Pub Date : 2024-09-05DOI: 10.1007/s11665-024-10027-2
Yanqi Fu, Tianqi Yao
This study investigates the spheroidization behavior of the O phase in Ti2AlNb alloy during high temperature deformation through a designed high-throughput experimental approach. The results of the high-throughput deformation experiments indicate that temperature, strain, and strain rate influence the spheroidization behavior of the O phase. Specifically, an increase in temperature and strain promotes the spheroidization of the O phase, while the strain rate exhibits the opposite effect. Moreover, the spheroidization mechanisms of this alloy during high-temperature deformation can be identified and primarily involve grain boundary separation mechanism, terminal dissolution mechanism, continuous dynamic recrystallization mechanism, edge spheroidization mechanism, and shear spheroidization mechanism. Furthermore, the analysis of experimental results reveals that the different morphologies of the spheroidized O phase have varying effects on the microscale mechanical response. In the region of large-sized high-density spheroidized O phase, the influence of back stress may extend to the entire B2 phase, thereby enhancing the B2 phase and subjecting the O phase and B2 phase to similar strains. Therefore, a small quantity of O phase is affected by the forward stress. Conversely, in the region of small-sized low-density spheroidized O phase, a small quantity of B2 phase is affected by the back stress, and the majority of the O phase is affected by forward stress. Eventually, the interaction mechanism between O phase and B2 phase during high-temperature deformation is explored for the first time through theoretical analysis.
本研究通过设计的高通量实验方法研究了 Ti2AlNb 合金中 O 相在高温变形过程中的球化行为。高通量变形实验结果表明,温度、应变和应变速率会影响 O 相的球化行为。具体来说,温度和应变的增加会促进 O 相的球化,而应变速率则表现出相反的效果。此外,还可以确定该合金在高温变形过程中的球化机理,主要包括晶界分离机理、末端溶解机理、连续动态再结晶机理、边缘球化机理和剪切球化机理。此外,实验结果分析表明,球化 O 相的不同形态对微观力学响应的影响各不相同。在大尺寸高密度球化 O 相区域,背应力的影响可能会扩展到整个 B2 相,从而增强 B2 相,使 O 相和 B2 相承受相似的应变。因此,少量的 O 相会受到前向应力的影响。相反,在小尺寸低密度球化 O 相区域,少量 B2 相受到后向应力的影响,而大部分 O 相受到前向应力的影响。最终,通过理论分析,首次探索了高温变形过程中 O 相和 B2 相之间的相互作用机制。
{"title":"Investigation of O Phase Spheroidization Behavior in Ti2AlNb Alloy Using High-Throughput Experiments","authors":"Yanqi Fu, Tianqi Yao","doi":"10.1007/s11665-024-10027-2","DOIUrl":"https://doi.org/10.1007/s11665-024-10027-2","url":null,"abstract":"<p>This study investigates the spheroidization behavior of the O phase in Ti<sub>2</sub>AlNb alloy during high temperature deformation through a designed high-throughput experimental approach. The results of the high-throughput deformation experiments indicate that temperature, strain, and strain rate influence the spheroidization behavior of the O phase. Specifically, an increase in temperature and strain promotes the spheroidization of the O phase, while the strain rate exhibits the opposite effect. Moreover, the spheroidization mechanisms of this alloy during high-temperature deformation can be identified and primarily involve grain boundary separation mechanism, terminal dissolution mechanism, continuous dynamic recrystallization mechanism, edge spheroidization mechanism, and shear spheroidization mechanism. Furthermore, the analysis of experimental results reveals that the different morphologies of the spheroidized O phase have varying effects on the microscale mechanical response. In the region of large-sized high-density spheroidized O phase, the influence of back stress may extend to the entire B2 phase, thereby enhancing the B2 phase and subjecting the O phase and B2 phase to similar strains. Therefore, a small quantity of O phase is affected by the forward stress. Conversely, in the region of small-sized low-density spheroidized O phase, a small quantity of B2 phase is affected by the back stress, and the majority of the O phase is affected by forward stress. Eventually, the interaction mechanism between O phase and B2 phase during high-temperature deformation is explored for the first time through theoretical analysis.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"12 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1007/s11665-024-10029-0
Thirupathi Nadimetla, Lalit Kumar, Ramesh Kumar, M. R. Kulkarni, Sachin D. Kore
In this process, the magnetic field pressure forces the driver to deform radially inward; sequentially, the D9 steel tube gets accelerated and forced to impact the SS316 end plug, causing a joint between the two. Experiments and metallurgical characterization were conducted by changing the working length of the field shapers and end plug shape at different voltages. The effect of change in end plug geometry, change in voltage, and change in field shaper working length was studied. The results were compared based on the values of the welded length, wavelength and crest height for the joined samples. The metallurgical characterization was performed using optical microscopy, the scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS). The micro-hardness test of the joined samples was also performed. To test whether the gap between the joint was present or not, helium leak tests were performed. For the confirmation of the strain hardening, hardness tests were performed near the joint interface.
在此过程中,磁场压力迫使驱动器径向向内变形;随后,D9 钢管被加速并被迫撞击 SS316 端塞,导致两者之间的连接。通过在不同电压下改变磁场整形器的工作长度和端塞形状,进行了实验和冶金特性分析。研究了端塞几何形状的变化、电压的变化和电场整形器工作长度的变化所产生的影响。根据连接样品的焊接长度、波长和波峰高度值对结果进行了比较。使用光学显微镜、扫描电子显微镜(SEM)和能量色散 X 射线光谱(EDS)进行了金相表征。此外,还对接合样品进行了显微硬度测试。为了检测连接处是否存在间隙,还进行了氦泄漏测试。为了确认应变硬化,在接合界面附近进行了硬度测试。
{"title":"Experimental Investigation and Metallurgical Studies on D9 Tube to SS316 Tapered End Plug Using Magnetic Pulse Welding","authors":"Thirupathi Nadimetla, Lalit Kumar, Ramesh Kumar, M. R. Kulkarni, Sachin D. Kore","doi":"10.1007/s11665-024-10029-0","DOIUrl":"https://doi.org/10.1007/s11665-024-10029-0","url":null,"abstract":"<p>In this process, the magnetic field pressure forces the driver to deform radially inward; sequentially, the D9 steel tube gets accelerated and forced to impact the SS316 end plug, causing a joint between the two. Experiments and metallurgical characterization were conducted by changing the working length of the field shapers and end plug shape at different voltages. The effect of change in end plug geometry, change in voltage, and change in field shaper working length was studied. The results were compared based on the values of the welded length, wavelength and crest height for the joined samples. The metallurgical characterization was performed using optical microscopy, the scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS). The micro-hardness test of the joined samples was also performed. To test whether the gap between the joint was present or not, helium leak tests were performed. For the confirmation of the strain hardening, hardness tests were performed near the joint interface.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"23 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A multi-factor gray model of hardness and modulus about the content of Ti, Fe, Ni and Cu metal powder in the inner layer of bimetal composite pipe was established, and the proportion of each component was optimized by genetic algorithm. The inner layer with a certain thickness was prepared by high frequency induction heating and powder spraying technology, its hardness and modulus were tested, and compared with the theoretical calculation value, the erosion wear test was carried out. The results indicate that the prepared inner layer is in an amorphous state, exhibiting high hardness and toughness. The gray model can accurately establish the relationship between the hardness and modulus of the inner layer with the component content, and the average error is not exceeding 2%. The inner layer prepared with the optimized raw material ratio demonstrates high erosion wear resistance at different impact angles and temperatures, the damage type is micro-cutting. Compared with the base pipe, the erosion rate is reduced by at least 27%.
建立了双金属复合管内层 Ti、Fe、Ni 和 Cu 金属粉末含量的硬度和模量多因素灰色模型,并通过遗传算法对各组分的比例进行了优化。通过高频感应加热和粉末喷涂技术制备了一定厚度的内层,测试了其硬度和模量,并与理论计算值进行了对比,同时进行了侵蚀磨损试验。结果表明,制备的内层处于非晶态,具有较高的硬度和韧性。灰色模型能准确建立内层硬度和模量与组分含量的关系,平均误差不超过 2%。用优化的原材料配比制备的内层在不同的冲击角度和温度下都表现出较高的耐侵蚀磨损性,损伤类型为微切削。与基管相比,侵蚀率至少降低了 27%。
{"title":"Composition Design and Experimental Study of Erosion Wear Resistant Bimetal Composite Pipe Inner Layer Based on Gray System Theory and Genetic Algorithm","authors":"Jianwei Dong, Zheng Zhang, Deguo Wang, Yuxi Wu, Yuming Liu, Yanbao Guo","doi":"10.1007/s11665-024-09988-1","DOIUrl":"https://doi.org/10.1007/s11665-024-09988-1","url":null,"abstract":"<p>A multi-factor gray model of hardness and modulus about the content of Ti, Fe, Ni and Cu metal powder in the inner layer of bimetal composite pipe was established, and the proportion of each component was optimized by genetic algorithm. The inner layer with a certain thickness was prepared by high frequency induction heating and powder spraying technology, its hardness and modulus were tested, and compared with the theoretical calculation value, the erosion wear test was carried out. The results indicate that the prepared inner layer is in an amorphous state, exhibiting high hardness and toughness. The gray model can accurately establish the relationship between the hardness and modulus of the inner layer with the component content, and the average error is not exceeding 2%. The inner layer prepared with the optimized raw material ratio demonstrates high erosion wear resistance at different impact angles and temperatures, the damage type is micro-cutting. Compared with the base pipe, the erosion rate is reduced by at least 27%.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"38 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigated the synergistic effects of Ti and Cr alloying elements on the microstructure, mechanical and wear properties of Cu-Zn manganese brasses. The simultaneous addition of Ni and Pb elements decreases the size of silicides and thus increases the yield strength of brass. The addition of Ti on the basis of Ni and Pb increases the content of silicides, and the generation of massive small-sized silicides increases the hardness and the wear resistance of brass. Cr element has refining effect on the size of silicides, and the smallest-sized and most uniformly distributed silicides induce the largest ultimate tensile strength and elongation. However, the simultaneous addition of Cr and Ti elements causes the agglomeration of silicides, and this results in poor ductility and wear resistance of brass.
本研究探讨了钛和铬合金元素对铜锌锰黄铜的微观结构、机械性能和磨损性能的协同效应。同时添加 Ni 和 Pb 元素会减小硅化物的尺寸,从而提高黄铜的屈服强度。在 Ni 和 Pb 的基础上添加 Ti 会增加硅化物的含量,生成大量小尺寸硅化物会提高黄铜的硬度和耐磨性。铬元素对硅化物的尺寸有细化作用,尺寸最小且分布最均匀的硅化物可产生最大的极限抗拉强度和伸长率。然而,同时添加铬和钛元素会导致硅化物团聚,从而使黄铜的延展性和耐磨性变差。
{"title":"Effects of Alloying Elements (Ti and Cr) on the Microstructures, Mechanical and Wear Properties of Manganese Brasses","authors":"Xiangguang Kong, Jiangmin Wu, Qing Liu, Xiao Zhang, Fugong Qi, Jiyu Zhou, Pengjie Wang, Haimin Ding","doi":"10.1007/s11665-024-09957-8","DOIUrl":"https://doi.org/10.1007/s11665-024-09957-8","url":null,"abstract":"<p>This study investigated the synergistic effects of Ti and Cr alloying elements on the microstructure, mechanical and wear properties of Cu-Zn manganese brasses. The simultaneous addition of Ni and Pb elements decreases the size of silicides and thus increases the yield strength of brass. The addition of Ti on the basis of Ni and Pb increases the content of silicides, and the generation of massive small-sized silicides increases the hardness and the wear resistance of brass. Cr element has refining effect on the size of silicides, and the smallest-sized and most uniformly distributed silicides induce the largest ultimate tensile strength and elongation. However, the simultaneous addition of Cr and Ti elements causes the agglomeration of silicides, and this results in poor ductility and wear resistance of brass.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"60 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1007/s11665-024-10053-0
Yongseon Choi, JeongEun Yoo, Kiyoung Lee
Despite inherent chemical and physical stability of stainless steel, the significantly lower productivity of energy compared to energy usage still necessitates research in harsh environments that demand high material performance under challenging condition. This study explores the formation and characterization of mechanical properties, corrosion, and heat-transfer behaviors for thermal oxide layers on SS304 through various heat treatment conditions. The heat treatment at low temperature (500 °C) formed thin oxide layers with few tens of nanometers (S-500), delivering to superior mechanical properties, measured by nanoindenter. However, the thin layers of S-500 show rapid corrosion behaviors in NaCl solution, investigated by linear sweep voltammetry polarization curves. In contrast, the thick oxide layers of S-700 with the thickness of 2.5-3.5 µm grown at high temperature (above 600 °C) showed low mechanical properties but superior corrosion resistance. The difference between heat treatment conditions derive to diverse oxide compositions from SS304 substrate, particularly, Cr2O3 at 700 °C. The Cr2O3 provided high corrosion resistance, but it reduced thermal conductivity due to its intrinsic properties.
{"title":"Investigating the Impact of Heat Treatment on the Mechanical, Corrosion, and Heat-Transfer Characteristics of Thermal Oxide Layers on SS304","authors":"Yongseon Choi, JeongEun Yoo, Kiyoung Lee","doi":"10.1007/s11665-024-10053-0","DOIUrl":"https://doi.org/10.1007/s11665-024-10053-0","url":null,"abstract":"<p>Despite inherent chemical and physical stability of stainless steel, the significantly lower productivity of energy compared to energy usage still necessitates research in harsh environments that demand high material performance under challenging condition. This study explores the formation and characterization of mechanical properties, corrosion, and heat-transfer behaviors for thermal oxide layers on SS304 through various heat treatment conditions. The heat treatment at low temperature (500 °C) formed thin oxide layers with few tens of nanometers (S-500), delivering to superior mechanical properties, measured by nanoindenter. However, the thin layers of S-500 show rapid corrosion behaviors in NaCl solution, investigated by linear sweep voltammetry polarization curves. In contrast, the thick oxide layers of S-700 with the thickness of 2.5-3.5 µm grown at high temperature (above 600 °C) showed low mechanical properties but superior corrosion resistance. The difference between heat treatment conditions derive to diverse oxide compositions from SS304 substrate, particularly, Cr<sub>2</sub>O<sub>3</sub> at 700 °C. The Cr<sub>2</sub>O<sub>3</sub> provided high corrosion resistance, but it reduced thermal conductivity due to its intrinsic properties.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"6 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1007/s11665-024-10025-4
R. Muñoz-Arroyo, H. M. Hdz-García, F. A. Hernández-García, M. Alvarez-Vera, A. Bahrami, M. Naeem, Isidro Guzman Flores, J. J. Ruíz-Mondragón
In this study, Mg was removed from an A332 molten alloy using mixtures of mineral zeolites enriched with 1, 2, and 3 wt.% of amorphous silica nanoparticles (SiO2NP) to obtain an A380 aluminum alloy. Mineral zeolite with 3 wt.% SiO2NP was found to be the most efficient mixture, removing Mg from an initial content of 2 wt.% to a final content of 0.046 wt.% 70 min after injection. The results indicated that a decrease in the Mg content, followed by thermal aging treatment (T6) at 150 °C for 10 h, resulted in a reduction of the volumetric fraction percentage (Vf%) of needle-like β-Al5FeSi intermetallics from 1.123 to 0.181. Similarly, T6 treatment modified the lamellar Si-eutectic to cell-eutectics, as revealed by microstructure analysis. Consequently, the mechanical properties of the alloy, such as fracture strength (σf), yield-stress (σo), and strain (ε), were improved. The microstructural modification postulated in this study can enhance the contact stiffness under load cycles of 100 Hz at 400 mN, owing to the high storage elastic modulus of 57 GPa, estimated by dynamic mechanical analysis nanoindentation.
{"title":"A380 Aluminum Molten Processing Using Silica-Nanoparticle Enriched Zeolite with Thermal Aging Treatment","authors":"R. Muñoz-Arroyo, H. M. Hdz-García, F. A. Hernández-García, M. Alvarez-Vera, A. Bahrami, M. Naeem, Isidro Guzman Flores, J. J. Ruíz-Mondragón","doi":"10.1007/s11665-024-10025-4","DOIUrl":"https://doi.org/10.1007/s11665-024-10025-4","url":null,"abstract":"<p>In this study, Mg was removed from an A332 molten alloy using mixtures of mineral zeolites enriched with 1, 2, and 3 wt.% of amorphous silica nanoparticles (SiO<sub>2NP</sub>) to obtain an A380 aluminum alloy. Mineral zeolite with 3 wt.% SiO<sub>2NP</sub> was found to be the most efficient mixture, removing Mg from an initial content of 2 wt.% to a final content of 0.046 wt.% 70 min after injection. The results indicated that a decrease in the Mg content, followed by thermal aging treatment (T6) at 150 °C for 10 h, resulted in a reduction of the volumetric fraction percentage (<i>V</i><sub>f</sub>%) of needle-like β-Al<sub>5</sub>FeSi intermetallics from 1.123 to 0.181. Similarly, T6 treatment modified the lamellar Si-eutectic to cell-eutectics, as revealed by microstructure analysis. Consequently, the mechanical properties of the alloy, such as fracture strength (<i>σ</i><sub>f</sub>), yield-stress (<i>σ</i><sub>o</sub>), and strain (<i>ε</i>), were improved. The microstructural modification postulated in this study can enhance the contact stiffness under load cycles of 100 Hz at 400 mN, owing to the high storage elastic modulus of 57 GPa, estimated by dynamic mechanical analysis nanoindentation.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"45 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1007/s11665-024-10020-9
Hao Liu, Chang Liu, Hua Feng, Zhongxing Tian, Xiangdong Liu
Abaca fibers were alkaline boiling treated with sodium hydroxide aqueous solution combined with impregnating in aluminum dihydrogen phosphate solution to improve the thermal shock resistance and reinforce shells for investment casting. The microstructure and thermal shock resistance of the treated fibers were analyzed, and their influence on the properties of reinforced shells was investigated. It is found that the hemicellulose and lignin at the surfaces of the fibers undergoing alkaline boiling were removed. A dense protective film was formed on the boiled fibers surfaces through impregnating in a solution of 15.0 wt.% aluminum dihydrogen phosphate. Moreover, the results demonstrated that the weight loss of the boiled-impregnated fibers reduces by 44.61%, compared to the raw fibers, indicating significantly improving the thermal shock resistance. Furthermore, the high-temperature strength of specimens reinforced with boiled-impregnated fibers of 1.29 wt.% reached a peak of 20.11 MPa, increasing by 68.12% compared to the unreinforced. And the alkaline boiled-immersed fibers reinforced shell occurred at elevated temperature a low deformation underweight of only 0.49%. Especially, the impregnated fibers with thermal shock resistance not only ensured good permeability of reinforced shells, but also enhanced the high-temperature cracking resistance capacity. This fully demonstrates the effectiveness of impregnating treatment in improving thermal shock resistance of fibers, and it is very promising to be applied in practical shell-making.