borehole, creating a floating condition within the SCM material. Both the pile and the surrounding SCM were instrumented to provide comprehensive data on the system’s behavior.</div><div>The test involved two loading–unloading cycles. The 1<sup>st</sup> Cycle reached a maximum load of 3627 kN, resulting in a 75.52 mm pile head settlement. The 2<sup>nd</sup> Cycle achieved a maximum load of 4181 kN, leading to a 118.04 mm pile head settlement. In the 1<sup>st</sup> Cycle, we observed upward movement of the SCM material around the shaft after the pile skin friction reached its maximum capacity. Stress at the pile tip exceeded the unconfined compressive strength of the SCM material, indicating potential local shear failure.</div><div>Contrary to expectations based on HS pile performance in other soil types, the ultimate bearing capacity of our pile was determined to be 2000 kN, comprising 545 kN from skin friction and 1455 kN from end bearing. This result aligns more closely with the behavior of conventional bored pile rather than the “hyper” capacity typically associated with HS pile. Consequently, we classify our pile as a “prebored and precast pile,” like systems used in China and Korea.</div><div>Our study concludes that the strength of the SCM material and the pile tip location significantly influence the pile’s bearing capacity in clay soils. These findings highlight the critical impact of soil type on the performance of piles constructed using the HS method. The observed behavior suggests that current design methods for HS pile may overestimate capacity in clay conditions, emphasizing the importance of soil-specific analysis and testing.</div><div>This research contributes to the understanding of PP pile behavior in clay soils, providing valuable insights for geotechnical engineers. It underscores the need for refined prediction models and design methods specific to these soil conditions, paving the way for more accurate and reliable foundation designs","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"49 ","pages":"Article 101364"},"PeriodicalIF":4.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1016/j.trgeo.2024.101363
Zheng Wang , Yuanjie Xiao , Umar Faruk Aminu , Qingyu He , Yunbo Li , Wenqi Li
This paper aimed to investigate the feasibility of partially or completely replacing natural aggregates with recycled aggregates from construction and demolition wastes for low-carbon-emission use as coarse-grained embankment fill materials. The laboratory specimens were prepared by blending natural and recycled aggregates at varying proportions, and a series of laboratory repeated load triaxial compression tests were carried out to study the effects of material index properties and dynamic stress states on the resilient modulus and permanent strain characteristics. Based on the experimental results and by considering the main influencing parameters of the resilient modulus and permanent deformation, an artificial neural network (ANN) prediction model with optimal architecture was developed and optimized by the particle swarm optimization (PSO) algorithm, and its performance and accuracy were verified by supplementary analyses. A shakedown state classification method was proposed based on the unsupervised clustering algorithm, and a prediction model of critical dynamic stress was established based on the machine learning (ML) method and the shakedown state classification results. The research results indicate that the stress state has a greater influence on the resilient modulus and permanent deformation characteristics than other factors, and the shear stress ratio has a significant effect on the shakedown state. The resilient modulus and critical dynamic stress of such specimens vary linearly with confining pressure. The improved PSO-ANN prediction model exhibits high prediction accuracy and robustness, superior to several other commonly used ML regression prediction algorithms. The resilient modulus and critical dynamic stress prediction methods based on ML algorithms can provide technical guidance and theoretical basis for the design and in-service maintenance of similar unbound granular materials.
本文旨在研究用来自建筑和拆除废物的再生骨料部分或全部替代天然骨料作为粗粒路堤填料的低碳排放用途的可行性。通过混合不同比例的天然骨料和再生骨料制备实验室试样,并进行了一系列实验室重复加载三轴压缩试验,以研究材料指数特性和动态应力状态对弹性模量和永久应变特性的影响。根据试验结果,并考虑到弹性模量和永久变形的主要影响参数,建立了具有最优结构的人工神经网络(ANN)预测模型,并通过粒子群优化(PSO)算法对其进行了优化,通过补充分析验证了其性能和准确性。基于无监督聚类算法,提出了抖动状态分类方法,并基于机器学习(ML)方法和抖动状态分类结果,建立了临界动应力预测模型。研究结果表明,与其他因素相比,应力状态对弹性模量和永久变形特性的影响更大,剪切应力比对抖动状态有显著影响。此类试样的弹性模量和临界动应力随约束压力呈线性变化。改进后的 PSO-ANN 预测模型具有较高的预测精度和鲁棒性,优于其他几种常用的 ML 回归预测算法。基于 ML 算法的弹性模量和临界动应力预测方法可为类似非约束颗粒材料的设计和在役维护提供技术指导和理论依据。
{"title":"Prediction of resilient modulus and critical dynamic stress of recycled aggregates: Experimental study and machine learning methods","authors":"Zheng Wang , Yuanjie Xiao , Umar Faruk Aminu , Qingyu He , Yunbo Li , Wenqi Li","doi":"10.1016/j.trgeo.2024.101363","DOIUrl":"10.1016/j.trgeo.2024.101363","url":null,"abstract":"<div><p>This paper aimed to investigate the feasibility of partially or completely replacing natural aggregates with recycled aggregates from construction and demolition wastes for low-carbon-emission use as coarse-grained embankment fill materials. The laboratory specimens were prepared by blending natural and recycled aggregates at varying proportions, and a series of laboratory repeated load triaxial compression tests were carried out to study the effects of material index properties and dynamic stress states on the resilient modulus and permanent strain characteristics. Based on the experimental results and by considering the main influencing parameters of the resilient modulus and permanent deformation, an artificial neural network (ANN) prediction model with optimal architecture was developed and optimized by the particle swarm optimization (PSO) algorithm, and its performance and accuracy were verified by supplementary analyses. A shakedown state classification method was proposed based on the unsupervised clustering algorithm, and a prediction model of critical dynamic stress was established based on the machine learning (ML) method and the shakedown state classification results. The research results indicate that the stress state has a greater influence on the resilient modulus and permanent deformation characteristics than other factors, and the shear stress ratio has a significant effect on the shakedown state. The resilient modulus and critical dynamic stress of such specimens vary linearly with confining pressure. The improved PSO-ANN prediction model exhibits high prediction accuracy and robustness, superior to several other commonly used ML regression prediction algorithms. The resilient modulus and critical dynamic stress prediction methods based on ML algorithms can provide technical guidance and theoretical basis for the design and in-service maintenance of similar unbound granular materials.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"49 ","pages":"Article 101363"},"PeriodicalIF":4.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.trgeo.2024.101360
Roberto Torres-Hoyer , Francisco I. Bongiorno , Jackeline C. Peña , Wilmer J. Barreto , Ricardo A. Picón , Jesús Torres-Hoyer
In recent times, significant advancements have been made in the development of road safety, making it a key focus for Highway Engineers. To ensure the safety of road users, various methodologies have been established for assessing vulnerability, threat, and risk in both road infrastructure and vehicles. This article proposes an evaluation of the risk associated with rockfall on roads, incorporating the analysis of geotechnical and road parameters, verification of risk and vulnerability criteria, statistical analysis of vehicle vulnerability, and the assessment of kinematic slope stability. Additionally, the classification of rock masses in terms of threat is considered, leading to the development of a novel methodology for risk assessment. The evaluation of threat, vulnerability, and risk utilizes conventional methods such as assessing rock mass quality, kinematic stability analysis, and statistical parameters. This methodology has been implemented on the Mérida-El Vigía Highway, giving results consistent with those observed on the ground, unlike the others implemented in the area.
{"title":"An approach to risk of rockfalls on roads. Case study of the Rafael Caldera Highway","authors":"Roberto Torres-Hoyer , Francisco I. Bongiorno , Jackeline C. Peña , Wilmer J. Barreto , Ricardo A. Picón , Jesús Torres-Hoyer","doi":"10.1016/j.trgeo.2024.101360","DOIUrl":"10.1016/j.trgeo.2024.101360","url":null,"abstract":"<div><p>In recent times, significant advancements have been made in the development of road safety, making it a key focus for Highway Engineers. To ensure the safety of road users, various methodologies have been established for assessing vulnerability, threat, and risk in both road infrastructure and vehicles. This article proposes an evaluation of the risk associated with rockfall on roads, incorporating the analysis of geotechnical and road parameters, verification of risk and vulnerability criteria, statistical analysis of vehicle vulnerability, and the assessment of kinematic slope stability. Additionally, the classification of rock masses in terms of threat is considered, leading to the development of a novel methodology for risk assessment. The evaluation of threat, vulnerability, and risk utilizes conventional methods such as assessing rock mass quality, kinematic stability analysis, and statistical parameters. This methodology has been implemented on the Mérida-El Vigía Highway, giving results consistent with those observed on the ground, unlike the others implemented in the area.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"48 ","pages":"Article 101360"},"PeriodicalIF":4.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper employs the Bolton failure criterion, incorporating strength-dilatancy relationships, to analyze the bearing capacity factor of a strip footing on dense sand. Utilizing finite element limit analysis (FELA) based on the lower and upper bound theorems, the study presents the results as average bound solutions. By using the Bolton model, the b parameter is first calibrated and found that it should be about 3.50 to align the ultimate bearing capacity (qu) from FELA to have a good agreement with that from experimental test results from previous studies. The influence of parameters relevant to the Bolton failure criterion is analysed, showing that an increase in relative density (DR) significantly affects the variation in the bearing capacity factor (Nγ) at higher Q values, while lower Q values inhibit dilatancy due to soil crushing. The width of the strip footing (B) has a decreasing effect on Nγ at higher Q values, and the unit weight (γ) changes minimally impact Nγ within the range of 16–22 kN/m3. Additionally, an increase in the critical state friction angle (ϕcv) consistently increases Nγ, highlighting its direct correlation with soil shear strength. A hybrid artificial neural network (ANN) model integrates machine learning with four optimization algorithms: Imperialist Competitive Algorithm (ICA), Ant Lion Optimization (ALO), Teaching Learning Based Optimization (TLBO), and New Self-Organizing Hierarchical Particle Swarm Optimizer with Jumping Time-Varying Acceleration Coefficients (NHPSO-JTVAC). Comparative rank analysis of hybrid ANN models based on the selection of the optimal number of hidden neurons demonstrates that the ANN-TLBO model excels in predicting the bearing capacity factor, achieving a score of 48. This conclusion is corroborated by an error heatmap matrix, which indicates a minimized percentage of error relative to other hybrid ANN models. Importance analysis identifies particle crushing strength (Q) as the most significant factor influencing the bearing capacity factor (Nγ).
本文采用博尔顿破坏准则,结合强度-膨胀关系,分析了密砂上条形基脚的承载力系数。研究利用基于下界和上界定理的有限元极限分析 (FELA),以平均边界解的形式呈现结果。通过使用 Bolton 模型,首先对 b 参数进行了校准,发现 b 参数应为 3.50 左右,以使有限元极限分析得出的极限承载力(qu)与之前研究的实验测试结果保持良好一致。分析了与博尔顿破坏标准相关的参数的影响,结果表明,在 Q 值较高时,相对密度(DR)的增加会显著影响承载力系数(Nγ)的变化,而 Q 值较低时,则会抑制土壤破碎引起的膨胀。在 Q 值较高时,条形基脚宽度 (B) 对 Nγ 的影响逐渐减小,在 16-22 kN/m3 范围内,单位重量 (γ)的变化对 Nγ 的影响很小。此外,临界状态摩擦角 (ϕcv) 的增加会持续增加 Nγ,突出了其与土壤抗剪强度的直接相关性。混合人工神经网络(ANN)模型集成了机器学习和四种优化算法:帝国主义竞争算法(ICA)、蚁狮优化(ALO)、基于教学学习的优化(TLBO)和具有跳跃时变加速度系数的新自组织分层粒子群优化器(NHPSO-JTVAC)。基于最佳隐神经元数量选择的混合 ANN 模型的等级比较分析表明,ANN-TLBO 模型在预测承载能力系数方面表现出色,得分高达 48 分。误差热图矩阵证实了这一结论,该矩阵显示,与其他混合 ANN 模型相比,该模型的误差百分比最小。重要性分析表明,颗粒破碎强度(Q)是影响承载力系数(Nγ)的最重要因素。
{"title":"Hybrid artificial neural network models for bearing capacity evaluation of a strip footing on sand based on Bolton failure criterion","authors":"Wittaya Jitchaijaroen , Divesh Ranjan Kumar , Suraparb Keawsawasvong , Warit Wipulanusat , Pitthaya Jamsawang","doi":"10.1016/j.trgeo.2024.101347","DOIUrl":"10.1016/j.trgeo.2024.101347","url":null,"abstract":"<div><p>This paper employs the Bolton failure criterion, incorporating strength-dilatancy relationships, to analyze the bearing capacity factor of a strip footing on dense sand. Utilizing finite element limit analysis (FELA) based on the lower and upper bound theorems, the study presents the results as average bound solutions. By using the Bolton model, the <em>b</em> parameter is first calibrated and found that it should be about 3.50 to align the ultimate bearing capacity (<em>q<sub>u</sub></em>) from FELA to have a good agreement with that from experimental test results from previous studies. The influence of parameters relevant to the Bolton failure criterion is analysed, showing that an increase in relative density (<em>D<sub>R</sub></em>) significantly affects the variation in the bearing capacity factor (<em>N</em><sub>γ</sub>) at higher <em>Q</em> values, while lower <em>Q</em> values inhibit dilatancy due to soil crushing. The width of the strip footing (<em>B</em>) has a decreasing effect on <em>N</em><sub>γ</sub> at higher <em>Q</em> values, and the unit weight (<em>γ</em>) changes minimally impact <em>N</em><sub>γ</sub> within the range of 16–22 kN/m<sup>3</sup>. Additionally, an increase in the critical state friction angle (<em>ϕ<sub>cv</sub></em>) consistently increases <em>N</em><sub>γ</sub>, highlighting its direct correlation with soil shear strength. A hybrid artificial neural network (ANN) model integrates machine learning with four optimization algorithms: Imperialist Competitive Algorithm (ICA), Ant Lion Optimization (ALO), Teaching Learning Based Optimization (TLBO), and New Self-Organizing Hierarchical Particle Swarm Optimizer with Jumping Time-Varying Acceleration Coefficients (NHPSO-JTVAC). Comparative rank analysis of hybrid ANN models based on the selection of the optimal number of hidden neurons demonstrates that the ANN-TLBO model excels in predicting the bearing capacity factor, achieving a score of 48. This conclusion is corroborated by an error heatmap matrix, which indicates a minimized percentage of error relative to other hybrid ANN models. Importance analysis identifies particle crushing strength (<em>Q)</em> as the most significant factor influencing the bearing capacity factor (<em>N</em><sub>γ</sub>).</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"48 ","pages":"Article 101347"},"PeriodicalIF":4.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.trgeo.2024.101341
Miaomiao Ge , Xiaona Han , Rui Yang , Caihui Zhu
Stiffness of soil at very small strains G0 is mainly affected by void ratio, effective stress and suction. Empirical equations considering those factors have been proposed to estimate G0. However, for collapsible soil like loess, variations in suction might induce changes in void ratio of soil. The combined effect of these two factors poses challenges in accurately estimating of G0. This paper first presents an experimental study on the G0 of collapsible loess under various conditions, including as-compacted states, wetting/drying and K0 loading. G0 is estimated from shear wave velocity obtained with bender element technique. The changes of G0 with respect to void ratio, suction, effective stress, and wetting under K0 stress conditions are evaluated. Test results reveal that power relationships can be defined between G0 and void ratio, suction and effective stress, respectively. The changes in G0 along wetting/drying shows an “S” shape due to the different dominant effects on soil structure, as well as the induced non-uniform volume changes when suction change at different zones. Under K0 loading, G0 decreases upon wetting at stresses below the compaction stress, while it increases upon wetting at stresses above the compaction stress, due to the combined effects of densification caused by volume collapse during wetting and softening induced by suction decrease. Finally, a G0 model considering net stress and suction as independent stress variable is proposed. This model could effectively capture the change of G0 during wetting, drying and loading, as well as upon wetting under K0 loading for collapsible loess.
{"title":"Small-strain stiffness of compacted loess upon wetting, drying and loading: Experiments and model interpretation","authors":"Miaomiao Ge , Xiaona Han , Rui Yang , Caihui Zhu","doi":"10.1016/j.trgeo.2024.101341","DOIUrl":"10.1016/j.trgeo.2024.101341","url":null,"abstract":"<div><p>Stiffness of soil at very small strains <em>G</em><sub>0</sub> is mainly affected by void ratio, effective stress and suction. Empirical equations considering those factors have been proposed to estimate <em>G</em><sub>0</sub>. However, for collapsible soil like loess, variations in suction might induce changes in void ratio of soil. The combined effect of these two factors poses challenges in accurately estimating of <em>G</em><sub>0</sub>. This paper first presents an experimental study on the <em>G</em><sub>0</sub> of collapsible loess under various conditions, including as-compacted states, wetting/drying and K<sub>0</sub> loading. <em>G</em><sub>0</sub> is estimated from shear wave velocity obtained with bender element technique. The changes of <em>G</em><sub>0</sub> with respect to void ratio, suction, effective stress, and wetting under K<sub>0</sub> stress conditions are evaluated. Test results reveal that power relationships can be defined between <em>G</em><sub>0</sub> and void ratio, suction and effective stress, respectively. The changes in <em>G</em><sub>0</sub> along wetting/drying shows an “S” shape due to the different dominant effects on soil structure, as well as the induced non-uniform volume changes when suction change at different zones. Under K<sub>0</sub> loading, <em>G</em><sub>0</sub> decreases upon wetting at stresses below the compaction stress, while it increases upon wetting at stresses above the compaction stress, due to the combined effects of densification caused by volume collapse during wetting and softening induced by suction decrease. Finally, a <em>G</em><sub>0</sub> model considering net stress and suction as independent stress variable is proposed. This model could effectively capture the change of <em>G</em><sub>0</sub> during wetting, drying and loading, as well as upon wetting under K<sub>0</sub> loading for collapsible loess.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"48 ","pages":"Article 101341"},"PeriodicalIF":4.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}