Based on the theory of flexoelectricity in elastic dielectrics and the principle of minimum potential energy, a new theoretical model of bilayer circular nano-plate containing a piezoelectric layer is constructed. This model is used to analyze the effects of external loading, applied voltage, flexoelectric effect, and surface effect on the bending deflection, polarization, and normalized electric potential of the nano-plate. Numerical results indicate that external loading and applied voltage have opposite effects on the radial deflection of the bilayer circular nano-plate, with external loading having a more significant influence on deflection than the flexoelectric effect. Applied voltage also affects the normalized electric potential of the bilayer nano-plate. In the presence of negative surface residual stress, the deflection is mainly influenced by the flexoelectric effect. When the surface residual stress is positive and the ratio of radius to thickness is less than 25, the surface effect dominates the deflection behavior. Additionally, the positive or negative surface residual stress leads to an increase or decrease in polarization. The results provide a theoretical basis for the design of intelligent components containing piezoelectric bilayer circular nano-plates.
{"title":"Electro-mechanical responses of flexoelectric bilayer circular nano-plate with surface effect","authors":"Shasha Zhou, Anqing Li, Rongmin Zhang, Lu Qi, Fei Ren, Zumei Zheng, Jinwei Qiao, Yujing Sun, Shenjie Zhou","doi":"10.1007/s10999-023-09672-7","DOIUrl":"10.1007/s10999-023-09672-7","url":null,"abstract":"<div><p>Based on the theory of flexoelectricity in elastic dielectrics and the principle of minimum potential energy, a new theoretical model of bilayer circular nano-plate containing a piezoelectric layer is constructed. This model is used to analyze the effects of external loading, applied voltage, flexoelectric effect, and surface effect on the bending deflection, polarization, and normalized electric potential of the nano-plate. Numerical results indicate that external loading and applied voltage have opposite effects on the radial deflection of the bilayer circular nano-plate, with external loading having a more significant influence on deflection than the flexoelectric effect. Applied voltage also affects the normalized electric potential of the bilayer nano-plate. In the presence of negative surface residual stress, the deflection is mainly influenced by the flexoelectric effect. When the surface residual stress is positive and the ratio of radius to thickness is less than 25, the surface effect dominates the deflection behavior. Additionally, the positive or negative surface residual stress leads to an increase or decrease in polarization. The results provide a theoretical basis for the design of intelligent components containing piezoelectric bilayer circular nano-plates.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 2","pages":"209 - 231"},"PeriodicalIF":2.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45600288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-31DOI: 10.1007/s10999-023-09669-2
Feiteng Cheng, Qinghai Zhao, Liang Zhang
This article aims to develop a novel approach to non-probabilistic reliability-based multi-material topology optimization with stress constraints to address the optimization design problem considering external loading uncertainties. To be specific, the ordered solid isotropic material with penalization multi-material interpolation model is introduced into the non-probabilistic reliability-based topology optimization considering structural volume minimization under stress constraints, the multidimensional ellipsoidal model describes the non-probabilistic uncertainty. By utilizing the first-order reliability method, the failure probability can be estimated, and a non-probabilistic reliability index can be obtained. The global maximum stress is measured by adopting the normalized p-norm function method in combination with relaxation stress. The sensitivity analysis of the stress constraints is derived by the adjoint variable method, and the method of moving asymptote is employed to solve the design variables. Through several numerical examples, the effectiveness and feasibility of the presented method are verified to consider multi-material topology optimization with stress constraints in the absence of accurate probability distribution information of uncertain variables.
{"title":"Non-probabilistic reliability-based multi-material topology optimization with stress constraint","authors":"Feiteng Cheng, Qinghai Zhao, Liang Zhang","doi":"10.1007/s10999-023-09669-2","DOIUrl":"10.1007/s10999-023-09669-2","url":null,"abstract":"<div><p>This article aims to develop a novel approach to non-probabilistic reliability-based multi-material topology optimization with stress constraints to address the optimization design problem considering external loading uncertainties. To be specific, the ordered solid isotropic material with penalization multi-material interpolation model is introduced into the non-probabilistic reliability-based topology optimization considering structural volume minimization under stress constraints, the multidimensional ellipsoidal model describes the non-probabilistic uncertainty. By utilizing the first-order reliability method, the failure probability can be estimated, and a non-probabilistic reliability index can be obtained. The global maximum stress is measured by adopting the normalized <i>p</i>-norm function method in combination with relaxation stress. The sensitivity analysis of the stress constraints is derived by the adjoint variable method, and the method of moving asymptote is employed to solve the design variables. Through several numerical examples, the effectiveness and feasibility of the presented method are verified to consider multi-material topology optimization with stress constraints in the absence of accurate probability distribution information of uncertain variables.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 1","pages":"171 - 193"},"PeriodicalIF":2.7,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45526164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-30DOI: 10.1007/s10999-023-09675-4
Asif Ahmed, Md Nasir Uddin, Muhammad Akbar, Rania Salih, Mohammad Arsalan Khan, Hossein Bisheh, Timon Rabczuk
This study focuses on using various machine learning (ML) models to evaluate the shear behaviors of ultra-high-performance concrete (UHPC) beams reinforced with glass fiber-reinforced polymer (GFRP) bars. The main objective of the study is to predict the shear strength of UHPC beams reinforced with GFRP bars using ML models. We use four different ML models: support vector machine (SVM), artificial neural network (ANN), random forest (R.F.), and extreme gradient boosting (XGBoost). The experimental database used in the study is acquired from various literature sources and comprises 54 test observations with 11 input features. These input features are likely parameters related to the composition, geometry, and properties of the UHPC beams and GFRP bars. To ensure the ML models' generalizability and scalability, random search methods are utilized to tune the hyperparameters of the algorithms. This tuning process helps improve the performance of the models when predicting the shear strength. The study uses the ACI318M-14 and Eurocode 2 standard building codes to predict the shear capacity behavior of GFRP bars-reinforced UHPC I-shaped beams. The ML models' predictions are compared to the results obtained from these building code standards. According to the findings, the XGBoost model demonstrates the highest predictive test performance among the investigated ML models. The study employs the SHAP (SHapley Additive exPlanations) analysis to assess the significance of each input parameter in the ML models' predictive capabilities. A Taylor diagram is used to statistically compare the accuracy of the ML models. This study concludes that ML models, particularly XGBoost, can effectively predict the shear capacity behavior of GFRP bars-reinforced UHPC I-shaped beams.
本研究的重点是使用各种机器学习(ML)模型来评估用玻璃纤维增强聚合物(GFRP)条加固的超高性能混凝土(UHPC)梁的剪切行为。本研究的主要目的是使用 ML 模型预测使用玻璃纤维增强聚合物(GFRP)条加固的超高性能混凝土(UHPC)梁的剪切强度。我们使用了四种不同的 ML 模型:支持向量机 (SVM)、人工神经网络 (ANN)、随机森林 (R.F.) 和极梯度提升 (XGBoost)。研究中使用的实验数据库来自各种文献资料,包括 54 个测试观测点和 11 个输入特征。这些输入特征可能是与 UHPC 梁和 GFRP 杆件的成分、几何形状和属性相关的参数。为确保 ML 模型的通用性和可扩展性,采用了随机搜索方法来调整算法的超参数。这一调整过程有助于提高模型在预测剪切强度时的性能。该研究使用 ACI318M-14 和 Eurocode 2 标准建筑规范来预测 GFRP 杆件加固的 UHPC 工字形梁的抗剪承载力行为。ML 模型的预测结果与这些建筑规范标准得出的结果进行了比较。研究结果表明,在所研究的 ML 模型中,XGBoost 模型的预测测试性能最高。研究采用了 SHAP(SHapley Additive exPlanations)分析法来评估每个输入参数在 ML 模型预测能力中的重要性。泰勒图用于统计比较 ML 模型的准确性。本研究得出结论:ML 模型,尤其是 XGBoost,可以有效预测 GFRP 杆件加固 UHPC 工字梁的剪切承载力行为。
{"title":"Prediction of shear behavior of glass FRP bars-reinforced ultra-highperformance concrete I-shaped beams using machine learning","authors":"Asif Ahmed, Md Nasir Uddin, Muhammad Akbar, Rania Salih, Mohammad Arsalan Khan, Hossein Bisheh, Timon Rabczuk","doi":"10.1007/s10999-023-09675-4","DOIUrl":"10.1007/s10999-023-09675-4","url":null,"abstract":"<div><p>This study focuses on using various machine learning (ML) models to evaluate the shear behaviors of ultra-high-performance concrete (UHPC) beams reinforced with glass fiber-reinforced polymer (GFRP) bars. The main objective of the study is to predict the shear strength of UHPC beams reinforced with GFRP bars using ML models. We use four different ML models: support vector machine (SVM), artificial neural network (ANN), random forest (R.F.), and extreme gradient boosting (XGBoost). The experimental database used in the study is acquired from various literature sources and comprises 54 test observations with 11 input features. These input features are likely parameters related to the composition, geometry, and properties of the UHPC beams and GFRP bars. To ensure the ML models' generalizability and scalability, random search methods are utilized to tune the hyperparameters of the algorithms. This tuning process helps improve the performance of the models when predicting the shear strength. The study uses the ACI318M-14 and Eurocode 2 standard building codes to predict the shear capacity behavior of GFRP bars-reinforced UHPC I-shaped beams. The ML models' predictions are compared to the results obtained from these building code standards. According to the findings, the XGBoost model demonstrates the highest predictive test performance among the investigated ML models. The study employs the SHAP (SHapley Additive exPlanations) analysis to assess the significance of each input parameter in the ML models' predictive capabilities. A Taylor diagram is used to statistically compare the accuracy of the ML models. This study concludes that ML models, particularly XGBoost, can effectively predict the shear capacity behavior of GFRP bars-reinforced UHPC I-shaped beams.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 2","pages":"269 - 290"},"PeriodicalIF":2.7,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10999-023-09675-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45208502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-30DOI: 10.1007/s10999-023-09674-5
Tianming Zhang, Jindong Ren
An effective human–machine interface is of utmost importance. However, the current methods for designing contact contours are not entirely flawless, frequently relying on experience and multiple design iterations, and are challenging to achieve the desired distribution of target contact pressure. This study proposes a novel design method for contact contour that is based on the equilibrium relationship under contact conditions and is aimed at achieving target contact pressure. The mechanical properties of human tissue were analyzed, and a finite element model of the human body was established. Using two design cases of a wheelchair cushion and a bicycle saddle, contact pressure distribution was constructed based on design expectations. The deformed surface profile of the human body under the target contact pressure distribution was obtained through simulation. Additionally, the mechanical properties of polyurethane hyper-elastic foam and its variation with model parameters were analyzed, and a mathematical model of it was established. The deformation of foam was calculated and compensated to the deformed body surface according to the target pressure, and the reconstructed contour was then obtained and fitted to the design contour. A control group model was constructed, and contact simulation was used to validate the designed contour. The simulation results of both design cases showed that the difference between the contact pressure distribution of the design contour and the target contact pressure distribution was small, and it was better than the traditional empirical design contour of the control group, thus verifying the feasibility of this method.
{"title":"A design method for contact contour based on the distribution of target contact pressure","authors":"Tianming Zhang, Jindong Ren","doi":"10.1007/s10999-023-09674-5","DOIUrl":"10.1007/s10999-023-09674-5","url":null,"abstract":"<div><p>An effective human–machine interface is of utmost importance. However, the current methods for designing contact contours are not entirely flawless, frequently relying on experience and multiple design iterations, and are challenging to achieve the desired distribution of target contact pressure. This study proposes a novel design method for contact contour that is based on the equilibrium relationship under contact conditions and is aimed at achieving target contact pressure. The mechanical properties of human tissue were analyzed, and a finite element model of the human body was established. Using two design cases of a wheelchair cushion and a bicycle saddle, contact pressure distribution was constructed based on design expectations. The deformed surface profile of the human body under the target contact pressure distribution was obtained through simulation. Additionally, the mechanical properties of polyurethane hyper-elastic foam and its variation with model parameters were analyzed, and a mathematical model of it was established. The deformation of foam was calculated and compensated to the deformed body surface according to the target pressure, and the reconstructed contour was then obtained and fitted to the design contour. A control group model was constructed, and contact simulation was used to validate the designed contour. The simulation results of both design cases showed that the difference between the contact pressure distribution of the design contour and the target contact pressure distribution was small, and it was better than the traditional empirical design contour of the control group, thus verifying the feasibility of this method.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 2","pages":"251 - 267"},"PeriodicalIF":2.7,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47988473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-29DOI: 10.1007/s10999-023-09670-9
Congcong Xu, Gangfeng Liu, Changle Li, Xuehe Zhang, Jie Zhao
Low impact docking mechanism (LIDM) is a key fundamental equipment for space missions that is used to capture and connect vehicles. Its strict requirements for mass and volume makes a major challenge to achieve larger workspace and load capacity (the docking direction is maximum). Essentially, it is a Gough–Stewart platform (SP), and the main design difficulties are configuration design and dimension optimization. The paper proposed a new integrated joint and SP classification, which guide the configuration design. Meanwhile, a unified kinematics model is established by the vector method, and the force Jacobian matrix is obtained by the principle of virtual work. The key to dimension optimization is to seek a reasonable evaluation index. A proposed general evaluation index, task-oriented force ellipsoid (TOFE), is applicable to both isotropic and anisotropic design demands. It normalizes the input and output, transforms an anisotropic problem into an isotropic problem, and uses the smallest hypersphere radius as the characterization. Then, using non-dominated sorting genetic algorithm (NSGA-II) obtain the Pareto front of the workspace and load capacity. Moreover, the influence of dimension parameters on output performance was revealed. Finally, the dimension optimization of the LIDM is completed, and its load capacity is improved by 13.51%.
{"title":"Optimization of low impact docking mechanism based on integrated joint design and task-oriented force ellipsoid index","authors":"Congcong Xu, Gangfeng Liu, Changle Li, Xuehe Zhang, Jie Zhao","doi":"10.1007/s10999-023-09670-9","DOIUrl":"10.1007/s10999-023-09670-9","url":null,"abstract":"<div><p>Low impact docking mechanism (LIDM) is a key fundamental equipment for space missions that is used to capture and connect vehicles. Its strict requirements for mass and volume makes a major challenge to achieve larger workspace and load capacity (the docking direction is maximum). Essentially, it is a Gough–Stewart platform (SP), and the main design difficulties are configuration design and dimension optimization. The paper proposed a new integrated joint and SP classification, which guide the configuration design. Meanwhile, a unified kinematics model is established by the vector method, and the force Jacobian matrix is obtained by the principle of virtual work. The key to dimension optimization is to seek a reasonable evaluation index. A proposed general evaluation index, task-oriented force ellipsoid (TOFE), is applicable to both isotropic and anisotropic design demands. It normalizes the input and output, transforms an anisotropic problem into an isotropic problem, and uses the smallest hypersphere radius as the characterization. Then, using non-dominated sorting genetic algorithm (NSGA-II) obtain the Pareto front of the workspace and load capacity. Moreover, the influence of dimension parameters on output performance was revealed. Finally, the dimension optimization of the LIDM is completed, and its load capacity is improved by 13.51%.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 1","pages":"195 - 208"},"PeriodicalIF":2.7,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42734178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-19DOI: 10.1007/s10999-023-09667-4
Mahdi Karimi, Mohammad Javad Khoshgoftar, Mohammad Karimi, Mohammad Javad Mirzaali, Zia Javanbakht
This paper presents an analytical model to investigate the static behaviour of sandwich plates comprised of two isotropic face sheets and a honeycomb core. Through-thickness transverse shear stresses were considered using a unified displacement field with which various plate theories were implemented, i.e., exponential, third-order, hyperbolic, sinusoidal, fifth-order, Mindlin, and the classic plate theory. The equilibrium equations of a simply-supported sandwich panel were derived using the principle of virtual work and Navier solution was obtained under static transverse loading. After validating of the model, various mechanical and geometrical parameters were varied to characterise the behaviour of the structure under regular and auxetic response. It was found that the auxeticity of the core strongly affects the mechanical response, e.g., in controlling deflection, in-plane anisotropy, and Poisson’s ratio. Cell wall angle was found to be most critical parameter that can be used to adjust anisotropy, out-of-plane shear modulus, transverse shear stress distribution, and deflection of the panel. Also the cell aspect ratio controls the sensitivity of the core response to other geometrical variations. In terms of the higher-order theories, the deflection-dependent parameter of the unified formulation seems to have more control of maximum deflection compared to independent rotations. Auxeticity of the core showed some benefits in controlling anisotropy, deflection and providing additional out-of-plane shear rigidity. Overall, since there is not one-to-one relationship between specific values of Poisson’s ratio, anisotropy, and shear rigidity, careful design considerations must be invested to obtain a correct mechanical response.
{"title":"An analytical model for the static behaviour of honeycomb sandwich plates with auxetic cores using higher-order shear deformation theories","authors":"Mahdi Karimi, Mohammad Javad Khoshgoftar, Mohammad Karimi, Mohammad Javad Mirzaali, Zia Javanbakht","doi":"10.1007/s10999-023-09667-4","DOIUrl":"10.1007/s10999-023-09667-4","url":null,"abstract":"<div><p>This paper presents an analytical model to investigate the static behaviour of sandwich plates comprised of two isotropic face sheets and a honeycomb core. Through-thickness transverse shear stresses were considered using a unified displacement field with which various plate theories were implemented, i.e., exponential, third-order, hyperbolic, sinusoidal, fifth-order, Mindlin, and the classic plate theory. The equilibrium equations of a simply-supported sandwich panel were derived using the principle of virtual work and Navier solution was obtained under static transverse loading. After validating of the model, various mechanical and geometrical parameters were varied to characterise the behaviour of the structure under regular and auxetic response. It was found that the auxeticity of the core strongly affects the mechanical response, e.g., in controlling deflection, in-plane anisotropy, and Poisson’s ratio. Cell wall angle was found to be most critical parameter that can be used to adjust anisotropy, out-of-plane shear modulus, transverse shear stress distribution, and deflection of the panel. Also the cell aspect ratio controls the sensitivity of the core response to other geometrical variations. In terms of the higher-order theories, the deflection-dependent parameter of the unified formulation seems to have more control of maximum deflection compared to independent rotations. Auxeticity of the core showed some benefits in controlling anisotropy, deflection and providing additional out-of-plane shear rigidity. Overall, since there is not one-to-one relationship between specific values of Poisson’s ratio, anisotropy, and shear rigidity, careful design considerations must be invested to obtain a correct mechanical response.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"19 4","pages":"951 - 969"},"PeriodicalIF":3.7,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47779441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-17DOI: 10.1007/s10999-023-09668-3
Xu Wang, Peter Schiavone
We study the three-dimensional problem associated with an incompressible nonlinear elastic spherical inhomogeneity embedded in an infinite linear isotropic elastic matrix subjected to a uniform deviatoric load at infinity. The nonlinear elastic material can incorporate both power-law hardening and softening materials. The inhomogeneity-matrix interface is a spring-type imperfect interface characterized by a common interface parameter for both the normal and tangential directions. It is proved that the internal stresses and strains within the spherical inhomogeneity are unconditionally uniform. The original boundary value problem is reduced to a single non-linear equation which is proved rigorously to have a unique solution which can be found numerically. Furthermore, the neutrality of the imperfectly bonded nonlinear elastic spherical inhomogeneity is accomplished in an analytical manner. Finally, we prove the uniformity of the internal elastic field of stresses and strains inside an incompressible power-law hardening or softening nonlinear elastic ellipsoidal inhomogeneity perfectly bonded to an infinite linear isotropic elastic matrix subjected to uniform remote shear stresses and strains.
{"title":"A nonlinear elastic spherical inhomogeneity with a spring-type interface under a deviatoric far-field load","authors":"Xu Wang, Peter Schiavone","doi":"10.1007/s10999-023-09668-3","DOIUrl":"10.1007/s10999-023-09668-3","url":null,"abstract":"<div><p>We study the three-dimensional problem associated with an incompressible nonlinear elastic spherical inhomogeneity embedded in an infinite linear isotropic elastic matrix subjected to a uniform deviatoric load at infinity. The nonlinear elastic material can incorporate both power-law hardening and softening materials. The inhomogeneity-matrix interface is a spring-type imperfect interface characterized by a common interface parameter for both the normal and tangential directions. It is proved that the internal stresses and strains within the spherical inhomogeneity are unconditionally uniform. The original boundary value problem is reduced to a single non-linear equation which is proved rigorously to have a unique solution which can be found numerically. Furthermore, the neutrality of the imperfectly bonded nonlinear elastic spherical inhomogeneity is accomplished in an analytical manner. Finally, we prove the uniformity of the internal elastic field of stresses and strains inside an incompressible power-law hardening or softening nonlinear elastic ellipsoidal inhomogeneity perfectly bonded to an infinite linear isotropic elastic matrix subjected to uniform remote shear stresses and strains.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 1","pages":"161 - 169"},"PeriodicalIF":2.7,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44175896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-31DOI: 10.1007/s10999-023-09666-5
Ngoc-Duong Nguyen, Thien-Nhan Nguyen, Trung-Kien Nguyen, Thuc P. Vo
This research proposes a Chebyshev–Ritz solution for analysing the size-dependent behaviour of porous microbeams. The displacement field is based on the higher-order beam theory, while the size-dependent effect is accounted for using the modified couple stress theory. Moreover, porous microbeams’ elasticity moduli and mass density are assumed to be graded in the thickness direction according to four distinct distribution patterns. The open-cell metal foam exemplifies a characteristic mechanical attribute that facilitates the determination of the interrelation between coefficients of density and porosity. To derive the governing equations, the Lagrange’s principle is employed. Four types of boundary conditions, including clamped–clamped, clamped-simply supported, clamped-free, and simply-supported, along with four porosity distribution types of the beam, are considered. The Chebyshev polynomial is developed to analyse the porous microbeams’ buckling, free vibration, and bending. Furthermore, the study discusses the impacts of the material length scale parameter, porosity, slenderness, boundary condition, and porosity type on their mechanical responses. Finally, some novel results are presented, which can serve as benchmarks for future studies.
{"title":"A Chebyshev–Ritz solution for size-dependent analysis of the porous microbeams with various boundary conditions","authors":"Ngoc-Duong Nguyen, Thien-Nhan Nguyen, Trung-Kien Nguyen, Thuc P. Vo","doi":"10.1007/s10999-023-09666-5","DOIUrl":"10.1007/s10999-023-09666-5","url":null,"abstract":"<div><p>This research proposes a Chebyshev–Ritz solution for analysing the size-dependent behaviour of porous microbeams. The displacement field is based on the higher-order beam theory, while the size-dependent effect is accounted for using the modified couple stress theory. Moreover, porous microbeams’ elasticity moduli and mass density are assumed to be graded in the thickness direction according to four distinct distribution patterns. The open-cell metal foam exemplifies a characteristic mechanical attribute that facilitates the determination of the interrelation between coefficients of density and porosity. To derive the governing equations, the Lagrange’s principle is employed. Four types of boundary conditions, including clamped–clamped, clamped-simply supported, clamped-free, and simply-supported, along with four porosity distribution types of the beam, are considered. The Chebyshev polynomial is developed to analyse the porous microbeams’ buckling, free vibration, and bending. Furthermore, the study discusses the impacts of the material length scale parameter, porosity, slenderness, boundary condition, and porosity type on their mechanical responses. Finally, some novel results are presented, which can serve as benchmarks for future studies.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"19 4","pages":"861 - 881"},"PeriodicalIF":3.7,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48134052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-14DOI: 10.1007/s10999-023-09661-w
K. A. Gomathi, A. Rajagopal, K. V. L. Subramaniam, T. Rabczuk
The main purpose of this work is to understand the structural characterization of reinforced concrete slabs under near-field and contact explosions using the developed rate-sensitive damage model. The model is developed based on the experimental observation to include the effects of strain rate and damage rate. It is observed that with increasing strain rates there is a decrease in damage evolution due to artificial stiffening effects and the final level of damage is higher. This is achieved by using a power law model to relate the rate of damage to the equivalent plastic strain rate. The concrete undergoes pulverized damage because of the loss in cohesive strength at higher hydrostatic stress. Thus, the hydrostatic damage has to be considered along with tension and compression damage parameter. Strong volumetric deformation of the material that includes the hydrostatic and compaction damage is also accounted for in the model. The size of the yield surface increases with strain rate and is capped with an upper limiting value. The incremental effective stress–strain relationships are defined in terms of rate of damage, accumulated damage and viscosity parameters reflecting the inherent physical inertial, thermal and viscous mechanisms respectively. The results from the numerical analysis are found to match well with experimentally observed results.
{"title":"Application of rate sensitive plasticity-based damage model for near and contact explosions","authors":"K. A. Gomathi, A. Rajagopal, K. V. L. Subramaniam, T. Rabczuk","doi":"10.1007/s10999-023-09661-w","DOIUrl":"10.1007/s10999-023-09661-w","url":null,"abstract":"<div><p>The main purpose of this work is to understand the structural characterization of reinforced concrete slabs under near-field and contact explosions using the developed rate-sensitive damage model. The model is developed based on the experimental observation to include the effects of strain rate and damage rate. It is observed that with increasing strain rates there is a decrease in damage evolution due to artificial stiffening effects and the final level of damage is higher. This is achieved by using a power law model to relate the rate of damage to the equivalent plastic strain rate. The concrete undergoes pulverized damage because of the loss in cohesive strength at higher hydrostatic stress. Thus, the hydrostatic damage has to be considered along with tension and compression damage parameter. Strong volumetric deformation of the material that includes the hydrostatic and compaction damage is also accounted for in the model. The size of the yield surface increases with strain rate and is capped with an upper limiting value. The incremental effective stress–strain relationships are defined in terms of rate of damage, accumulated damage and viscosity parameters reflecting the inherent physical inertial, thermal and viscous mechanisms respectively. The results from the numerical analysis are found to match well with experimentally observed results.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 1","pages":"55 - 79"},"PeriodicalIF":2.7,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46063493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-26DOI: 10.1007/s10999-023-09664-7
Jin Zeng, Yang Yang, Hui Ma, Yiren Yang, Chenguang Fan
Despite the remarkable success achieved in modelling the rotor-disk-blade coupling system, the existing research does not adequately consider both the structural flexibility and the rotating effects in the shaft, disk, and blade components. To bridge this gap, a dynamic modelling strategy has been developed for the shaft-disk-blade coupling system using an in-house code that integrates the Timoshenko beam and Mindlin-Reissner shell elements. In addition, two critical issues concerning the couplings of the shaft-disk and disk-blade are successfully addressed by using the penalty method in conjunction with the compatibility equation of deformation. Subsequently, the improved modelling strategies for the shaft-disk coupling system, with and without blade components, are verified by comparing their static/dynamic frequencies and modal shapes with those obtained from experiments and solid models in ANSYS. The results indicate that the beam-shell hybrid model exhibits good accuracy and high efficiency in simulating the dynamic characteristics of the shaft-disk coupling system with and without blades. The modal characteristics of the entire rotor system have a series of flexible vibration modes, including bending/torsion/axial mode for the shaft, pitch diameter/umbrella-type mode for the disk, and bending mode for the blade.
{"title":"Dynamic modelling strategy of a shaft-disk-blade coupling system integrating beam and shell theories","authors":"Jin Zeng, Yang Yang, Hui Ma, Yiren Yang, Chenguang Fan","doi":"10.1007/s10999-023-09664-7","DOIUrl":"10.1007/s10999-023-09664-7","url":null,"abstract":"<div><p>Despite the remarkable success achieved in modelling the rotor-disk-blade coupling system, the existing research does not adequately consider both the structural flexibility and the rotating effects in the shaft, disk, and blade components. To bridge this gap, a dynamic modelling strategy has been developed for the shaft-disk-blade coupling system using an in-house code that integrates the Timoshenko beam and Mindlin-Reissner shell elements. In addition, two critical issues concerning the couplings of the shaft-disk and disk-blade are successfully addressed by using the penalty method in conjunction with the compatibility equation of deformation. Subsequently, the improved modelling strategies for the shaft-disk coupling system, with and without blade components, are verified by comparing their static/dynamic frequencies and modal shapes with those obtained from experiments and solid models in ANSYS. The results indicate that the beam-shell hybrid model exhibits good accuracy and high efficiency in simulating the dynamic characteristics of the shaft-disk coupling system with and without blades. The modal characteristics of the entire rotor system have a series of flexible vibration modes, including bending/torsion/axial mode for the shaft, pitch diameter/umbrella-type mode for the disk, and bending mode for the blade.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 1","pages":"107 - 127"},"PeriodicalIF":2.7,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44224890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}