Supercapacitors are one of the most unique energy storage devices with high efficiency. Supercapacitors are known as renewable sources and replace batteries. This research presents the making of a new generation of supercapacitors in a simple method with high specific capacity and the property of maintaining specific capacity in long and multiple cycles based on polyaniline and carbon cloth fibers with graphene oxide. This nanocomposite is characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, ultraviolet–visible spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and thermogravimetric analysis. The electrode made of this nanocomposite has a specific capacity of 420 F g−1, and after 1000 cycles, it retains more than 83% of the specific capacity, which reaches 348.6 F g−1 at a current density of 1 A g−1. The improvement of retention of specific capacity in the presence of graphene oxide compared to the absence of graphene oxide is more than 10%. This electrode, by maintaining its specific capacity in many cycles, has obtained a significant advantage over other electrodes. These results show that the electrode based on carbon cloth fibers/polyaniline/graphene oxide (CFs/PANI/GO) nanocomposite can be a high-performance and environmentally friendly electrode.